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Abstract

In this paper, we consider the nonlinear equations with the additive white noise, which are commonly
impossible to be solved by an analytical procedure. The Block-Pulse functions as basic functions are
proposed to solve these equations. In order to investigate the validity of this method, we used the
Adomian decomposition method to approximate the solution of the stochastic Duffing equations. The
results reveal that the proposed method is very effective.
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1 Introduction

S
tochastic systems play a prominent role in
a range of application areas including biol-

ogy, chemistry, epidemiology, mechanics, micro-
electronics, economics, finance and physics. Gen-
erally, mathematical modeling of such processes
leads to nonlinear deterministic and stochastic
systems [14, 15]. A realistic nonlinear stochastic
differential equation is the mathematical model
of damped-forced pendulum with noise, that can
be described approximately by the second order
nonlinear stochastic differential equations such as
stochastic Duffing’s equations [3]. These equa-
tions have many catastrophic, diverging and os-
cillating behaviors by several stable and un-
stable states due to the value of their coeffi-
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cients. Therefore, it is impossible to find an an-
alytical procedure to solve nonlinear equations
such as Duffing’s equations. Some authors re-
ported analytical and perturbative or nonper-
turbative techniques to solve these equations
[4, 20, 21, 23, 24, 25]. The Adomian decompo-
sition method (ADM) is a solution method with
a wide range of applications including the so-
lution of linear and nonlinear algebraic, differ-
ential, integral and integro-differential equations
or system of equations that acknowledge this
method work extremely well for Duffing’s equa-
tions [1, 2, 7, 8, 9, 10, 22, 26, 27]. In this method,
the solution is considered as a rapidly converging,
infinite series. The convergence of the method
proved by Y. Cherrualt et al in [5, 6]. In recent
years, the Block-Pulse functions (BPF) have been
studied and applied extensively as a useful tool to
solve linear and nonlinear equations [12]. Studies
and applications show that these functions may
have definite advantages for problems involving
integrals and derivatives due to their clearness in
expressions and their simplicity in formulations.
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The main advantage of using BPF is that it re-
duces the problems to those of solving a system of
algebraic equations. In this paper, we study the
stochastic Duffing equation that of course can-
not be solved explicitly. Therefore, it is impor-
tant to find their approximate solutions by us-
ing some numerical methods. Recently, several
authors used some numerical methods to solve
stochastic equations [11, 13, 16, 17, 18, 19, 28].
The methods for solving stochastic equations are
based on similar techniques used for solving de-
terministic equations, but generalized to provide
support for stochastic equations. The BPF and
the ADM are two examples of the methods which
have been applied to solve a wide range of lin-
ear and nonlinear problems, both deterministic
and stochastic. They are two powerful methods
that consider the approximate solution of nonlin-
ear problems as an infinite series converging to
the exact solution.

In this paper, we use the BPF to approximate
the solution of the stochastic nonlinear Duffing
equation. To show the validity of the method, we
apply the ADM to solve the stochastic equation.
The comparison among numerical results shows
that both methods give similar approximations
and also the results are compared with the results
of the deterministic equation. It is shown that
these methods are all valid if the intensity of the
noise is small.

The paper is organized as follows. In Section 2,
we describe the basic properties of the BPF which
are required for our subsequent development and
Section 3 states the formulation of the stochastic
nonlinear Duffing oscillator. We apply the BPF
and the ADM to solve nonlinear stochastic Duff-
ing’s equations in section 4 and 5, respectively
and in section 6, we report our numerical find-
ings.

2 Preliminaries

2.1 Description of the BPF

Block-pulse functions, a set of orthogonal func-
tions with piecewise constant values, is defined

as follows [?, ?]

