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Abstract

In this paper we takeA to be the category Pos-S of S-posets, for a posemigroup S,Mpd to be the class
of partially ordered sequantially-dense monomorphisms and study the categorical properties, such as
limits and colimits, of this class. These properties are usually needed to study the homological notions,
such as injectivity, of S-posets. Also we show that it is actually equivalent to Cpd-density resulting
from a closure operator.
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1 Introduction

T
hroughout this paper S denotes a nonempty
posemigroup and Mpd stands for the class

of po-s-dense monomorphisms of S-posets. To
study mathematical notions in a category A, such
as injectivity, tensor products, flatness, with re-
spect to a class M of its (mono)morphisms, one
should know some of the categorical properties of
the pair (A, M). In this paper we take A to be
the category Pos-S and Mpd to be a particular
interesting class of monomorphisms, to be called
partially ordered-s-dense(po-s-dense) monomor-
phisms, and investigate its categorical properties.

A study of S-posets from a category-theoretic
standpoint forms the content of [8], and extends
the results found in [6]. For more information on
various properties of S-posets, see also [5].

In the rest of this section we give some prelimi-
naries about S-acts, posets, and S-posets needed
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in the sequel.

Let S be a semigroup. Recall that a (right) S-
act is a set A equipped with a map λ : A×S → A,
called its action, such that, denoting λ(a, s) by
as, we have a(st) = (as)t, for all a ∈ A, s, t ∈ S
and, if S is a monoid with the identity element
1, a1 = a. The category of all S-acts, with
action-preserving maps between them, is denoted
by Act-S. An S-act congruence θ on A is an
equivalence relation with the property that aθa′,
a, a′ ∈ A, implies that asθa′s, for all s ∈ S. A
quotient S-act is the set A/θ with the natural ac-
tion, [a]s = [as], which makes the canonical map
γ : A → A/θ, a 7→ [a], an S-act map. For more
information about S-acts, see [10].

A semigroup S is said to be a posemigroup if it
is also a poset whose partial order is compatible
with the binary operation.

For a posemigroup S, a (right) S-poset is a
poset A which is also an S-act whose action is
monotone in both arguments. An S-poset map (
morphism) is an action preserving monotone map
between S-posets. Note that each poset P can be
made into an S-poset with trivial action: ps = p,
for every p ∈ P, s ∈ S.
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Let A be an S-poset. An S-poset congruence
on A is an S-act congruence θ with the property
that the S-act A/θ can be made into an S-poset
in such a way that the canonical S-act map A→
A/θ is an S-poset map. For a binary relation R
on A, define the relation ≤R on A by

a ≤R a′ if and only if

a ≤ a1Ra′1 ≤ ... ≤ anRa′n ≤ a′

for some a1, a
′
1, ..., an, a

′
n ∈ A. Then an S-act con-

gruence θ on A is an S-poset congruence if and
only if aθa′ whenever a ≤θ a

′ ≤θ a. The S-poset
quotient is then the S-act quotient A/θ with the
partial order given by [a] ≤ [b] if and only if a ≤θ

b. Also the S-poset congruence θ(H) on A gen-
erated by H ⊆ A × A can be characterized as
follows:
aθ(H)a′ if and only if a = a′, or there exist

s1, s2, ..., sn, t1, t2, ..., tm ∈ S1 such that

a ≤ s1c1, s1d1 ≤ s2c2, s2d2 ≤ s3c3, ..., sndn ≤ a′;
a′ ≤ t1p1, t1q1 ≤ t2p2, t2q2 ≤ t3p3, ..., tmqm ≤ a,

where (ci, di), (pj , qj) ∈ H
∪
H−1 for i =

1, 2, ..., n and j = 1, 2, ...,m.
Moreover, the order relation on A/θ(H) can be

defined by: [a] ≤ [a′] if and only if a ≤ a′, or there
exist s1, s2, ..., sn ∈ S1 such that

a ≤ s1c1, s1d1 ≤ s2c2, s2d2 ≤ s3c3, ..., sndn ≤ a′,

where (ci, di) ∈ H
∪
H−1 for i = 1, 2, ..., n.

