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Abstract

In this paper, we study a class of second-order fuzzy initial value problems that are known as the
Cauchy-Euler differential equations, in the crisp case. This work begins by studying the structure of
solution function in the crisp case and providing a requirement space of the generalized differentiable
functions. In sequel, the process of production and construction of the solution formula are discussed,
in details. Finally, the obtained formulas are applied and illustrated by solving some examples.
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1 Introduction

O
ne of the interesting subjects in fuzzy math-

ematics and engineering sciences is to solve

fuzzy differential equations (FDEs), which have

been investigated by many researches. Up to now,

many definitions are suggested to fuzzy derivative

concept (for instance [14] and [27]). The general-

ized differentiability concept (G-differentiability)

of fuzzy-valued functions, introduced by Bede et

al. is a comprehensive and workable concept of

fuzzy differentiability [8, 9, 11]. Some results

of G-differentiability can be seen in [2, 10, 11,

12, 15, 16, 17, 29] and studies on FDEs under

G-differentiability can be summarized as follows:
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Bede et al. [11] obtained some of the solution for-

mulas related to the classes of first-order linear

FDEs and then Khastan et al. [23] completed

some results in [11], by obtaining the other formu-

las of solutions. Considering solution as a fuzzy

set consisted of real functions was studied in [7]

and [21]. Recently, Allahviranloo et al. [5], intro-

duced a method based on length function proper-

ties and obtained all solutions related to the var-

ious forms of first-order linear FDEs. Some nu-

merical methods to solve FDEs have been intro-

duced in [1, 4, 24, 25]. The existence and unique-

ness problem of solution to a class second-order

linear FDEs under G-differentiability has been

studied in [6]. An algorithm to calculate the so-

lution of second-order fuzzy initial value problems

was given in [3], which is based on determining

sign of the upper and lower functions of the solu-

tion function and their derivatives. Gasilov et al.
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[22], considered a second-order fuzzy initial value

problem as a set of crisp problems and introduced

a solution method by using the properties of lin-

ear transformations.
The aim of this paper is to solve a class of

FDEs that are modeled as follows:
(t− γ)2y′′(t) + α(t− γ)y′(t) +R(t) = βy(t),
t ∈ [a, b], t ̸= γ,
y(a) = y0,
y′(a) = y1,

(1.1)

where y0 and y1 are fuzzy numbers, α, β and γ

are real numbers and R(t) is a fuzzy polynomial

of degree at most n about the point t = γ, i.e.,

R(t) =

n∑
i=0

(t− γ)iui (1.2)

with ui for i = 0, 1, ..., n, given as fuzzy num-

bers. These equations are well known as Cauchy-

Euler initial value problems, in the crisp case. We

recently have studied on the first-order Cauchy-

Euler initial value problems in [19]. The proposed

approach in the present paper is based on the

structure of solution in the crisp case of the prob-

lem. (to see the methods in the crisp case we

proposed [13] and [18], for example). It is shown

that under certain conditions the solution can be

obtained as a fuzzy-valued function.

This paper is organized as follows. In Section

2, the basic concepts and essential results are re-

viewed which are needed to deal with FDEs. In

Section 3, we first point out the structure of solu-

tion in the crisp case of equation (1.1) and next

study the G-differentiability of some fuzzy-valued

functions that are useful to solve equation (1.1).

The manufacturing process of solutions and con-

ditions of their existence are given, in Section 4.

At the end of paper, some examples are solved

to show that the obtained formulas gives us the

requirement results.

2 Preliminaries

In this section, we present basic definitions, no-

tations and some important results which are re-

quired in this paper.

Definition 2.1. [20] A fuzzy number u is defined

in the r-cut form as [u]r = [u−(r), u+(r)] for all

r ∈ [0, 1], where

(i) u−(r) is a left continuous, bounded and non-

decreasing function in r,

(ii) u+(r) is a left continuous, bounded and non-

increasing function in r,

(iii) u−(r) ≤ u+(r).

The set all fuzzy numbers defined on the real

axis R is denoted by RF . For u, v ∈ RF and

λ ∈ R, the sum u + v and the product λu are

defined [30], by

[u+ v]r = [u]r + [v]r

= [u−(r) + v−(r), u+(r) + v+(r)],

[λu]r = λ[u]r

= [min(λu−(r), λu+(r)),

max(λu−(r), λu+(r))],

for all r ∈ [0, 1].

Definition 2.2. [9, 28] Let u, v ∈ RF . If there

exists w ∈ RF such that, u = v + w then w is

called the H-difference of u, v and it is denoted as

u⊖ v.

In this paper, the symbol ” ⊖ ” always stands

for H-difference and it is noteworthy that u⊖v ̸=
u+ (−1)v = u− v.

The following properties of H-difference are

well-known

(a) λ(u⊖ v) = λu⊖ λv, ∀λ ∈ R, u, v ∈ RF ,

(b) (u+ v)⊖ w = (u⊖ w) + v

= (v ⊖ w) + u,∀u, v, w ∈ RF ,

(c) (u+ v)⊖ (w + z) = (u⊖ w) + (v ⊖ z),

∀u, v, w, z ∈ RF ,

provided that all the above H-differences exist

(see [5] and other properties in [26]).

