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Abstract

Referring to one of the recent works of the authors, presented in [13], for numerical solution of linear
differential equations, an alternative scheme is proposed in this article to considerably improve the
accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are
used. By using a special representation of the vector forms of triangular functions and the related
operational matrix of integration, solving the differential equation reduces to solve a linear system of
algebraic equations. The formulation of the method is quite general, such that any arbitrary linear
differential equation may be solved by it. Moreover, the algorithm does not include any integration
and, instead, uses just sampling of functions, that results in a lower computational complexity. Also,
the formulation of this approach needs no modification when a singularity occurs in the coefficients
of differential equation. Some problems are numerically solved by the proposed method to illustrate
that it is much more accurate and applicable than the prior method in [13].

Keywords : Linear differential equation; Numerical algorithm; Triangular functions; Vector forms;
Operational matrix of integration.
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1 Introduction

T
he differential equations beside the other
forms of functional equations such as inte-

gral and integro-differential equations are widely
used for modeling of many problems in physical
science and engineering. Such models often have
no analytical solution and, therefore, obtaining
an approximate solution for them requires a suit-
able numerical method [5, 15, 14, 23, 12, 16, 8,
20, 18, 21, 17, 1, 2, 3, 4, 19].

∗Corresponding author. s.hatamzadeh@yahoo.com.
†Department of Electrical Engineering, Islamshahr

Branch, Islamic Azad University, Tehran, Iran.
‡Department of Mathematics, Islamshahr Branch, Is-

lamic Azad University, Tehran, Iran.

An interesting numerical method for solving or-
dinary linear differential equations has been pre-
sented in [13]. It uses vector forms of block-pulse
functions (BPFs) [22, 9] for setting up an alge-
braic equations system and, finally, computing
the approximate solution. Although the men-
tioned method shows a good efficiency (especially,
in view of generality), it has some drawbacks re-
garding the accuracy and singularity. It is the
main aim of this article to present a suitable ap-
proach to overcome the disadvantages.

This article proposes a numerical method for
solving linear ordinary differential equations of
arbitrary order and coefficients. For this pur-
pose, a special representation of the vector forms
of triangular functions (TFs) [10] are used to ap-
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proximate the solution, its derivatives, and the
equation coefficients. By using the related TFs
operational matrix of integration, the TFs coeffi-
cients vector of the solution and that of its vari-
ous derivatives are expressed in terms of the TFs
coefficients vector of the highest order derivative
and the initial conditions vectors, that results in
a linear system of algebraic equations. Solving
this system gives the TFs coefficients vector of
the highest order derivative and, accordingly, an
approximate solution for the differential equation
is obtained. The main advantages of the proposed
method are as follows:

[•]The formulation of the method is quite
general, without limitation or restriction.
Therefore, it can be used for numerically
solving every linear ordinary differential
equation of arbitrary order and coefficients.
The accuracy of the method is high (con-
siderably higher than that of the BPFs
method). The algorithm does not include
any integration and, instead, uses just sam-
pling of functions, that results in a lower
computational complexity. This is due to the
use of orthogonal TFs set, as it uses piecewise
linear approximation technique where the co-
efficients are samples of the approximated
function. The algorithm of BPFs method,
for a normal discretization size of the prob-
lem, includes a great number of integrations
for setting up the algebraic equations sys-
tem. The formulation of this approach needs
no modification when a singularity occurs in
the coefficients of differential equation. Since
the method uses no integration, then there is
no need to pass through the singular point,
necessarily. In fact, the sampling points may
easily be set up such that none of them co-
incides with the singular point. It should
be mentioned that the formulation of BPFs
method needs some modification in such a
case. The algorithm is simple and clear to
use and can be implemented easily.