ϕi(x) =


1 (i− 1)h ≤ x ≤ ih,

0 otherwise,
(2.1)

with x ∈ [0, T ), i = 1, 2, . . . ,m and h = T
m . The

BPFs have some properties such as disjointness,
orthogonality and completeness.
1. Disjointness

ϕi(x)ϕj(x) =


ϕi(x) i = j,

0 i ̸= j,
(2.2)

2. Orthogonality

∫ T

0
ϕi(x)ϕj(x)dx =


h i = j,

0 i ̸= j,
(2.3)

3. Completeness
For every f ∈ L2[0, T ] when m approach to the
infinity, Parsevals identity holds∫ T

0
f2(x)dx =

∞∑
i=1

f2
i ∥ϕi(x)∥2, (2.4)

where

fi =
1

h

∫ T

0
f(x)ϕi(x)dx. (2.5)

The set of Block-Pulse functions may be written
as a m-vector ϕ(x),

ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕm(x)]T . (2.6)

From the above representation and disjointness
property we have

ϕ(x)ϕ(x)T =


ϕ1(x) 0 · · · 0
0 ϕ2(x) · · · 0
...

...
. . .

...
0 0 · · · ϕm(x)

 ,

(2.7)
ϕ(x)Tϕ(x) = 1, (2.8)

ϕ(x)ϕ(x)TX = X̃ϕ(x), (2.9)

where X is an m-vector and X̃ = diag(X). More-
over, function f(x) ∈ L2[0, T ] can be expanded by
Block-Pulse functions as

f(x) =
m∑
i=1

fiϕi(x) = F Tϕ(x) = ϕT (x)F, (2.10)



T. Damercheli, /IJIM Vol. 13, No. 2 (2021) 91-99 93

where F is an m-vector given by

F = [f1, f2, . . . , fm]T . (2.11)

The integration of the vector ϕ(x) defined in Eq.
(2.6) can be approximately obtained as∫ x

0
ϕ(x)dx = Pϕ(x), (2.12)

where P is the operational matrix for integration
and is given by

P =
h

2


1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1

 . (2.13)

3 Statement problem

We consider the Duffing equation under stochas-
tic external excitations as follows

y′′(x)+b1y
′(x)+b2y(x)+b3y

3(x) = f(x)+γξ(x),
(3.14)

The common form of the Duffing equations can
be obtained from the dynamical equations of a
physical pendulum, that is perturbed by additive
noise. Also, it describes the model excited by
inhomogeneities of the surrounding medium and
external forces. The coefficient γ characterizes
the noise intensity (for γ = 0 the motion is deter-
ministic), b1 is the measure of damping and b3 is
nonlinearities. Suppose that the pendulum starts
its motion from y = α by the velocity y′ = β at
the time x = 0. So, we have the initial conditions

y(0) = α y′(0) = β. (3.15)

In Eq. (3.14), ξ(x) = dW (x)/dx, W (x) is a
Wiener process which represents an intrinsic noise
in the dynamical systems, and is often referred to
as Gaussian white noise with zero mean and stan-
dard deviation σ = 1. In general, the Wiener pro-
cess W (x) is a continuous-time stochastic process
with the following three properties [25]:

Property 1. For each x, the random variable
W (x) is normally distributed with mean 0 and
variance x and also W (0) = 0 .

Property 2. For each x1 < x2, the normal ran-
dom variable W (x2)-W (x1) is independent of the
random variable W (x1) , and in fact independent
of all W (x), 0 ≤ x ≤ x1.

Property 3. The Wiener process W (x) can be
represented by continuous paths where is not dif-
ferentiable.

4 The BPF for Stochastic Duff-
ing’s equations

The BPF is based on converting the underly-
ing differential equation into an integral equation
through integration, approximating various sig-
nals involved in the equation by truncated orthog-
onal functions of BPF, and using the operational
matrix of integration to eliminate the integral op-
erations. We consider Eq. (3.14) as the form

y(x) = α+ βx+

∫ x

0

∫ x

0
f(x)dxdx (4.16)

+

∫ x

0

∫ x

0
γξ(x)dxdx− b1

∫ x

0

∫ x

0

d

dx
y(x)dxdx

− b2

∫ x

0

∫ x

0
y(x)dxdx− b3

∫ x

0

∫ x

0
y3(x)dxdx,

By simplifying above equation, we can get

y(x) = z(x) +

∫ x

0

∫ x

0
f(x)dxdx (4.17)