Recall that the product of a family of S-posets
is their cartesian product, with componentwise
action and order. The coproduct is their disjoint
union, with natural action and componentwise or-
der. As usual, we use the symbols

∏
and

⨿
for

product and coproduct, respectively. Also for a
family (Aα)α∈I of S-posets each with a unique
fixed element 0, the direct sum

⊕
Aα is defined

to be the sub S-poset of the product
∏
Aα con-

sisting of all (aα)α∈I such that aα = 0 for all
α ∈ I except a finite number of indices.

The pullback of a given diagram

A
↓ f

C
g→ B

in Pos-S is the sub S-poset P = {(c, a) : c ∈
C, a ∈ A, g(c) = f(a)} of C × A, and pullback

maps pC : P → C, pA : P → A are restrictions
of the projection maps. Notice that for the case
where g is an inclusion, P can be taken as f−1(C).

All colimits in Pos-S exist and are calculated
as in Set with the natural action of S on them.
In particular, ∅ with the empty action of S on it,
is the initial object of Pos-S. Also, the coproduct
of S-posets A,B is their disjoint union A ⊔ B =
(A×{1})

∪
(B×{2}) with the obvious action, and

coproduct injections are defined naturally.

The pushout of a given diagram

A
g→ C

f ↓
B

in Pos-S is the factor act Q = (B ⊔ C)/θ where
θ is the congruence relation on B ⊔ C generated
by all pairs (uBf(a), uCg(a)), a ∈ A, where uB :
B → B ⊔ C, uC : C → B ⊔ C are the coproduct
injections. Also, the pushout maps are given as
q1 = πuC : C → (B ⊔ C)/θ, q2 = πuB : B →
(B ⊔ C)/θ, where π : B ⊔ C → (B ⊔ C)/θ is
the canonical epimorphism. Multiple pushouts in
Pos-S are constructed analogously.

Let I be a small category and A : I → Pos-S
be a diagram in Pos-S determining the acts Aα,
for α ∈ I = ObjI, and S-maps gαβ : Aα → Aβ,
for α → β in MorI. Recall that the limit of this
diagram is lim←−Aα :=

∩
α∈I Eα, where Eα = {a =

(aα)α∈I ∈
∏

αAα : gαβpα(a) = pβ(a)} and pα, pβ
are the α, βth projection maps of the product.
The limit S-maps are qα : lim←−Aα → Aα. Also
the limit has the universal property which is, if
{fα : A → Aα} is a family of morphisms such
that gαβfα(a) = fβ(a), then there is a morphism
f : A→ lim←−Aα such that qαf = fα.

Remind that a directed system of S-posets
and S-maps is a family (Bα)α∈I of S-posets in-
dexed by an updirected set I endowed by a fam-
ily (gαβ : Bα → Bβ)α≤β∈I of S-maps such that
given α ≤ β ≤ γ ∈ I we have gβγgαβ = gαγ , also
gαα = id. Note that the direct limit (directed col-
imit) of a directed system ((Bα)α∈I , (gαβ)α≤β∈I)
in Pos-S is given as lim−→Bα =

⨿
αBα/ρ where the

congruence ρ is given by bαρbβ if and only if there
exists γ ≥ α, β such that uγgαγ(bα) = uγgβγ(bβ),
in which each uα : Bα →

⨿
αBα is an injection

map of the coproduct. Notice that the family
gα = πuα : Bα → lim−→Bα of S-maps satisfies

gβgαβ = gα for α ≤ β, where π :
⨿

αBα → lim−→Bα
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is the natural S-map. Also directed colimit has a
dual universal property of limit.

2 Cpd-Closure operator

In this section, we introduce and briefly study a
closure operator, so called Cpd-Closure operator.
For a sub S-poset A of B let us denote A ↓=
{b ∈ B | ∃a ∈ A, b ≤ a} and Sub(B), the set of
all sub S-posets of B. First recall the following
definition of Cpd-closure operator.