The organization of this article is as follows.
A brief review on TFs and their vector forms
is provided in section 2. A special representa-
tion of TFs, introduced in [5], is surveyed in sec-
tion 3. Section 4 presents the numerical method

for solving arbitrary linear ordinary differential
equations by using the special representation of
TFs vector forms and the related operational ma-
trix of integration. Some test problems are nu-
merically solved in section 5 by the proposed
method and the related numerical results are
given. There will be extensive varieties of or-
ders, coefficients, types, and solutions associated
with the test problems to illustrate the general-
ity and computational efficiency of the proposed
method. The obtained results are also compared
with those of the method presented in [13] to con-
firm the superiority of the proposed method in
this article over the BPFs method in view of ac-
curacy and flexibility. Finally, conclusions will be
given in section 6.

2 Review of triangular func-
tions [10]

2.1 Definition

Two m-sets of TFs are defined over the interval
[0,H) as [10]

T1i(t) =

{
1− t−ih

h , ih ⩽ t < (i+ 1)h,

0, otherwise,

T2i(t) =

{
t−ih
h , ih ⩽ t < (i+ 1)h,

0, otherwise,

(2.1)

where i = 0, 1, . . . ,m− 1, with a positive integer
value for m. Also, consider h = H/m, and T1i as
the ith left-handed TF and T2i as the ith right-
handed TF.

Here, we assume that H = 1, so TFs are de-
fined over [0, 1), and h = 1/m.

From the definition of TFs, it is clear that they
are disjoint, orthogonal, and complete [10]. Also,
we can write

φi(t) = T1i(t) + T2i(t), i = 0, 1, . . . ,m− 1,
(2.2)

where φi(t) is the ith BPF defined as

φi(t) =

{
1, ih ⩽ t < (i+ 1)h,

0, otherwise,
(2.3)

where i = 0, 1, ...,m− 1.
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2.2 Vector forms

Consider the firstm terms of left-handed TFs and
the first m terms of right-handed TFs and write
them concisely as m-vectors:

T1(t) = [T10(t), T11(t), ..., T1m−1(t)]
T ,

T2(t) = [T20(t), T21(t), ..., T2m−1(t)]
T ,

(2.4)

where T1(t) and T2(t) are called left-handed
triangular functions (LHTF) vector and right-
handed triangular functions (RHTF) vector, re-
spectively.

2.3 TFs expansion

The expansion of a function f(t) over [0, 1) with
respect to TFs, may be compactly written as

f(t) ≃
m−1∑
i=0

ciT1i(t) +

m−1∑
i=0

diT2i(t)

= cTT1(t) + dTT2(t),

(2.5)

where we may put ci = f(ih) and di = f((i+1)h)
for i = 0, 1, . . . ,m−1. So, approximating a known
function by TFs needs no integration to evaluate
the coefficients.

2.4 Operational matrix of integration

Expressing
∫ s
0 T1(τ)τ and

∫ s
0 T2(τ)τ in terms of

TFs follows [10]:

∫ s

0
T1(τ)τ ≃ P1T1(s) + P2T2(s),

∫ s

0
T2(τ)τ ≃ P1T1(s) + P2T2(s),

(2.6)

where P1m×m and P2m×m are called operational
matrices of integration in TFs domain and repre-

sented as follows:

P1 =
h

2


0 1 1 . . . 1
0 0 1 . . . 1
0 0 0 . . . 1
...

...
...

. . .
...

0 0 0 . . . 0

 ,

P2 =
h

2


1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1

 .

(2.7)

So, the integral of any function f(t) can be ap-
proximated as∫ s

0
f(τ)τ ≃

∫ s

0

[
cTT1(τ) + dTT2(τ)

]
τ

≃ (c+ d)TP1T1(s) + (c+ d)TP2T2(s).

(2.8)

3 A special representation of
TFs vector forms and other
properties [5]

In this section, we survey a special representa-
tion of TFs vector forms that has originally been
introduced in [5]. Then, some characteristics of
TFs are presented based on this representation.