Definition 2.3. [30] The Hausdorff distance be-

tween two arbitrary fuzzy numbers u, [u]r =

[u−(r), u+(r)] and v, [v]r = [v−(r), v+(r)] is de-

fined as function D : RF × RF → [0,+∞) by

D(u, v) = sup
0≤r≤1

dr(u, v),

where

dr(u, v) = max
{
|u−(r)− v−(r)|, |u+(r)− v+(r)|

}
.
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The following properties of the Hausdorff met-

ric are well-known

(a) D(λu, λv) = |λ|D(u, v), λ ∈ R,

(b) D(u+ w, v + w) = D(u, v),

(c) D(u+ v, w + z) ≤ D(u,w) +D(v, z),

for all u, v, w, z ∈ RF , and (RF , D) is a complete

metric space [30].

Definition 2.4. [9] Let f : (a, b) → RF . Fix t0 ∈
(a, b). It is said that f is G-differentiable at t0, if
the H-differences f(t0+h)⊖f(t0), f(t0)⊖f(t0−h)
for all h > 0 or all h < 0, sufficiently close to 0
exist, and an element f ′(t0) ∈ RF exists, such
that either (i):

lim
h→0+

f(t0 + h)⊖ f(t0)

h
= lim

h→0+

f(t0)⊖ f(t0 − h)

h

= f ′(t0),

or (ii):

lim
h→0−

f(t0 + h)⊖ f(t0)

h
= lim

h→0−

f(t0)⊖ f(t0 − h)

h

= f ′(t0),

or (iii):

lim
h→0+

f(t0 + h)⊖ f(t0)

h
= lim

h→0−

f(t0 + h)⊖ f(t0)

h

= f ′(t0),

or (iv):

lim
h→0+

f(t0)⊖ f(t0 − h)

h
= lim

h→0−

f(t0)⊖ f(t0 − h)

h

= f ′(t0).

Theorem 2.1. [15] Let f : (a, b) →
RF be fuzzy-valued function where [f(t)]r =

[f−(t, r), f+(t, r)], for each r ∈ [0, 1].

(a) If f is (i)-differentiable at t ∈ (a, b), then

f−(t, r) and f+(t, r) are differentiable functions

and

[f ′(t)]r = [f−′
(t, r), f+′

(t, r)].

(b) If f is (ii)-differentiable at t ∈ (a, b), then

f−(t, r) and f+(t, r) are differentiable functions

and

[f ′(t)]r = [f+′
(t, r), f−′

(t, r)].

Definition 2.5. [12] Assume that the function

f is G-differentiable on interval (a, b). A point

t0 ∈ (a, b) is called a switching point of f , if G-

differentiability changes from type (i) to type (ii),

or from type (ii) to type (i), in Definition 2.4.

Chalco et al. [17], have been demonstrated if t0
is a switching point, then f at t0 is a differentiable

function in the sense (iii) or (iv). Moreover, if f

is differentiable on over (a, b) in the sense (iii)

(or (iv)) then f ′(t) = {c}, where c ∈ R is a real

number.

3 Fuzzy Cauchy-Euler equa-
tions and the structure of so-
lutions

Consider the second-order linear FDE which

is appeared as below initial value problem
y′′(t) + P (t)y′(t) +R(t) = Q(t)y(t),
y(a) = y0,
y′(a) = y1,

(3.3)

where t ∈ [a, b], y0, y1 ∈ RF are fuzzy num-

bers, P,Q : [a, b] → R are real functions and

R : [a, b] → RF is a fuzzy-valued function. Recall

that this equation is said to be homogeneous if

R(t) = 0, ∀t ∈ [a, b]. Consider the homogeneous

equation corresponding to equation (3.3). It is

said that the value t = γ is an ordinary point of

the equation if both P (t) and Q(t) are defined at

t = γ. In the event that P (t) or Q(t) (or both)

are infinite at t = γ, then γ is called a singular

point of that equation and in this case, in the

light of the observations just made, we form

p(t) = (t− γ)P (t), q(t) = (t− γ)2Q(t).

Then, under this situation, we will have the fol-

lowing equation
(t− γ)2y′′(t) + p(t)(t− γ)y′(t) = q(t)y(t),
t ∈ [a, b], t ̸= γ,

y(a) = y0,
y′(a) = y1,

(3.4)

where if both p(t) and q(t) remain finite as t → γ,

then we have a regular singular point at t = γ,
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that means these functions have convergent Tay-

lor series about t = γ, i.e.

p(t) = p0 + p1(t− γ) + p2(t− γ)2 + · · · ,

q(t) = q0 + q1(t− γ) + q2(t− γ)2 + · · · ,

with pn and qn constants, and q0 ̸= 0 so that

(t− γ) is not a common factor of the coefficients

in equation (3.4).