Definition 2.1 A family Cpd = (Cpd
B )B∈Pos−S,

with Cpd
B : sub(B)→ Sub(B), is defined as

Cpd
B (A) = {b ∈ B : bS ⊆ A ↓}.

It is easy to show that Cpd is a closure operator
on Pos-S in the sense of [7]. This means that

Cpd
B (A) is a sub S-poset of B and,

(i) A ⊆ Cpd
B (A),

(ii) A1 ⊆ A2 ⊆ B implies Cpd
B (A1) ⊆ Cpd

B (A2),

(iii) for every homomorphism f : B → D

and each sub S-poset A of B, f(Cpd
B (A)) ⊆

Cpd
D (f(A)).

We just prove (iii). Let f : B → C be a ho-

momorphism and b ∈ Cpd
B (A). For every s ∈ S,

there exists a ∈ A such that bs ≤ a. Then f(b)s =
f(bs) ≤ f(a) ∈ f(A) and hence f(b)S ⊆ f(A) ↓
which deduced that f(b) ∈ Cpd

B (f(A)).

Dikranjan and Tholen in [7] state some prop-
erties of a closure operator in general. Here we
are going to investigate the satisfaction of those
properties for the closure operator Cpd.

Definition 2.2 The closure operator Cpd is said
to be:

(1) idempotent( if Cpd
B (A) = Cpd

B (Cpd
B (A))).

(2) hereditary( if for A1 ⊆ A2 ⊆ B,

Cpd
A2

(A1) = Cpd
B (A1)

∩
A2).

(3) weakly hereditary( if for every A ⊆ B,

Cpd

Cpd
B (A)

(A) = Cpd
B (A)).

(4) grounded( if Cpd
B (∅) = ∅).

(5) additive( if Cpd
B (A

∪
C) =

Cpd
B (A)

∪
Cpd
B (C)).

(6) productive( if for every family of sub
S-posets Ai of Bi, taking A =

∏
iAi and

B =
∏

iBi, C
pd
B (A) =

∏
iC

pd
Bi
(Ai)).

(7) fully additive( if Cpd
B (

∪
i∈I Ai) =∪

i∈I C
pd
B (Ai)).

(8) discrete( if Cpd
B (A) = A for every S-poset

B and A ⊆ B).

(9) trivial( if Cpd
B (A) = B for every B and

A ⊆ B).

(10) minimal( if for C ⊆ A ⊆ B one has

Cpd
B (A) = A

∪
Cpd
B (C)).

Theorem 2.1 The closure operator Cpd is
hereditary, weakly hereditary, grounded and pro-
ductive.

Proof. It is easy to check that the closure op-
erator Cpd is hereditary, weakly hereditary and
grounded. We just prove productivity. Let b ∈
Cpd
B (A), b = {bi}. For every s ∈ S, bs ∈ A ↓,

then for each i ∈ I, bis ∈ Ai ↓ and hence
for each i ∈ I, bi ∈ Cpd

Bi
(Ai) which implies that

b ∈
∏
Cpd
Bi
(Ai). The converse is obvious.

Theorem 2.2 The closure operator Cpd is idem-
potent if and only if S ⊆ S2 ↓.

Proof. (⇒) It is clear that Cpd
S1(S) = S1 and

S ⊆ Cpd
S1(S

2). Since Cpd is idempotent, S1 =

Cpd
S1(S) ⊆ Cpd

S1(C
pd
S1(S

2)) = Cpd
S1(S

2) ⊆ S1. Thus

1 ∈ Cpd
S1(S

2), which implies S ⊆ S2 ↓.
(⇐) By definition of the closure operator, for

each A ⊆ B we see that Cpd
B (A) ⊆ Cpd

B (Cpd
B (A)).

Conversely, let b ∈ Cpd
B (Cpd

B (A)). So bS ⊆
Cpd
B (A) ↓. Thus for each s ∈ S, bs ≤ b′s for some

b′s ∈ C
pd
B (A). Since S ⊆ S2 ↓, then s ≤ tt′ ∈ S2

and hence bs ≤ btt′ ≤ b′tt
′, which b′t ∈ Cpd

B (A).
Thus b′tt

′ ≤ a, for some a ∈ A. Therefore
bs ≤ a and hence bs ⊆ A ↓ which implies that
b ∈ Cpd

B (A).