+

∫ x

0
γW (x)dx− b1

∫ x

0
y(x)dx

− b2

∫ x

0

∫ x

0
y(x)dxdx− b3

∫ x

0

∫ x

0
y3(x)dxdx,

where z(x) = α+(β+b1)x. To solve this equation
by using BPF, we approximate functions y(x),
f(x), z(x), W (x) and y3(x) by using Eq. (2.10)
as follows

y3(x) = Y T Ỹ 2ϕ(x),

W (x) = W Tϕ(x),

y(x) = Y Tϕ(x),

f(x) = F Tϕ(x),

z(x) = ZTϕ(x).
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By substituting in Eq. (4.17), we obtain

Y Tϕ(x) = ZTϕ(x) +

∫ x

0

∫ x

0
F Tϕ(x)dxdx(4.18)

+γ

∫ x

0
W Tϕ(x)dx− b1

∫ x

0
Y Tϕ(x)dx

−b3

∫ x

0

∫ x

0
Y T Ỹ 2ϕ(x)dxdx.

By using operational matrix of integration P
given in Eq. (2.13), we get

Y Tϕ(x) = ZTϕ(x) + F TP 2ϕ(x) + γW TPϕ(x)

−b1Y
TPϕ(x)− b3Y

T Ỹ 2P 2ϕ(x)

Y T +b1Y
TP+b3Y

T Ỹ 2P 2 = ZT +F TP 2+γW TP.
(4.19)

Obviously Eq. (4.19) is a system of nonlinear al-
gebraic equations that can be solved by nonlinear
algorithms.
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Figure 1: Trajectory deterministic
(Thick),Trajectory stochastic: ADM (Orange),
BPF (dashed)
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Figure 2: Trajectory deterministic (Or-
ange),Trajectory stochastic: ADM (Thick), BPF
(dashed)

5 The ADM for Stochastic
Duffing’s equation

In this section, we apply the ADM to solve Eq.
(3.14) whit initial values. In this method, the so-
lution is considered as the summation of an infi-
nite series which converges to the exact solutions.
To this end, we denote d2

dx2 by operator L, then
operator L−1 is a two-fold integration from 0 to
x. So, the Eq. (3.14) can be written

L(y(x)) = f(x)+γξ(x)−b1y
′(x)−b2y(x)−b3y

3(x)
(5.20)

which is converted to the following equation after
applying L−1 and using Eq. (3.15),

y(x) = α+ βx+L−1(f(x))+L−1(γξ(x)) (5.21)

− b1L
−1(y′(x))− b2L

−1(y(x))− b3L
−1(y3(x))

Now, to solve Eq. (5.21), consider

y(x) =
∞∑
n=0

yn(x), (5.22)

and

y3(x) =

∞∑
n=0

An(x), (5.23)

where Ans for i = 0, 1, 2, . . ., are the Adomian
polynomials [?]. By substituting Eq. (5.22) and
Eq. (5.23) into Eq. (5.21), we have

∞∑
n=0

yn(x) = α+βx+

∫ x

0

∫ x

0
f(x)dxdx+ (5.24)

∫ x

0

∫ x

0
γξ(x)dxdx− b1

∫ x

0

∫ x

0

d

dx
(

∞∑
n=0

yn(x)dxdx

− b2

∫ x

0

∫ x

0

∞∑
n=0

yn(x)dxdx

− b3

∫ x

0

∫ x

0

∞∑
n=0

An(x)dxdx

Equating the terms, we get

y0(x) = α+ βx+

∫ x

0

∫ x

0
f(x)dxdx (5.25)

+

∫ x

0

∫ x

0
γξ(x)dxdx
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where∫ x

0

∫ x

0
γξ(x)dxdx =

∫ x

0

∫ x

0
γdW (x)dx (5.26)

and the last integral is called Ito integral calcu-
lated by stochastic calculus and for i = 1, 2, . . .,
we have

yi(x) = −b1

∫ x

0

∫ x

0

d

dx
yi−1(x)dxdx (5.27)

− b2

∫ x

0

∫ x

0
yi−1(x)dxdx− b3

∫ x

0

∫ x

0
Ai−1(x)dxdx.

6 Examples

In this section, we determine the approximate so-
lution of two examples from stochastic nonlinear
Duffing’s equations by the PBF and the ADM.
The numerical results are presented by Figs 1 and
2. All computations are carried out using Math-
ematica 8.