The following equations are the simplest class

of fuzzy differential equations in the form (3.4)

that have only one regular singular point
(t− γ)2y′′(t) + α(t− γ)y′(t) = βy(t),
t ∈ I = [a, b], t ̸= γ

y(a) = y0,
y′(a) = y1,

(3.5)

where y0, y1 ∈ RF and α, β ∈ R, and β ̸= 0. The

equations (3.5) are the homogeneous equations

corresponding to equations (1.1) which are known

as the Cauchy-Euler differential equations, in the

crisp case.
In what follows we try to find the structure

of functions that may be the solution to prob-
lem (1.1). For this end, we first point out the
structure of solution in the crisp case of equation.
Because of the behavior of solution in the uncer-
tainty conditions should reflects the behavior of
solution in the crisp case of the equation, namely
1-cut equation of (1.1). So, let us first consider
the fuzzy Cauchy-Euler equations (1.1) and (3.5),
in the crisp case. In this case, the solution is rep-
resented as y(t) = yp(t)+ yh(t), where yp (partic-
ular solution) satisfies the inhomogeneous equa-
tion (1.1) and not necessarily satisfying the ini-
tial conditions, and yh (homogeneous solution) is
solution to equation (3.5). The function yh will
be searched as a power function yh(t) = (t− γ)k,
where the unknown number k must be found such
that yh is valid as a solution to the homogeneous
equation (3.5), and the function yp will be usu-
ally searched based on the structure of function
R(t). Therefore, under this process of finding the
solution, the criterion of function R(t) must be
given. For instance, let R(t) be a real polynomial
about the point t = γ, then the solution function
will be obtained in the following set

Fγ(I) =
{
f : I → R|

f(t) =
n∑

i=0

ai|t− γ|αi , αi ∈ R, ai ∈ R
}

Since the functions from Fγ(I) do not differen-

tiable at point t = γ, so, in the crisp case, the

study of Cauchy-Euler equations (1.1) and (3.5)

with R(t) given as a real polynomial will be lim-

ited to one of two areas t < γ or t > γ.
Now, in order to study the fuzzy Cauchy-Euler

differential equations (1.1) with R(t) given as the
fuzzy polynomial (1.2), and the arbitrary real
number γ, we produce the following set

FFγ(I) =
{
f : I → RF |

f(t) =

n∑
i=0

|t− γ|αiui, αi ∈ R, ui ∈ RF

}
.

It is clear that Fγ(I) ⊂ FFγ(I) and in fact

FFγ(I) is a extension of Fγ(I) into fuzzy sets.

Moreover, to apply theG-differentiability concept

we present the following general result

Theorem 3.1. Let j ∈ {i, ii} be fixed. Suppose

that yp is (j)-differentiable solution of equation

y′′(t) + P (t)y′(t) +R(t) = Q(t)y(t), t ∈ [a, b],

with P and Q given as real-valued functions and

R(t) given as fuzzy-valued function, and suppose

that yh is a (j)-differentiable solution of the ho-

mogeneous equation corresponding to (3.3), then

y = yp + yh is (j)-differentiable solution of equa-

tion (3.3).

Proof. It is straightforward.

Let γ ∈ R be arbitrary but fixed. We denote

by D1
F (I, γ), the set of functions f : I → RF such

that

(a) f and f ′ are (i)-differentiable ((ii)-

differentiable) for t > γ and are (ii)-differentiable

(respectively, (i)-differentiable) for t < γ.

(b) γ is a switching point for f .

We investigate the classes of fuzzy-valued func-

tions which are included in D1
F (R, γ).

Example 3.1. Take γ ∈ R as fixed and con-
sider the family of functions fr(t) = |t − γ|ru ∈
FFγ(R), where u ∈ RF and r ∈ {0} ∪ (1,+∞).
It is clear that f0 ∈ D1

F (R, γ). By Theorem 3.1
in [19], function fr is (ii)-differentiable, if t < γ
and is (i)-differentiable, if t > γ and also

f ′
r(t) = r|t− γ|r−1v, t ̸= γ, r ∈ (1,+∞) (3.6)
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where v =

{
u; t > γ
−u; t < γ

. Take r > 1 fixed and

put gr(t) = r|t− γ|r−1. We use of Theorem 5 in

[11] for determining G-differentiability of f ′
r. For

t > γ, we get

gr(t)g
′
r(t) = r2(r − 1)(t− γ)2r−3 > 0

and for t < γ, we get

gr(t)g
′
r(t) = −r2(r − 1)(γ − t)2r−3 < 0.

Therefore, according to cases (a) and (b) of
Theorem 5 in [11], it follows that the function
f ′
r is (ii)-differentiable, if t < γ and is (i)-
differentiable, if t > γ. In addition, since r > 1,
we obtain

lim
h→0+

fr(γ + h)⊖ fr(γ)

h
= lim

h→0+

hru⊖ 0

h
= 0,

and

lim
h→0−

fr(γ + h)⊖ fr(γ)

h
= lim

h→0−

(−h)ru⊖ 0

h
= 0.

Therefore, fr is (iii)-differentiable at point t = γ
and consequently, fr ∈ D1

F (R, γ).
Furthermore, by Theorem 2 in [11], it can be re-
sulted that for r ∈ {0} ∪ (1,+∞),

f ′′
r (t) = r(r − 1)|t− γ|r−2u, t ̸= γ. (3.7)

Remark 3.1. It is noteworthy that if f ∈
D1

F (R, γ) then γ is not necessarily a switching

point for the function f ′. For example, consider

the special function f 3
2
(t) described by Example

3.1. Then, by (3.6), f ′
3
2

(t) = 3
2 |t − γ|

1
2 v which

easily gives us

lim
h→0+

1

h

(
f ′

3
2

(γ + h)⊖ f ′
3
2

(γ)
)

=
3

2

(
lim

h→0+

h
1
2

h
v

)
= +∞,

and

lim
h→0−

1

h

(
f ′

3
2

(γ + h)⊖ f ′
3
2

(γ)
)

=
3

2

(
lim

h→0−

(−h)
1
2

h
v

)
= −∞.