Note that the condition S ⊆ S2 ↓ is equal to
S = S2 ↓.

In the following theorem let us denote,
DSub(B), the set of all down closed sub S-posets
of an S-poset B.
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Theorem 2.3 The closure operator Cpd is addi-
tive if and only if for every element b in an S-
poset B, bS is join prime in the lattice DSub(B).

Proof. let Cpd be additive. Let x ∈ B and
xS ⊆ A

∪
C, where A and C are down closed

sub S-posets of B. Then, by monotonicity and
additivity,

Cpd
B (xS) ⊆ Cpd

B (A
∪
C) = Cpd

B (A)
∪
Cpd
B (C).

Now, since x ∈ Cpd
B (xS), x ∈ Cpd

B (A) or x ∈
Cpd
B (C). Thus, xS ⊆ A ↓= A or xS ⊆ C ↓= C,

proving that xS is join prime in Sub(B).
Conversely, suppose that A and D are sub S-

posets of an S-poset B. By definition of the clo-
sure operator, Cpd

B (A)
∪
Cpd
B (C) ⊆ Cpd

B (A
∪
C).

Consider x ∈ Cpd
B (A

∪
C). So xS ⊆ (A

∪
C) ↓=

(A ↓)
∪
(B ↓). Since xS is join prime, xS ⊆ A ↓

or xS ⊆ C ↓. Thus, x ∈ Cpd
B (A)

∪
Cpd
B (C). This

shows that each Cpd
B , and hence Cpd, is additive.

Corollary 2.1 If S is cyclic as an S-poset (in
particular,has a left identity element), then Cpd

is additive.

Proof. Let A and C be down closed sub S-posets
of B and bS ⊆ A

∪
C, for b ∈ B. Then there exist

right ideals I and J of S such that bI ⊆ A and
bJ ⊆ C. Since S is cyclic as an S-poset, one can
easily seen bS ⊆ A or bS ⊆ C.

Now we show that some properties of the clo-
sure operator Cpd are not satisfied in general.

Lemma 2.1 The closure operator Cpd is not
necessarily fully additive.

Proof. Let S = (N,min), B = N∞ and A = N
all endowd with ordinary relation on N as posets.
Consider An = {m ∈ N | m ≤ n} for each n ∈ N.
It is easy to check that Cpd

N∞(An) = An and hence∪
Cpd
N∞(An) =

∪
(An) = N, but Cpd

N∞(
∪
An) =

Cpd
N∞(N) = N∞.

Lemma 2.2 For every semigroup S, the closure
operator Cpd is not discrete nor trivial nor mini-
mal.

Proof. Let 0 ∈ A be a fixed element of a
nonempty S-poset A. Adjoin two elements θ, ω to
A by the actions ωs = ω and θs = 0 and a < θ <
ω, for each a ∈ A. Consider B = A

∪
{θ, ω}. It

is clear that Cpd
B (A) = A

∪
{θ}. This shows that

Cpd is neither discrete nor trivial. Also, it is not
minimal, because of, adjoining two elements θ, ω
to a nonempty S-poset C by the actions ωs = θ
and orders θs = θ, and c < θ < ω, for each
c ∈ C. Taking A = C

∪
{θ}, B = C

∪
{θ, ω},

we get C ⊂ A ⊂ B, and Cpd
B (A) = B while

Cpd
B (C) = C.

Theorem 2.4 (i) The closure Cpd is discrete if
and only if S has a left identity element and every
sub S-poset is down closed.

(ii) The closure Cpd is trivial if and only if S
is the emptyset.