3.1 Definition and expansion

Let T(t) be a 2m-vector defined as [5]

T(t) =

T1(t)

T2(t)

 , 0 ⩽ t < 1, (3.9)

whereT1(t) andT2(t) have been defined in (2.4).
Now, the expansion of f(t) with respect to TFs
can be written as

f(t) ≃ F1TT1(t) + F2TT2(t)

= F TT(t)

= TT (t)F,

(3.10)

where F1 and F2 are TFs coefficients with F1i =
f(ih) and F2i = f((i+1)h), for i = 0, 1, . . . ,m−
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1. Also, 2m-vector F is defined as

F =

F1

F2

 . (3.11)

Now, assume that k(s, t) is a function of two
variables. It can be expanded with respect to
TFs as follows:

k(s, t) ≃ TT (s) K T(t), (3.12)

where T(s) and T(t) are 2m1- and 2m2-
dimensional TFs respectively, and K is a 2m1 ×
2m2 TFs coefficient matrix. For convenience, we
put m1 = m2 = m. So, matrix K can be written
as

K =

(K11)m×m (K12)m×m

(K21)m×m (K22)m×m

 , (3.13)

where K11, K12, K21, and K22 can be com-
puted by sampling of function k(s, t) at points si
and ti such that si = ti = ih, for i = 0, 1, . . . ,m.
Therefore,

(K11)i,j = k(si, tj), i = 0, 1, . . . ,m− 1,

j = 0, 1, . . . ,m− 1,

(K12)i,j = k(si, tj), i = 0, 1, . . . ,m− 1,

j = 1, 2, . . . ,m,

(K21)i,j = k(si, tj), i = 1, 2, . . . ,m,

j = 0, 1, . . . ,m− 1,

(K22)i,j = k(si, tj), i = 1, 2, . . . ,m,

j = 1, 2, . . . ,m.

(3.14)

3.2 Product properties

Let X be a 2m-vector which can be written as
XT = (X1T X2T ) such that X1 and X2 are
m-vectors. Now, it can be concluded that [5]

T(t)TT (t)X ≃ X̃T(t), (3.15)

where X̃ = diag(X) is a 2m×2m diagonal matrix.

Now, let B be a 2m× 2m matrix. We have [5]

TT (t)BT(t) ≃ B̂TT(t), (3.16)

in which B̂ is a 2m-vector with elements equal to
the diagonal entries of matrix B. Moreover, it is
concluded that [5]∫ 1

0
T(t)TT (t) t ≃ D, (3.17)

where D is a 2m× 2m matrix defined as

D =

h
3 Im×m

h
6 Im×m

h
6 Im×m

h
3 Im×m

 . (3.18)

3.3 Operational matrix

Expressing
∫ s
0 T(τ)τ in terms of T(s), and from

Eqs. (2.6), we can write [5]∫ s

0
T(τ)τ ≃ PT(s), (3.19)

where P2m×2m, operational matrix of T(s), is

P =

P1 P2

P1 P2

 , (3.20)

in which P1 and P2 are given by (2.7).
Now, the integral of any function f(t) can be

approximated as∫ s

0
f(τ)τ ≃

∫ s

0
F TT(τ)τ

≃ F TPT(s).

(3.21)

4 Numerical algorithm for solv-
ing arbitrary linear differen-
tial equations

Here, by using the mentioned representation of
TFs vector forms and properties, we propose an
effective numerical algorithm for solving linear
differential equations of arbitrary order and co-
efficients.

Let us consider a general ordinary linear dif-
ferential equation, with arbitrary coefficients, of
arbitrary order n as follows:

x(n)(t) + an−1(t)x
(n−1)(t) + an−2(t)x

(n−2)(t)

+ · · ·+ a1(t)x
′(t) + a0(t)x(t) = b(t),

(4.22)
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with the following initial conditions:
x(t0) = α0,

x′(t0) = α1,
...

x(n−1)(t0) = αn−1,

(4.23)

where x is the unknown function, with respect to
variable t, to be determined; x(k), k = 1, 2, . . . , n,
is the kth derivative of x with respect to t; co-
efficients ak, k = 0, 1, . . . , n − 1, and b are func-
tions of t; and αk, k = 0, 1, . . . , n− 1, is a scalar.
Also, without loss of generality, it is supposed
that t0 = 0.