Consequently, γ is not a switching point for the

function f ′
3
2

.

Example 3.2. Consider the fuzzy polynomial

R(t) =
∑n

i=0(t− γ)iui where t ∈ R, ui is a fuzzy

number for i ∈ {0, 1, ..., n} and γ is a real con-

stant. It is clear that R ∈ FFγ(R). By Remark

3.3 in [19], R is (i)-differentiable for t > γ and

(ii)-differentiable for t < γ and further

R′(t) =

n∑
i=1

i(t− γ)i−1ui.

If we set Ri(t) = (t − γ)iui then, similar to

Example 3.1, it can be resulted that Ri is (iii)-

differentiable at t = γ and also, the differentia-

bility type of function R′
i is same as Ri. Then,

Ri ∈ D1
F (R, γ) for i ∈ {0, 1, ..., n}, which gives us

R ∈ D1
F (R, γ), by Lemma 4 in [11]. Moreover,

we get

R′′(t) =

n∑
i=2

i(i− 1)(t− γ)i−2ui.

We now give the process of obtaining solution
to the fuzzy Cauchy-Euler differential equations
(1.1), with R(t) given as (1.2), under the G-
differentiability concept. Since R(t) is a fuzzy
polynomial about the point t = γ, then R ∈
D1

F (R, γ), by Example 3.1. We thus focus on the
set D1

F (R, γ) to search the solution of the equa-
tion. First, consider equation (1.1) in the follow-
ing popular form

(t−γ)2y′′(t)+α(t−γ)y′(t)+R(t) = βy(t), t ̸= γ. (3.8)

In order to establish a balance on both sides of

equality (3.8), we assume that the following fuzzy

polynomial satisfies the equation (3.8)

yp(t) =

n∑
i=0

(t− γ)ivi,

where the fuzzy numbers vi, [vi]
α =

[v−i (α), v
+
i (α)], ∀α ∈ [0, 1] are unknown.

Then, we should be have

(t− γ)2y′′p(t) + α(t− γ)y′p(t) +R(t) = βyp(t).

According to the results given in Example 3.2, we

get

n∑
i=0

i(i− 1)(t− γ)ivi + α

n∑
i=0

i(t− γ)ivi

+
n∑

i=0

(t− γ)iui = β
n∑

i=0

(t− γ)ivi,
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which easily results in

m(m− 1)vm +mαvm + um = βvm, (3.9)

for m = 0, 1, ..., n. If β = 0 then the system (3.9)

has not solution in an unreal fuzzy environment.

We now study the system (3.9) for various cases

of signs α and β, in the following.

Case (a). α ≥ 0 and β > 0.

In this case, the equalities (3.9) can be written

as follows:

(m(m− 1) +mα) vm + um = βvm,

i.e.

βvm ⊖m(m+ α− 1)vm = um, (3.10)

for m = 0, 1, ..., n. Hence for each α ≥ 0 the fi-

nal sequence {m(m+α− 1)}nm=0 is an increasing

sequence in m, included as nonnegative real num-

bers then all H-differences (3.10) exist if and only

if β ≥ n(n+ α− 1). Under this situation, we get

(β −m(m+ α− 1))vm = um, m = 0, 1, ..., n.

If β = n(n+α−1), then the left side of the equa-

tion corresponding to m = n of the last system is

equal to zero while un ̸= 0, because R is a fuzzy

polynomial of degree n. Thus, β > n(n+ α− 1),

and we infer

vm =
1

β −m(m+ α− 1)
um, (3.11)

for m = 0, 1, ..., n.

Case (b). α ≥ 0 and β < 0.

Let us consider each one of equations (3.10) in

the r-cut form:

[βvm ⊖m(m+ α− 1)vm]r = [um]r, ∀r ∈ [0, 1].

It easily follows that{
βv+m(r)−m(m+ α− 1)v−m(r) = u−m(r)
βv−m(r)−m(m+ α− 1)v+m(r) = u+m(r)

that results in{
amv−m(r) = m(m+ α− 1)u−

m(r) + βu+
m(r)

amv+m(r) = βu−
m(r) +m(m+ α− 1)u+

m(r)
(3.12)

where am = β2 − m2(m + α − 1)2. By mono-

tonicity the functions u−m(r) and u+m(r), and since

α ≥ 0 and β < 0, we realize the functions v−m(r)

and v+m(r), satisfying the system (3.12), are valid

as lower and upper functions of a fuzzy number if

and only if am > 0, for m = 0, 1, · · · , n. But, the

conditions am > 0 are equivalent to conditions

β +m(m+ α− 1) < 0, because of

am = (β −m(m+ α− 1))(β +m(m+ α− 1))

and β−m(m+α−1) < 0. Therefore, by assuming

that β < −n(n+ α− 1), we obtain from systems

(3.12), the following:

vm =
β

β2 −m2(m+ α− 1)2
um (3.13)