Proof. (i) Let Cpd be a discrete closure operator
and the nonempty semigroup S do not have a left
identity. Consider t0 ∈ S and adjoin an element
x to S defined by xs = t0s for each s ∈ S. It
is clear that Cpd

Sx(S) = Sx and by the hypothesis

we have Cpd
Sx(S) = S. So Sx = S which is a

contradiction. Now let A be a sub S-poset of
B. It is clear that Cpd

A↓(A) = A ↓ and since Cpd

is discrete, Cpd
A↓(A) = A. So A = A ↓, which

completes the proof. The converse is obvious.
(ii) Let The closure operator Cpd is trivial and

S ̸= ∅. Consider B = {a, b} is an S-poset, whose
elements are fixed element and a < b and A = {a}
is a proper sub S-poset of B. Then Cpd

B (A) =
A ̸= B which is a contradiction. Thus S is the
emptyset.
Conversly, let S = ∅. Then it is clear that

Cpd
B (A) = B.

3 Categorical properties of po-
s-dense monomorphisms

In this section we investigate the categorical and
algebraic properties of the category Pos-S with
respect to the classMpd of po-s-dense monomor-
phisms in the following three subsections.

3.1 Composition Property

In this subsection we investigate some proper-
ties of the class Mpd of po-s-dense monomor-
phisms which are mostly related to the composi-
tion of po-s-dense monomorphisms. These prop-
erties and the ones given in the next two subsec-
tions are what normally used to study injectivity
with respect to a class of monomorphisms, see [2].
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The classMpd is clearly isomorphism closed; that
is, contains all isomorphisms and is closed under
composition with isomorphisms.

Definition 3.1 An S-poset A is said to be par-
tially ordered-s-dense(or simply po-s-dense) sub
S-poset of B, if for every b ∈ B, bS ⊆ A ↓.
In other word Cpd

B (A) = B. A monomorphism
f : A→ B is called po-s-dense if f(A) is a po-s-
dense sub S-poset of B.

The proof of the next proposition is straight-
forward and is omitted.

Proposition 3.1 Let A
f→ B

g→ C be
two monomorphisms and gf be a po-s-dense
monomorphism. Then both f and g are po-s-
dense monomorphisms.

The classMpd is said to be composition closed,
if the composition of two po-s-dense monomor-
phisms is also a po-s-dense monomorphism. The
following lemma shows that the classMpd is not
always closed under composition.

Lemma 3.1 The classMpd is closed under com-
position if and only if the closure operator Cpd is
idempotent.

Proof. Suppose that the closure operator Cpd

is idempotent and f : A → B and g : B → C
are two po-s-dense monomorphisms. So we
have C = Cpd

C (g(B)) = Cpd
C (g(Cpd

B (f(A))) ⊆
Cpd
C ((Cpd

C (gf(A))) = Cpd
C (gf(A)) ⊆ C. Thus

Cpd
C (gf(A)) = C, means that gf is po-s-dense

monomorphism.
For the converse, let the composition of
po-s-dense monomorphisms be po-s-dense
monomorphism. For every sub s-poset A of B, A
is po-s-dense sub S-poset of Cpd

B (A), in view of

Theorem 2.1. Thus A→ Cpd
B (A)→ Cpd

B (Cpd
B (A))

are po-s-dense monomorphisms. So A is
po-s-dense sub S-poset of Cpd

B (Cpd
B (A)) and

hence Cpd

Cpd
B (Cpd

B (A))
(A) = Cpd

B (Cpd
B (A)). Now

by Theorem 2.1, since Cpd is hereditary,
Cpd

Cpd
B (Cpd

B (A))
(A) = Cpd

B (A). So Cpd is idempo-

tent.

As a clear and important deduction of Theo-
rem 2.2 and Lemma 3.1, we have the following
corollary.

Corollary 3.1 The class Mpd is composition
closed if and only if S ⊆ S2 ↓.

3.2 Limits of po-s-dense monomor-
phisms

In this subsection we will investigate the be-
haviour of po-s-dense monomorphisms with re-
spect to limits. First recall that, the class Mpd

is said to be closed under products(coproduct,
direct sum), if for every family of po-s-dense
monomorphisms {fi : Ai → Bi},

∏
fi :

∏
Ai →∏

Bi(
⨿
fi,⊕fi) is po-s-dense monomorphism.

Proposition 3.2 (i) The classMpd is closed un-
der products.