Approximating the functions x; x(k), k =
1, 2, . . . , n; ak, k = 0, 1, . . . , n − 1; and b with
respect to TFs, using Eq. (3.10), gives

x(t) ≃ XT
0 T(t) = TT (t)X0,

x(k)(t) ≃ XT
k T(t) = TT (t)Xk,

ak(t) ≃ AT
kT(t) = TT (t)Ak,

b(t) ≃ BTT(t) = TT (t)B,

(4.24)

where the m-vectors X0, Xk, Ak, and B are TFs
coefficients of x, x(k), ak, and b, respectively.

Substituting Eqs. (4.24) into Eq. (4.22) gives

XT
nT(t) +AT

n−1T(t)TT (t)Xn−1

+AT
n−2T(t)TT (t)Xn−2 + · · ·

+AT
1 T(t)TT (t)X1

+AT
0 T(t)TT (t)X0 ≃ BTT(t).

(4.25)

Using Eq. (3.15) follows

XT
nT(t) +AT

n−1X̃n−1T(t) +AT
n−2X̃n−2T(t)

+ · · ·+AT
1 X̃1T(t) +AT

0 X̃0T(t) ≃ BTT(t),

(4.26)

or

XT
n +AT

n−1X̃n−1 +AT
n−2X̃n−2

+ · · ·+AT
1 X̃1 +AT

0 X̃0 ≃ BT .
(4.27)

Transposition of both sides of Eq. (4.27) yields

Xn + X̃n−1An−1 + X̃n−2An−2

+ · · ·+ X̃1A1 + X̃0A0 ≃ B,
(4.28)

because X̃T
k = X̃k, k = 0, 1, . . . , n−1. Therefore,

by considering X̃kAk = ÃkXk, k = 0, 1, . . . , n−1,
we get

Xn + Ãn−1Xn−1 + Ãn−2Xn−2

+ · · ·+ Ã1X1 + Ã0X0 ≃ B.
(4.29)

On the other hand we have

∫ t
0 x

(n)(τ)τ = x(n−1)(t)− αn−1,∫ t
0 x

(n−1)(τ)τ = x(n−2)(t)− αn−2,∫ t
0 x

(n−2)(τ)τ = x(n−3)(t)− αn−3,
...∫ t
0 x

′(τ)τ = x(t)− α0,

(4.30)

which results in

P TXn ≃ Xn−1 − α⃗n−1,

P TXn−1 ≃ Xn−2 − α⃗n−2,

P TXn−2 ≃ Xn−3 − α⃗n−3,
...

P TX1 ≃ X0 − α⃗0,

(4.31)

or 

Xn−1 ≃ P TXn + α⃗n−1,

Xn−2 ≃ P TXn−1 + α⃗n−2,

Xn−3 ≃ P TXn−2 + α⃗n−3,
...

X0 ≃ P TX1 + α⃗0,

(4.32)

in which P is the operational matrix of integra-
tion in Eq. (3.19) and α⃗k, k = 0, 1, . . . , n − 1, is
an m-vector with elements equal to αk. Equa-
tions (4.32) may be rewritten as



Xn−1 ≃ P TXn + α⃗n−1,

Xn−2 ≃ (P T )2Xn + P T α⃗n−1 + α⃗n−2,

Xn−3 ≃ (P T )2Xn−1 + P T α⃗n−2 + α⃗n−3,
...

X0 ≃ (P T )2X2 + P T α⃗1 + α⃗0.

(4.33)
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After successive substitutions we finally obtain



Xn−1 ≃ P TXn + α⃗n−1,

Xn−2 ≃ (P T )2Xn + P T α⃗n−1 + α⃗n−2,

Xn−3 ≃ (P T )3Xn + (P T )2α⃗n−1

+P T α⃗n−2 + α⃗n−3,
...