+
m(m+ α− 1)

β2 −m2(m+ α− 1)2
um,

for m = 0, 1, · · · , n.
Case (c). α ≤ 0 and β > 0.
Similar to previous case we obtain by (3.9) the

following system{
m(m− 1)v−m(r) +mαv+m(r) + u−

m(r) = βv−m(r)
m(m− 1)v+m(r) +mαv−m(r) + u+

m(r) = βv+m(r)

that results in{
bmv−m(r) = (β −m(m− 1))u−

m(r) +mαu+
m(r)

bmv+m(r) = mαu−
m(r) + (β −m(m− 1))u+

m(r)
(3.14)

where bm = (β −m(m− 1))2 −m2α2. We show

that if um is an unreal fuzzy number then the

system (3.14) has solution as unreal fuzzy number

vm, if and only if bm > 0. By subtracting two

sides equations in system (3.14), we get

bm(v+m(r)− v−m(r)) (3.15)

= (β −m(m− 1)−mα)(u+m(r)− u−m(r)).

Suppose that vm is an unreal fuzzy number and
bm < 0. In this case, the equality (3.15) implies
β −m(m− 1)−mα < 0. Since

bm = (β−m(m−1)−mα)(β−m(m−1)+mα) (3.16)

then, we should be have

β −m(m− 1) +mα > 0,

which implies β −m(m− 1) > 0. It follows that,

the monotony type of functions located on two
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sides of each of equations of system (3.14) is not

the same which is a contradiction. Conversely,

suppose that bm > 0. According to system (3.14),

it is sufficient to show that β−m(m−1) > 0. Sup-

pose that there exists m ∈ {0, 1, · · · , n} such that

β−m(m− 1) < 0, then β−m(m− 1)+mα < 0,

which follows that β − m(m − 1) − mα < 0, by

(3.16) and that bm > 0. Since um is an un-

real fuzzy number then the equality (3.15) implies

v+m(r) < v−m(r) and, thus vm can not be a fuzzy

number.

According to (3.16), the conditions bm > 0 for

m = 0, 1, · · · , n are equivalent to conditions β >

m(m−α− 1), for m = 0, 1, · · · , n. Consequently,
by assuming that β > n(n− α− 1), we obtain

vm =
mα

(β −m(m− 1))2 −m2α2
um

+
β −m(m− 1)

(β −m(m− 1))2 −m2α2
um, (3.17)

for m = 0, 1, · · · , n.
Case (d). α ≤ 0 and β < 0.
Similar to the previous cases, we obtain{

cmv−m(r) = m(m− 1)u−
m(r) + (β −mα)u+

m(r)
cmv+m(r) = (β −mα)u−

m(r) +m(m− 1)u+
m(r)
(3.18)

where cm = (β−mα)2 −m2(m− 1)2. Similar to

case (c), it can be shown that the system (3.18)

has solution as unreal fuzzy number vm, if and

only if cm > 0, which are equivalent to conditions

β < −m(m− α − 1), for m = 0, 1, · · · , n. There-

fore, by assuming that β < −n(n − α − 1), we

obtain

vm =
m(m− 1)

(β −mα)2 −m2(m− 1)2
um

+
β −mα

(β −mα)2 −m2(m− 1)2
um, (3.19)

for m = 0, 1, · · · , n. By aggregating the results

of cases (a)-(d), it can be said that if |β|> n(n+

|α|−1) then the equation (3.8) has a solution as

yp(t) =
n∑

i=0

(t− γ)ivi, (3.20)

which is uniquely obtained from set FFγ(R), us-
ing one of the formulas (3.11), (3.13), (3.17) or

(3.19).

Now, we consider the equation (3.8) on the

interval I = [a, b], with fuzzy initial conditions

y(a) = y0 and y′(a) = y1. For the sake of in-

stituting the initial conditions, we add a comple-

mentary function yh(t) and represent the solution

function as

y(t) = yp(t) + yh(t).

Since yp(t) ∈ FFγ(R) is a unique solution to

the equation (3.8), then if yh(t) ∈ FFγ(R) then it

should be satisfied in the following homogeneous

equation

(t− γ)2y′′h(t) + α(t− γ)y′h(t) = βyh(t). (3.21)

Hence the G-differentiability type yh should be

same as yp and hence yh should be satisfied the

equation (3.21) so, we suggest and search the fol-

lowing representation as a solution of (3.21)

yh(t) = |t− γ|sv, v ∈ RF , s > 0.

According to the formulas (3.6) and (3.7), we

have

y′h(t) =

{
s(t− γ)s−1v; t > γ
−s(γ − t)s−1v; t < γ

(3.22)

and

y′′h(t) = s(s− 1)|t− γ|s−2v, t ̸= γ. (3.23)

By substituting (3.22) and (3.23) into (3.21), it is

easy to deduce that

s(s− 1)|t− γ|sv + αs|t− γ|sv = β|t− γ|sv.