(ii) Let {fα : A → Bα|α ∈ I} be a family of
po-s-dense monomorphisms and A be a complete
upward directed S-poset. Then their product ho-
momorphism f : A →

∏
α∈I Bα is also an po-s-

dense monomorphism.

Proof. (i) The proof is straightforward.

(ii) Let {bi} ∈
∏

i∈I Bi and s ∈ S. For each
i ∈ I, there exists ai ∈ A such that bis ≤ fi(ai).
Since A is a complete upward directed set, there
is an element a ∈ A, such that ai ≤ a. So for
every i ∈ I, bis ≤ fi(a) and hence {bi}s ≤ f(a).

Proposition 3.3 The classMpd is closed under
direct sums.

Theorem 3.1 Consuder the following pullback
diagram

f−1(C)
τ
↪→ A

f̄ ↓ ↓ f
C

ι
↪→ B

in which C is down closed S-poset, ι is inclusion
and C ⊆ f(A) ↓. If C is po-s-dense in B, then f̄
and τ are po-s-dense monomorphisms.

Proof. We have to show that Im(f̄) is po-s-
dense in B. Let b ∈ B and s ∈ S. Since C is down
closed and po-s-dense in B, there exists c ∈ C
such that bs ∈ C and hence there exists a′ ∈ A
such that bs ≤ f(a′). Thus f̄(a′) = ιf̄(a′) =
f(a′) ≥ bs, which it is deduced that bs ∈ Im(f̄) ↓.
Now let a ∈ A and s ∈ S. So f(as) = f(a)s ∈
C ↓= C, which implies as ∈ f−1(C) ⊆ f−1(C) ↓.
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Remark 3.1 Pullbacks does not transfer po-s-
dense monomorphisms. Let S be a semigroup and
Sx be the S-poset obtained by adjoining a fixed
element x to S, with x ≤ s for each s ∈ S. Con-
sider the coproduct S

⨿
S as an S-poset defined

by (s1, i) ≤ (s2, j) if and only if i = j and s1 ≤ s2
in S. The following diagram

S × {1} τ
↪→ S

⨿
S

↓ ↓ f
S

γ
↪→ Sx

, which γ is an inclusion map and f is a homo-
morphism defined by f(s, 1) = s and f(s, 2) = x,
is a pullback diagram. It is clear that γ is po-s-
dense, but τ is not po-s-dense monomorphism.

3.3 Colimits of po-s-dense monomor-
phisms

This subsection is devoted to the study of po-s-
dense monomorphisms with respect to colimits.

Proposition 3.4 Mpd is closed under coprod-
ucts.

Proof. Consider the diagram

Ai
fi→ Bi

ui ↓ ↓ u′i⨿
i∈I Ai

f→
⨿

i∈I Bi

in which {fi : Ai → Bi : i ∈ I} is a family of
po-s-dense monomorphisms. We have to show
that f :

⨿
i∈I Ai →

⨿
i∈I Bi is an po-s-dense

monomorphism. Since u′i and fi, i ∈ I, are
monomorphisms, f is a monomorphism too.
Let b ∈

⨿
i∈I Bi, s ∈ S. Then there exists

i ∈ I, bi ∈ Bi such that b = u′i(bi). Since fi is
po-s-dense, there exists ai ∈ Ai with bis ≤ fi(ai).
So bs ≤ u′ifi(ai) = fui(ai) ∈ Imf . Thus f is a
po-s-dense monomorphism.

A monomorphism f : A → B is said to be
regular monomorphisms (order-embeddings) in
the category Pos-S of S-posets, if it is action-
preserving monotone map.

Theorem 3.2 Pushouts transfers po-s-dense
monomorphisms, that is, for the following

pushout diagram

A
f→ B

g ↓ ↓ h′

C
h→ Q

in Pos-S, if f is po-s-dense then h is so.