X0 ≃ (P T )nXn + (P T )n−1α⃗n−1

+(P T )n−2α⃗n−2 + · · ·+ P T α⃗1 + α⃗0.

(4.34)

Now, we substitute Eqs. (4.34) into Eq. (4.29)
and get

Xn + Ãn−1(P
TXn + α⃗n−1)

+ Ãn−2((P
T )2Xn + P T α⃗n−1 + α⃗n−2)

+ Ãn−3((P
T )3Xn + (P T )2α⃗n−1

+ P T α⃗n−2 + α⃗n−3)

+ · · ·
+ Ã0((P

T )nXn + (P T )n−1α⃗n−1

+ (P T )n−2α⃗n−2 + · · ·+ P T α⃗1 + α⃗0)

≃ B,

(4.35)

or

Xn +
[
(Ãn−1P

T )Xn + Ãn−1α⃗n−1

]
+

[
(Ãn−2(P

T )2)Xn + Ãn−2P
T α⃗n−1

+ Ãn−2α⃗n−2

]
+

[
(Ãn−3(P

T )3)Xn + Ãn−3(P
T )2α⃗n−1

+ Ãn−3P
T α⃗n−2 + Ãn−3α⃗n−3

]
+ · · ·

+
[
(Ã0(P

T )n)Xn + Ã0(P
T )n−1α⃗n−1

+ Ã0(P
T )n−2α⃗n−2 + · · ·+ Ã0P

T α⃗1

+ Ã0α⃗0

]
≃ B.

(4.36)

Equation (4.36) may be rewritten as[
I + Ãn−1P

T + Ãn−2(P
T )2

+ Ãn−3(P
T )3 + · · ·+ Ã0(P

T )n
]
Xn

≃ B −
[
(Ãn−1α⃗n−1)

+ (Ãn−2P
T α⃗n−1 + Ãn−2α⃗n−2)

+ (Ãn−3(P
T )2α⃗n−1 + Ãn−3P

T α⃗n−2

+ Ãn−3α⃗n−3)

+ · · ·
+ (Ã0(P

T )n−1α⃗n−1 + Ã0(P
T )n−2α⃗n−2

+ · · ·+ Ã0P
T α⃗1 + Ã0α⃗0)

]
.

(4.37)

Now, we replace ≃ with =, and write Eq. (4.37)
in a simpler form as

GXn = W, (4.38)

in which

G = I +

n−1∑
r=0

Ãr(P
T )n−r, (4.39)

and

W = B −
n−1∑
k=0

n−1∑
r=k

Ãk(P
T )r−kα⃗r. (4.40)

Equation (4.38) is a linear system of m al-
gebraic equations with respect to m unknowns
xn0 , xn1 , . . . , xnm−1 , components of Xn. Solu-
tion of this system gives vector Xn. Then, form
Eqs. (4.34) we have

X0 ≃ (P T )nXn + (P T )n−1α⃗n−1

+ (P T )n−2α⃗n−2 + · · ·+ P T α⃗1 + α⃗0.
(4.41)

Substituting the determined Xn into Eq. (4.41)
gives the unknown vector X0. Hence, an approx-
imate solution for differential equation (4.22) is
obtained as

x(t) ≃ XT
0 T(t). (4.42)

1.2.3.4.5. Remark 4.1 The method proposed in this sec-
tion can be used to obtain the numerical solution
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of Eq. (4.22) in any arbitrary bounded real inter-
val. For this purpose, we assume that TFs are de-
fined over arbitrary bounded interval [α, β), where
α, β ∈ R. It is clear that all the properties and re-
lations presented as to the TFs can be easily gen-
eralized over this interval provided that T1i and
T2i, i = 0, 1, . . . ,m− 1, are defined as

T1i(t) =

{
1− t−ih−α

h
, α+ ih ⩽ t < α+ (i+ 1)h,

0, otherwise,

T2i(t) =

{
t−ih−α

h
, α+ ih ⩽ t < α+ (i+ 1)h,

0, otherwise,

(4.43)

in which h = (β−α)/m. By using the above gen-
eralization, the formulation proposed in the cur-
rent section can be applied in solution of the dif-
ferential equation in any arbitrary bounded real
interval [α, β) without needing any modification
to the formulas of the presented method.