Since t ̸= γ, the last equation results in

s(s− 1)v + αsv = βv,

By assuming s > 1, the last equation leads to one

of the following equations:

s(s− 1) + αs = β,
if α ≥ 0, β > 0,
s(s− 1) + αs = −β,
if α ≥ 0, β < 0, v = −v,
−s(s− 1) = β − αs,
if α ≤ 0, β < αs, v = −v,
αs = β − s(s− 1),
if α ≤ 0, β > s(s− 1), v = −v.
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By assuming that

|β|> max{s|α|, s(s− 1)},

so, each one of the last equalities can be written

as follows:

s(s− 1) + |α|s = |β|

that gives

s1 =
1

2

(√
4|β|+(|α|−1)2 + 1− |α|

)
and

s2 =
1

2

(
−
√

4|β|+(|α|−1)2 + 1− |α|
)
.

It is easy to see that s2 < 1. Since |β|> |α| then
s1 > 1 and we thus put s = s1. Since s > 1,

then, according to results from Example 3.1, the

G-differentiability type of yh is similar to the G-

differentiability type of yp, on each given interval

I = (a, b) and also, yh has a switching point at

t = γ. Now, we check that yh is not one of terms

contained in yp. Since |β|> n(n + |α|−1), we

obtain

s =
1

2

(√
4|β|+(|α|−1)2 + 1− |α|

)
>

1

2

(√
4n(n+ |α|−1) + (|α|−1)2

+1− |α|
)

=
1

2
(|2n+ |α|−1|+1− |α|) ≥ n.

Consequently, the solution function is obtained as

follows:

y(t) =
n∑

i=0

(t− γ)ivi + |t− γ|sv.

Finally, under initial condition y(a) = y0, it can
be obtained that v = w1, where

w1 = |a− γ|−s

{
y0 ⊖

(
n∑

i=0

(a− γ)ivi

)}
, (3.24)

and γ ̸= a. Under the initial condition y′(a) = y1
, we get v = w2, where

w2 =
|a− γ|2−s

s(a− γ)

{
y1 ⊖

(
n∑

i=1

i(a− γ)i−1vi

)}
,

(3.25)

and γ ̸= a. Of course, provided that the above

mentioned H-differences exist.

Consequently, we have proved the following re-

sult.

Theorem 3.2. Let γ ∈ R be as fixed and consider

the fuzzy differential equation
(t− γ)2y′′(t) + α(t− γ)y′(t)
+
∑n

i=0(t− γ)iui = βy(t),
y(a) = y0 ∈ RF , and/or
y′(a) = y1 ∈ RF

(3.26)

where t ∈ [a, b], t ̸= γ,, ui ∈ RF , for i = 0, 1, ..., n

and α, β ∈ R, such that

|β|> max{n(n+ |α|−1), s|α|, s(s− 1)}

and

s =
1

2

(√
4|β|+(|α|−1)2 + 1− |α|

)
. (3.27)

Then, the expression

y(t) =

n∑
i=0

(t− γ)ivi + |t− γ|sv, (3.28)

is solution of the equation such that for cases (a)

α ≥ 0 and β > 0, (b) α ≥ 0 and β < 0, (c)

α ≤ 0 and β > 0, and (d) α ≤ 0 and β < 0, the

numbers vi are respectively, described by (3.11),

(3.13), (3.17) and (3.19). The fuzzy number v is

described by v = w1 given as (3.25), if y(a) = y0
and it is described by v = w2 given as (3.26),

if y′(a) = y1 and it must be satisfied v = −v for

cases (b), (c) and (d). Furthermore, if γ ≤ a then

y(t) is a (i)-differentiable solution on (a, b), and if

γ ≥ b then y(t) is a (ii)-differentiable solution on

(a, b), and if γ ∈ (a, b) then y(t) has a switching

point at t = γ.

The following property is easy to obtain.

Proposition 3.1. Suppose that the conditions of

Theorem 3.2 hold on the equation (3.26). Then,

the function y(t) from (3.28), satisfies both initial

conditions y(a) = y0 and y′(a) = y1, if and only

if both the H-differences (3.24) and (3.25) exist,

w1 = w2 and further, for each one of cases (b),

(c) and (d) of Theorem 3.2, we have w1 = −w2.
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Remark 3.2. According to Theorem 3.2, if the

H-differences (3.24) or (3.25) exist, then the

found solution function is satisfied at least one

of the initial conditions y(a) = y0 or y′(a) = y1.

This can be an advantage. In fact, in the crisp

case, the popular solution to a second-order dif-

ferential equation consists of two arbitrary con-

stants, so two conditions (usually, determined as

initial or boundary values) are required to obtain

a particular solution of it equation. Determining

two initial values need to more cognition of the

behavior of the solution function at the first point

of interval under study. This could be a strong

constraint especially when the initial values are

uncertain.

4 Examples

In order to the practical application and ob-

serving the behavior of solution function, we solve

some examples.

Example 4.1. Consider fuzzy differential equa-

tion
(t− 1)2y′′(t) + (t− 1)y′(t)
+u0 + (t− 1)u1 =

9
4y(t), t ≥ 0, t ̸= 1,

y(0) = y0,
(4.29)

where [u0]
r = [12r, 1−

1
2r], [u1]

r = [14r,
1
2 −

1
4r] and

[y0]
r = [−1 + r, 1− r], for r ∈ [0, 1].