Proof. Recall that Q = (B ⊔ C)/θ
where θ = ρ(H) and H consists of all
pairs (uBf(a), uCg(a)), a ∈ A, where
uB : B → B ⊔ C, uC : C → B ⊔ C are
coproduct injections. And h = πuC : C →
(B ⊔ C)/θ, h′ = πuB : B → (B ⊔ C)/θ, where
π : B ⊔ C → (B ⊔ C)/θ is the canonical epi-
morphism. By [11], pushout transfer regular
monomorphism. So h is a monomorphism.
We show that h is po-s-dense monomorphism.
Let [x]θ ∈ (B ⊔ C)/θ and s ∈ S. Then,
x = uC(c) for some c ∈ C, or x = uB(b) for
some b ∈ B. In the former case, we have
[x]θs = h(c)s = h(cs) ∈ Imh. In the latter
case, using that f is po-s-dense, we get a ∈ A
with bs ≤ f(a) and hence [x]θs = [uB(b)]θs =
h′(b)s = h′(bs) ≤ h′f(a) = hg(a) ∈ Imh. So
[x]θs ∈ (Imh) ↓.

We say that multiple pushouts transfer po-
s-dense monomorphisms if in multiple pushout

(P,Aα
hα→ P ) of a family of po-s-dense monomor-

phisms {fα : A → Aα|α ∈ I}, every hα, α ∈ I,
is a po-s-dense monomorphism. In multiple
pushout diagram for every α, β ∈ I, hβfβ = hαfα
which is called diagonal map.

Theorem 3.3 Multiple pushouts transfer po-s-
dense monomorphisms.

Proof. Let (P,Aα
hα→ P ) be a multiple pushout

of the family {fα : A→ Aα|α ∈ I} of po-s-dense
monomorphisms. We know that P =

⨿
Aα/ρ(H)

where H = {(fα(a), fβ(a)) | a ∈ A,α, β ∈ I}
(we have taken the image of each element of
Aα under coproduct morphisms to be equal
to itself). By using [3, Th, 3.5], for every
α ∈ I, hα is a monomorphism. Now let q ∈ P
and s ∈ S. There exist β ∈ I and p ∈ Aβ

such that q = hβ(p). Since fβ is po-s-dense
then ps ≤ fβ(a), for some a ∈ A, and hence
qs = hβ(ps) ≤ hβ(fβ(a)) = hα(fα(a)). Thus hα
is po-s-dense.
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The following corollary immediately obtained
from Corollary 3.1 and Theorem 3.3.

Corollary 3.2 If S ⊆ S2 ↓, then in every
multiple pushout diagram of po-s-dense regular
monomorphisms the diagonal map is an po-s-
dense regular monomorphism.

Theorem 3.4 Let {hα : Aα → Bα| α ∈ I} be
a directed family of po-s-dense monomorphisms.
Then, the directed colimit homomorphism in-
duced by h : lim−→Aα → lim−→Bα is po-s-dense.

Proof. Let (lim−→Aα, fα), (lim−→Bα, gα) be
directed colimits of the directed systems
((Aα), (ψαβ))α≤β∈I and ((Bα), (φαβ))α≤β∈I and
suppose {hα : Aα → Bα| α ∈ I} is a directed
family of po-s-dense monomorphisms such that
for every α ≤ β, hβψαβ = φαβhα. Then, for
every α ≤ β, gβhβψαβ = gβφαβhα = gαhα,
so h = lim−→hα exists by the universal property

of colimits. Consider lim−→Aα =
⨿

α∈I Aα/ρ

and lim−→Bα =
⨿

α∈I Bα/ρ
′ as defined in

section 1. Let h[aα]ρ = h[aβ]ρ. Then,
[hα(aα)]ρ′ = gαhα(aα) = gβhβ(aβ) = [hβ(aβ)]ρ′ ,
and so there exists γ ∈ I with γ ≥ α, β
and φαγhα(aα) = φβγhβ(aβ) which implies
that hγψαγ(aα) = hγψβγ(aβ). Since hγ is a
monomorphism, [aα]ρ = [aβ]ρ, and so h is a
monomorphism. To see that f is po-s-dense,
let s ∈ S, x ∈ lim−→Bα. So for some α ∈ I,

x = gα(bα). Since fα is po-s-dense, there
exists a ∈ Aα with bαs ≤ hα(a). Then,
xs = gα(bαs) ≤ gαhα(a) = hfα(a).