5 Test problems and numerical
results

Some test problems are numerically solved here
by the proposed method in this article and the re-
lated numerical results are compared with those
of the method proposed in [13]. There are ex-
tensive varieties of orders, coefficients, types, and
solutions associated with the test problems given
here to illustrate the generality and computa-
tional efficiency of the proposed method for the
solution of arbitrary linear ordinary differential
equations.

The approximate results obtained by both
methods for each test problem are calculated at
ten points ti in the related interval [α, β) such
that ti = α + ih′, where i = 0, 1, . . . , 9 and
h′ = (β − α)/10. Moreover, all the results are
given in the form of mean-absolute error. If, for
a given m, we obtain the approximate solution
at ten points ti, then we can consider the mean-
absolute error, related to this value of m, as fol-
lows:

Em =
1

10

9∑
i=0

|x(ti)− xm(ti)|, (5.44)

where E is the mean-absolute error, and x and xm

stand for the exact and approximate solutions,
respectively.

In general, the numerical results obtained by
both methods in solution of the considered test
problems show the superiority of the proposed
method in this article over the BPFs method [13]
in view of accuracy and flexibility. This will be
illustrated in tables 1–5 related to the test prob-
lems.

It should be mentioned that all the computa-
tions associated with both methods have been
performed using MATLAB software.

Example 5.1 Numerical solution of Bessel’s
equation [13]

The well-known Bessel’s equation as a linear
homogeneous second-order ordinary differential
equation is given by [7, 11]

t2x′′(t) + tx′(t) + (t2 − ν2)x(t) = 0, (5.45)

or

x′′(t) +
1

t
x′(t) + (1− ν2

t2
)x(t) = 0, (5.46)

where ν is a real constant. As a second-order
differential equation, Bessel’s equation has two
independent solutions. If ν = ℓ is an integer,
one solution defines Jℓ(t) as the Bessel function
of the first kind of order ℓ, and another solution
defines Yℓ(t) referred to as the Bessel function of
the second kind of order ℓ. The Bessel functions
play an important role in physical and engineer-
ing problems; for instance, the Bessel function
of the first kind appears in the solution of elec-
tromagnetic wave equation inside circular waveg-
uides [11]. We apply both methods for numeri-
cally solving Bessel’s equation to obtain its ap-
proximate solutions. The initial conditions are
set such that the equation has a unique solution
Jℓ(t). The exact values of Jℓ have been extracted
by MATLAB software. However, a series solution
is available as [11]

Jℓ(t) =
∞∑

m=0

(−1)m

m! (m+ ℓ)!

(
t

2

)2m+ℓ

. (5.47)

Moreover

J−ℓ(t) = (−1)ℓJℓ(t),

Jℓ(−t) = (−1)ℓJℓ(t).
(5.48)
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Table 1: Mean-absolute errors for test problem 5.1 (results for J0).

m Proposed method in this article Presented method in [13]

2 2.6e−2 4.2e−2
4 1.1e−2 2.1e−2
8 3.9e−3 7.9e−3
16 1.3e−3 3.8e−3
32 3.9e−4 1.8e−3
64 1.2e−4 7.9e−4
128 3.3e−5 3.7e−4
256 9.4e−6 1.9e−4
512 2.6e−6 9.6e−5
1024 7.3e−7 4.8e−5

Table 2: Mean-absolute errors for test problem 5.2 (results for P1).

m Proposed method in this article Presented method in [13]

2 0 2.5e−1
4 0 1.2e−1
8 0 4.9e−2
16 0 2.0e−2
32 0 8.6e−3
64 0 4.2e−3
128 0 2.1e−3
256 0 1.0e−3
512 0 5.1e−4
1024 0 2.5e−4

Table 3: Mean-absolute errors for test problem 5.3.