Here n = 1, α = 1, and β = 9
4 . So, the con-

ditions of Theorem 3.2 are clearly hold. Also,

the H-difference (3.24) exists, because for each

r ∈ [0, 1], we obtain

[w1]
r =

[
y0 ⊖

( 1∑
i=0

(−1)i

β − i2
ui

)]r
=

[
y0 ⊖

(4
9
u0 −

4

5
u1

)]r
=

[−3

5
+

26

45
r,
5

9
− 26

45
r
]
.

Therefore, by using Theorem 3.2, we obtain the

solution expression as follows:

y(t) =
4

9
u0 +

4

5
(t− 1)u1 + |t− 1|

3
2w1,

which represents two criteria as solution func-
tions, for equation (4.29), y1 that is (i)-
differentiable for t > 1, with the following r-cut

form

[y1(t)]
r =[2

9
r +

1

5
r(t− 1) + (

−3

5
+

26

45
r)(t− 1)

3
2 ,

4

9
− 2

9
r + (

2

5
− 1

5
r)(t− 1) + (

5

9
− 26

45
r)(t− 1)

3
2

]
and function y2 that is (ii)-differentiable for 0 ≤
t < 1, with the following r-cuts form

[y2(t)]
r =[2

9
r + (

2

5
− 1

5
r)(t− 1) + (

−3

5
+

26

45
r)(1− t)

3
2 ,

4

9
− 2

9
r +

1

5
r(t− 1) + (

5

9
− 26

45
r)(1− t)

3
2

]
.

Moreover, by Theorem 3.2, y(t) has a switching

point at t = 1.

The graphical representation of the solution

function y(t), for t ∈ [0, 2] and for three r-cuts

r = 0, r = 0.5 and r = 1, can be seen in Figure

1.

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

 

 
r=0
r=0.5
r=1

Figure 1. The solution of example 4.1.

Example 4.2. Consider fuzzy differential equa-

tion
(t− 2)2y′′(t)− 2(t− 2)y′(t)+
u0 + (t− 2)u1 + (t− 2)2u2 = 12y(t),
y′(1) = y1, t ≥ 1, t ̸= 2.

(4.30)

Where

[u0]
r = [

1

2
+

1

2
r,
3

2
− 1

2
r],

[u1]
r = [

3

2
+

1

2
r,
5

2
− 1

2
r],

[u2]
r = [2 + r, 4− r],

and

[y1]
r = [−1 +

5

7
r,
3

7
− 5

7
r],
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for all r ∈ [0, 1].
Here n = 2, α = −2 and β = 12 which give

s = 3. The H-difference (3.25) exists, because by
substituting (3.19) into (3.25), we have

[w2]
r =

− 1

3

[
y1 ⊖

( 2∑
i=1

i(−1)i−1(
−2i

(12− i(i− 1))2 − 4i2
ui

+
12− i(i− 1)

(12− i(i− 1))2 − 4i2
ui)
)]r

=
139

1260
[−1 + r, 1− r].

We thus obtain the solution representation as

follows:

y(t) = v0 + (t− 2)v1 + (t− 2)2v2 + |t− 2|3w2

=
1

12
u0 + (t− 2)(− 1

70
u1 +

3

35
u1)

+ (t− 2)2(− 1

21
u2 +

5

42
u2) + |t− 2|3w2.

This function provides two functions

[y1(t)]
r =

[ 1

24
+

1

24
r + (

13

140
+

1

20
r)(t− 2)

+ (
1

21
+

7

42
r)(t− 2)2

+
139

1260
(−1 + r)(t− 2)3,

1

8
− 1

24
r + (

27

140
− 1

20
r)(t− 2)

+ (
8

21
− 7

42
r)(t− 2)2

+
139

1260
(1− r)(t− 2)3,

]
which is (i)-differentiable for t > 2, and

[y2(t)]
r =

[ 1

24
+

1

24
r + (

27

140
− 1

20
r)(t− 2)

+ (
1

21
+

7

42
r)(t− 2)2 +

139

1260
(1− r)(t− 2)3,

1

8
− 1

24
r + (

13

140
+

1

20
r)(t− 2)

+ (
8

21
− 7

42
r)(t− 2)2 +

139

1260
(−1 + r)(t− 2)3

]
which is (ii)-differentiable for 1 < t < 2.

Also, t = 2 is switching point for y(t), by The-

orem 3.2.

The graphical representation of solution func-

tion y(t) in interval [1, 3], for three r-cuts, r = 0,

r = 0.5 and r = 1, can be seen in Figure 2.

For more explanation of solution, let us con-

sider the equation (4.30) in the crisp case, i.e.
(t− 2)2y′′(t)− 2(t− 2)y′(t) + [u0]

1+
(t− 2)[u1]

1 + (t− 2)2[u2]
1 = 12y(t),

y′(1) = [y1]
1, t ≥ 1, t ̸= 2.

that is
(t− 2)2y′′(t)− 2(t− 2)y′(t) + 1+
2(t− 2) + 3(t− 2)2 = 12y(t),
y′(1) = −2

7 , t ≥ 1, t ̸= 2.