Example 6.1 Consider the nonlinear Duffing
equation with additive Gaussian white noise in
the external force as

y′′(x)+y′(x)+y(x)+y3(x) = cos3x−sinx+ξ(x),
(6.28)

where the initial conditions are y(0) = 1 and

y′(0) = 0. Denoting d2

dx2 by L, we have L−1, as
a two-fold integration. Using the operator L, Eq.
(6.28) becomes

L(y(x)) = cos3x−sinx+ξ(x)−y′(x)−y(x)−y3(x).
(6.29)

Applying the inverse operator L−1 on both sides
of Eq. (6.29) and using the initial conditions, we
have

y(x) = 1 + L−1(cos3x− sinx) + L−1(ξ(x))

− L−1(y′(x))− L−1(y(x))− L−1(y3(x)). (6.30)

To solve Eq. (6.30) by the BPF, we choose m =
10 and T = 0.5, therefore we obtain

y(x) = [y1, y2, . . . , y10][ϕ1(x), ϕ2(x), . . . , ϕ10(x)]
T

= Y ϕ(x),

z(x) = x+ 1 =

[1.025, 1.075, 1.125, 1.175, 1.225, 1.275, 1.325,

1.375, 1.425, 1.475]ϕ(x) = Zϕ(x)

f(x) = cos3x− sinx =

[0.973756, 0.916362, 0.851818, 0.780506, 0.70293,

0.619705, 0.531549, 0.43926, 0.34373, 0.24589]ϕ(x)

= Fϕ(x)

W (x) =

[W (
h

2
),W (

3h

2
),W (

5h

2
),W (

7h

2
),W (

9h

2
),W (

11h

2
),

W (
13h

2
),W (

15h

2
),W (

17h

2
),W (

19h

2
)]ϕ(x)

= Wϕ(x)

y3(x) = [Y ϕ(x)]3 = Y Ỹ 2ϕ(x)

= [y31, y
3
2, y

3
3, . . . , y

3
10]ϕ(x).

By substituting above equations in Eq. (6.30)
and using operational matrix P , we can obtain
the system of nonlinear algebraic equations as fol-
lows

Y [I+P+P 2]+Y Ỹ 2P 2 = Z+FP 2+WP. (6.31)

To solve Eq. (6.30) by the ADM, consider the
Eqs. (5.22) and (5.23), therefore we can get

∞∑
n=0

yn(x) = 1 +

∫ x

0

∫ x

0
(cos3x− sinx)dxdx

+

∫ x

0

∫ x

0
ξ(x)dxdx−

∫ x

0

∫ x

0

∞∑
n=0

yn(x)dxdx

−
∫ x

0

∫ x

0

d

dx
(

∞∑
n=0

yn(x))dxdx
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Table 1

x approximatebyADM approximatebyBPF

0 1 0.999335
0.05 0.99847 0.996849
0.10 0.995485 0.992361
0.15 0.988915 0.985904
0.20 0.981633 0.973580
0.25 0.969365 0.965957
0.30 0.955885 0.952355
0.35 0.941122 0.936839
0.40 0.924878 0.920659
0.45 0.913456 0.915467

Table 2

x approximatebyADM approximatebyBPF

0 0.5 0.497512
0.05 0.470779 0.463879
0.10 0.451952 0.442588
0.15 0.425432 0.423625
0.20 0.423725 0.404458
0.25 0.371617 0.384283
0.30 0.401555 0.373218
0.35 0.381442 0.362504
0.40 0.339443 0.358907
0.45 0.316615 0.334563

−
∫ x

0

∫ x

0

∞∑
n=0

An(x)dxdx,

considering five terms of the Maclaurin series ex-
ternal force, f(x), and equating the terms, we
obtain

f(x) = cos3x− sinx = 1− x− 3x2

2
+

x3

6
+

7x4

8
,

(6.32)

y0(x) = 1 +

∫ x

0

∫ x

0
(1− x− 3x2

2
+

x3

6
(6.33)