Proposed method in this article Presented method in [13]
m (without needing modification) (with modification)

2 3.3e−1 1.8e−1
4 8.1e−2 1.0e−1
8 2.0e−2 4.8e−2
16 5.1e−3 2.6e−2
32 1.3e−3 1.3e−2
64 3.2e−4 6.5e−3
128 8.0e−5 3.1e−3
256 2.0e−5 1.6e−3
512 5.0e−6 7.9e−4
1024 1.2e−6 4.1e−4

The following relations may be used to obtain the
derivatives of Bessel functions with respect to t
for the required initial conditions. Letting Uν(t)
denote an arbitrary solution to Bessel’s equation,

we have [11]

U ′
ν(t) = Uν−1 −

ν

t
Uν ,

U ′
ν(t) = −Uν+1 +

ν

t
Uν .

(5.49)

The mean-absolute errors associated with both
methods in solution of Bessel’s equation in inter-
val [0, 1), for ℓ = 0, are given in Table 1.
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Table 4: Mean-absolute errors for test problem 5.4.

m Proposed method in this article Presented method in [13]

2 2.2e−2 1.3e−1
4 5.7e−3 6.5e−2
8 1.4e−3 3.2e−2
16 3.6e−4 1.6e−2
32 9.0e−5 8.1e−3
64 2.3e−5 4.1e−3
128 5.7e−6 2.0e−3
256 1.4e−6 1.0e−3
512 3.5e−7 5.1e−4
1024 8.8e−8 2.5e−4

Table 5: Mean-absolute errors for test problem 5.5.

m Proposed method in this article Presented method in [13]

2 1.5e−2 3.8e−2
4 3.9e−3 1.8e−2
8 9.8e−4 9.3e−3
16 2.5e−4 4.1e−3
32 6.2e−5 2.1e−3
64 1.5e−5 1.0e−3
128 3.9e−6 5.4e−4
256 9.6e−7 2.5e−4
512 2.4e−7 1.3e−4
1024 6.0e−8 6.3e−5

Example 5.2 Numerical solution of Legendre
differential equation [13]

The Legendre differential equation as a lin-
ear homogeneous second-order ordinary differen-
tial equation is given by [6]

(1− t2)x′′(t)− 2tx′(t)+ ν(ν+1)x(t) = 0, (5.50)

or

x′′(t)− 2t

1− t2
x′(t) +

ν(ν + 1)

1− t2
x(t) = 0. (5.51)

where ν is a real constant. One solution to the
Legendre differential equation defines the Legen-
dre function of the first kind Pν(t). If ν = ℓ is an
integer, solution of the Legendre differential equa-
tion results in function Pℓ(t) known as the Legen-
dre polynomial of degree ℓ. Another solution to
this equation gives Qℓ(t) referred to as the Legen-
dre function of the second kind. Like the Bessel
functions, the Legendre functions too have vari-
ous applications in physical and engineering prob-
lems; e.g., associated Legendre functions appear

in the solution of Helmholtz equation in spheri-
cal coordinates [11]. The exact values of the first
six polynomials Pℓ may be calculated through the
following analytical relations [6]:

P0(t) = 1,

P1(t) = t,

P2(t) =
1

2
(3t2 − 1),

P3(t) =
1

2
(5t3 − 3t),

P4(t) =
1

8
(35t4 − 30t2 + 3),

P5(t) =
1

8
(63t5 − 70t3 + 15t).