Theorem 3.5 The category Pos-S has M pd-
directed colimits.

Proof. Suppose that (lim−→Bα, gα) is the directed

colimit of the directed system ((Bα), (gαβ))α≤β∈I ,
and {hα : A → Bα | α ∈ I} is a directed
family of po-s-dense monomorphisms such that
gαβhα = hβ, for each α ≤ β. Let h : A→ lim−→Bα

be a directed colimit of {hα}α∈I in Pos-S, with
the colimit maps gα : Bα → lim−→Bα. Since
h = lim−→hα = gαhα for each α ∈ I, similar to
the argument of Theorem 3.4, h is a monomor-
phism because of each hα. Now we show that
h is po-s-dense. Let b ∈ lim−→Bα and s ∈ S.
Since b ∈ lim−→Bα, there exists xβ ∈ Bβ such that

b = [xβ]ρ and since hβ is po-s-dense, there exists
an element as ∈ A with xβs ≤ hβ(as). Then bs =
[xβ]ρs = gβ(xβ)s = gβ(xβs) ≤ gβhβ(as) = h(as).

References

[1] J. Adamek, H. Herrlich, G.Strecker, Ab-
stract and Concrete Categories, John Wiley
and Sons New York, 1990.

[2] B. Banaschewski, Injectivity and essential
extensions in equational classes of algebras,
Queen’s Papers in Pure and Applied Mathe-
matics 25 (1970) 131-147.

[3] H. Barzegar, M. M. Ebrahimi, Sequentially
pure monomorphisms of acts over semi-
groups, Europ. J. Pure Appl. Math. 4 (2008)
41-55.

[4] T. S. Blyth, M. F. Janowitz, Residuation
Theory, Pergamon Press, Oxford, 1972.

[5] S. Bulman-Fleming, V. Laan, Lazard’s the-
orem for S-posets, Math. Nachr. 278 (2005)
1743-1755.

[6] S. Bulman-Fleming, M. Mahmoudi, The
category of S-posets Semigroup Forum 71
(2005) 443-461.

[7] D. Dikranjan, W.Tholen, Categorical struc-
ture of closure operators, with applications
to topology, algebra, and discrete mathe-
matics, Mathematics and Its Applications,
Kluwer Academic Publ., 1995.

[8] S. M. Fakhruddin, On the category of S-
posets Acta Sci. Math. (Szeged) 52 (1998)
85-92.

[9] J. M. Howie, Fundamentals of semigroup
theory, Oxford Science Publications, Oxford,
1995.

[10] M. Kilp, U. Knauer, A. Mikhalev, Acts and
Categories, Walter de Gruyter, Berlin, New
York, 2000.

[11] H. Rasouli, Categorical properties of regular
monomorphisms of S-posets, European J. of
pure and Applied Math 2 (2014) 166-178.

[12] S. Roman, Lattices and Ordered Sets,
Springer, New York, 2008.



54 H. Barzegar et al. /IJIM Vol. 10, No. 1 (2018) 47-54

Hasan Barzegar has got MSc de-
gree in pure Mathematics from
Shahid Beheshty University in
2003 and PhD degree from Shahid
Beheshty University in 2010. Now,
he is an assistant professor in De-
partment of Mathematics, Tafresh

University, Tafresh, Iran. His main research in-
terests include Universal Algebra, Category The-
ory, Semigroup Theory S-systems, S-posets and
S-boolean algebras.

Hamid Rasouli is a faculty member
of Mathematics department at Sci-
ence and Research Branch, Islamic
Azad University, Tehran, Iran. His
field of specialty includes Universal
Algebra, Category Theory, Semi-
group Theory, Theory of S-acts

and S-posets. He has received his BSc from Shiraz
University and both MSc and PhD from Shahid
Beheshti University in Pure Mathematics.


	Introduction
	C^pd-Closure operator
	 Categorical properties of po-s-dense monomorphisms
	Composition Property
	Limits of po-s-dense monomorphisms
	Colimits of po-s-dense monomorphisms