+
7x4

8
)dxdx+

∫ x

0

∫ x

0
dW (x)dx,

yi(x) = −
∫ x

0

∫ x

0

d

dx
yi−1(x)dxdx (6.34)

−
∫ x

0

∫ x

0
yi−1(x)dxdx

−
∫ x

0

∫ x

0
Ai−1(x)dxdx, i = 1, 2, . . . .

By calculating five terms of the series yi(x), i =
1, 2, . . . , 5, an approximate solution for the Eq.
(6.30) we obtain as follows

y0(x) = 1 +
x2

2
− x3

6
− x4

8
(6.35)

+
x5

120
+

7x6

240
+W (x)

y1(x) = −x2 − x3

6
− x4

8
+

7x5

120
− 7x6

720
+

x7

90
+

x8

336
− x9

2880
+ · · · − 2x2W (x)− 1

4
x4W (x)+

1

20
x5W (x) +

3

280
x7W (x) +

1

192
x8W (x)−

1

480
x9W (x)− 37x10W (x)

86400
+ · · · , (6.36)

...to y(x)=1-xˆ2
2+x4

24
− x6

720
− x7

5040
+ x8

280
−

913x9

120960
− · · ·+W (x)− 2x2W (x) +

2

3
x3W (x)+



T. Damercheli, /IJIM Vol. 13, No. 2 (2021) 91-99 97

3

4
x4W (x)− 19

60
x5W (x)− 143

360
x6W (x) + · · · .

The numerical results are shown in Table 1. The
curves in Fig. 1 represent a trajectory of the
approximate solution computed by the BPF and
ADM.

Example 6.2 Consider the nonlinear Duffing
equation with additive Gaussian white noise in
external force as form

y′′(x) + 2y′(x) + y(x) + 8y3(x) = e−3x + ξ(x),
(6.37)

where the initial conditions are y(0) = 1
2 and

y′(0) = −1
2 . The numerical results are shown

in Table 2. The curves in Fig. 2 represent a tra-
jectory of the approximate solution computed by
the BPF and ADM.

Integrating of both side of the Eq. (6.37) and
using the initial conditions we have

y(x) =
1

2
+

1

2
x+

∫ x

0

∫ x

0
e−3xdxdx+

∫ x

0

∫ x

0
ξ(x)dxdx

− 2

∫ x

0

∫ x

0

d

dx
(y(x))dxdx−

∫ x

0

∫ x

0
y(x)dxdx

− 8

∫ x

0

∫ x

0
y3(x)dxdx. (6.38)

To solve Eq. (6.38) by the BPF, we choose
m = 10 and T = 0.5, by relation (4.16)-(4.19),
we obtain the system of nonlinear algebraic equa-
tions as follows

Y [I + 2P + P 2] + 8Y Ỹ 2P 2 = Z + FP 2 +WP.
(6.39)

To determine the approximate solution of Eq.
(6.37) by the ADM, we consider five terms of the
Maclaurin series external force, e−3x, and calcu-
late the yi(x), for i = 0, 1, . . . , 5, therefore we
obtain

y(x) =
1

2
+W (x)− x

2
+

x2

4
− 7W (x)x2

2

− 6W (x)2x2 − 4W (x)3x2 − x3

12
+

13W (x)x3

3

+ 6W (x)2x3 +
W (x)3x3

3
+

x4

48
− 9W (x)x4

8
+

7W (x)2x4 + 20W (x)3x4 + 20W (x)4x4 + 8W (x)5x4

− 3x5

80
− 97W (x)x5

30
− 93W (x)2x5

5
+ · · · .

7 Conclusion

The stochastic nonlinear Duffing equation is one
of the complex issues that cannot be solve explic-
itly. In the present paper, we used the BPF and
the ADM to approximate solution of this equa-
tion. The main advantage of using BPF is that it
reduce the problems to those of solving a system
of algebraic equations and also the ADM has been
known to be a powerful device for solving non-
linear equations, particularly Duffing’s equations.
Comparison of the numerical findings show that
these methods have near approximates and also
the numerical results are compared with the exact
solution of the deterministic equation. Therefore,
it can be concluded the presented method is valid
to solve this kind of equations.
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