(5.52)

We apply both methods in solving the Legen-
dre differential equation and set the initial condi-
tions such that the equation has a unique solution
Pℓ(t). The mean-absolute errors associated with
both methods in solution of this equation in in-
terval [1, 2), for ℓ = 1, are given in Table 2.
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Example 5.3 Numerical solution of a third-
order inhomogeneous differential equation with
singular coefficients [13]

We survey in this problem the flexibility of the
proposed method in solution of differential equa-
tions with singular coefficients. For this purpose,
let us consider the following third-order inhomo-
geneous linear differential equation:

x′′′(t)− t

t2 − 0.64
ln(t2 + 0.64)x′′(t)

+ t2 sin

(
1

t− 0.8

)
x′(t)

+ cos(πt2)x(t) = b(t),

(5.53)

with exact solution x(t) = t3 + sin(πt) and right
side b(t) as

b(t) = 6− π3 cos(πt)

− t

t2 − 0.64
ln(t2 + 0.64)[6t− π2 sin(πt)]

+ t2[3t2 + π cos(πt)] sin

(
1

t− 0.8

)
+ cos(πt2)[t3 + sin(πt)].

(5.54)

Coefficient a1 = t2 sin
(

1
t−0.8

)
has an essential

singularity and coefficient a2 = − t
t2−0.64

ln(t2 +
0.64) has a pole-type singularity at t = 0.8 in
interval [0, 1).

In such a case, the BPFs method is unable to
obtain an appropriate solution by its original for-
mulation, and it needs some modification [13].
However, the proposed method in this article can
give a reasonable solution without any modifica-
tion.

The mean-absolute errors associated with both
methods in solution of test problem 5.3, in inter-
val [0, 1), are shown in Table 3. As mentioned
above, the BPFs method has been implemented
via modification.

Example 5.4 Numerical solution of a high-
order inhomogeneous differential equation with
both complex solution and complex coeffi-
cients [13]

We show in this problem that the proposed
method is applicable in solving differential equa-
tions with complex solution and/or complex coef-
ficients. Let us consider an inhomogeneous linear

differential equation of order 15 as

x(15)(t) + (t3 − jt2 + 1)x(10)(t)

+ (t+ j)H
(2)
0 (t)x(5)(t)

+ jt sin(t2 + jt)x(t) = b(t),

(5.55)

where H
(2)
0 is Hankel function of the second kind

of zero-order, j is imaginary unit and j2 = −1.
Assuming complex exact solution x(t) = exp(jt)
for Eq. (5.55), the right side will be

b(t) = − exp(jt)
{
t3 + jt2

−j[H
(2)
0 (t) + sin(t2 + jt)]t

+H
(2)
0 (t) + j + 1

}
.

(5.56)

Both methods are applied in solving Eq. (5.55) to
obtain its approximate solutions in interval [3, 4).
The mean-absolute errors are given in Table 4.

Example 5.5 Numerical solution of a very high-
order inhomogeneous differential equation [13]

We survey here the efficiency of the proposed
method for numerical solution of very high-order
differential equations. For this purpose, we con-
sider the following inhomogeneous linear differ-
ential equation of order 35:

x(35)(t) + tan(
√
|t|)x(20)(t)

+ t2 sin(t2)x(11)(t)

+ cos(
√

t4 + 1)x(t) = b(t),

(5.57)

with exact solution x(t) = exp(t) + sin(t) and
right side b(t) as

b(t) = exp(t)
[
1 + tan(

√
|t|) + t2 sin(t2)

+ cos(
√

t4 + 1)
]

+ sin(t)
[
tan(

√
|t|) + cos(

√
t4 + 1)

]
− cos(t)

[
1 + t2 sin(t2)

]
.

(5.58)

The mean-absolute errors associated with both
methods in solution of this problem in inter-
val [−5,−4), are shown in Table 5.
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6 Conclusion

A numerical approach for solving arbitrary lin-
ear ordinary differential equations was proposed
in this article by using a special representation
of TFs vector forms and the related operational
matrix of integration. Some test problems were
numerically solved by the method to illustrate its
computational efficiency and to show that it is
applicable in solving various types of ordinary lin-
ear differential equations. In comparison with the
BPFs method, we saw that the proposed method
is more accurate and flexible and has no limita-
tion.
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