For this initial value problem, it is clear that the

function ȳ(t), defined as

ȳ(t) = [y2(t)]
1 =

1

12
+

1

7
(t− 2) +

3

14
(t− 2)2,

is solution defined on t ≥ 1. However, according

to classical method initial value problem
(t− 2)2y′′(t)− 2(t− 2)y′(t) + 1+
2(t− 2) + 3(t− 2)2 = 12y(t),
y(1) = c
y′(1) = −2

7 , t ≥ 1, t ̸= 2

with c as an arbitrary constant is solved for 1 ≤
t < 2 and it has solution as follows:

y(t) = ȳ(t)+

1

2
(c− 13

84
)
(
(1− 3√

57
)(2− t)

3+
√

57
2

+ (1 +
3√
57

)(2− t)
3−

√
57

2

)
.

1 1.5 2 2.5 3
−0.4

−0.2

0
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0.6
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r=1

Figure 2. The solution of example 4.2.

Example 4.3. Let us consider a FDE in differ-

ent form as follows:{
(t− 1

2)
2y′′(t) + (t− 1

2)y
′(t) + e−ta = 3y(t),

y(0) = y0,
(4.31)



M. Chehlabi, /IJIM Vol. 14, No. 1 (2022) 105-117 115

where 0 ≤ t < 1
2 , and

[a]r = [
1

2
r, 1− 1

2
r],

[y0]
r = [−1

2
+

13

8
r,
11

4
− 13

8
r],

for all r ∈ [0, 1].

Hence 0 ≤ t < 1
2 , then a linear approxima-

tion can be a suitable alternative for factor e−ta.

Therefore, we write

e−ta ∼= (1− t)a =
(1
2
− (t− 1

2
)
)
a

=
1

2
a− (t− 1

2
)a.

We solve the following approximation equation

instead of equation (4.31)
(t− 1

2)
2y′′(t) + (t− 1

2)y
′(t)+

u0 + (t− 1
2)u1 = 3y(t),

y(0) = y0, 0 ≤ t < 1
2 ,

(4.32)

where u0 =
1
2a and u1 = −a.

Here n = 1, α = 1 and β = 3, which hold
the conditions of Theorem 3.2 and we get s =√
3, by (3.27). Also, the H-difference (3.24) exist,

because

[w1]
r = 2

√
3
[
y0 ⊖

(1
3
u0 −

1

4
u1

)]r
= 2

√
3
[
− 1

2
+

17

12
r,
7

3
− 17

12
r
]
, ∀r ∈ [0, 1].

Consequently, we obtain (ii)-differentiability

solution of (4.32), as follows:

y(t) =
1

3
u0 −

1

2
(t− 1

2
)u1 + (

1

2
− t)

√
3v1

which has the r-cut form

[y(t)]r =[ 1

12
r − 1

4
r(t− 1

2
) + 2

√
3(−1

2
+

17

12
r)(

1

2
− t)

√
3,

1

6
− 1

12
r + (−1

2
+

1

4
r)(t− 1

2
)

+ 2
√
3(
7

3
− 17

12
r)(

1

2
− t)

√
3
]
.

The graphical representation of solution, for

r = 0, r = 0.5 and r = 1 of r-cuts is given in

Figure 3.
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Figure 3. The solution of example 4.3.

Example 4.4. Consider fuzzy differential equa-

tion
(t− 1)2y′′(t) + (t− 1)y′(t) + u0 = 4y(t),
y(0) = y0,
y′(0) = y1,

(4.33)

where t ≥ 0, t ̸= 1, [u0]
r = [12 + 1

2r,
3
2 − 1

2r],

[y0]
r = [−1+r, 1−r] and [y1]

r = [−5
4+

7
4r,

9
4−

7
4r],

for r ∈ [0, 1].

Here n = 0, α = 1, and β = 4. So, the con-

ditions of Theorem 3.2 are clearly, hold and we

have s = 2. Also, we get by (3.24) and (3.25) the

following

[w1]
r =

[
y0 ⊖

1

4
u0

]r
=

[
−9

8
+

7

8
r,
5

8
− 7

8
r

]
,

and

[w2]
r = −1

2
[y1]

r = [w1]
r.

Then v = w1 = w2 and by Theorem 3.2, we ob-

tain for r ∈ [0, 1],

[y(t)]r =
[1
4
u0 + (t− 1)2v

]r
=

[1
8
+

1

8
r +

(
−9

8
+

7

8
r

)
(t− 1)2,

3

8
− 1

8
r +

(
5

8
− 7

8
r

)
(t− 1)2

]
,

According to Theorem 3.2, the function y(t) is

(ii)-differentiable for 0 < t < 1, (i)-differentiable

for t > 1 and (iii)-differentiable at t = 1. This

function is shown in Figure 4, for t ∈ [0, 2] and

for r = 0, r = 0.5 and r = 1, from r-cuts.
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Figure 4. The solution of example 4.4.

5 Conclusion and future re-
search

In this work, we have obtained the repre-

sentation of explicitly solution function and the

conditions of it’s existence to a class of second-

order fuzzy differential equations, under general-

ized differentiability. We saw that the solution

function can be obtained by studying the gener-

alize differentiable fuzzy-valued functions without

turning the problem into a system of ordinary dif-

ferential equations.

For future research, researchers can study the

other forms of the problem and obtain solutions

under other concepts of differentiability such as

inclusion derivative and Zadeh’s extension prin-

ciple. Also, the fuzzy Cauchy-Euler equation can

be studied as a boundary value problem.
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