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Abstract 

     Recently the concept of facility efficiency, which defined by data envelopment analysis (DEA), 

introduced as a location modeling objective, that provides facilities location’s effect on their 

performance in serving demands. By combining the DEA models with the location problem, two 

types of “efficiencies” are optimized: spatial efficiency which measured by finding the least cost 

location and allocation patterns for facilities, and the facility efficiency in serving demands which 

measured by DEA efficiency score. In this paper, location-allocation models with DEA in interval 

inputs and outputs environments are combined. A new pair of interval DEA/location models are 

constructed and run. 
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1. Introduction 

Many types of location-allocation models have 

been presented to find optimal facilities 

location patterns with respect to several 

criteria like cost, demands coverage, time and 

others. Some of these models have been 

formulated in a multi objective programming 

framework eliciting trade-offs among these 

sometimes conflicting objectives (Klimberg 

and Ratick 2008). Most of these models follow 

just spatial efficiency and disregard to 

facilities efficiency, while final purpose of 

facilities installation and location is 

maximization of yield and efficiency and to 

achieve this purpose, the facilities efficiency in 

serving demands must be maximized. On the 

other hand, minimization of cost and time and 

maximization of demands coverage aren’t 

enough to achieve optimal efficiency. 

Therefore, some models recently developed 

that use the concept of efficiency as defined by 

DEA as another location modeling objective to 

help providing insights into the performance of 

facilities at different potential sites. However, 

the previous models do not deal with 

imprecise data and assume that all input and 

output data are exactly known. In real world 

condition, however, this assumption may not 

always be true. Due to the existence of 

uncertainty, DEA sometimes faces the 

situation of imprecise data, especially when a 

set of decision-making units (DMUs) contains 

missing data, judgment data, forecasting data 

or ordinal preference information. Generally 

speaking, uncertain information or imprecise 

data can be expressed in interval or fuzzy 

numbers. Therefore, how to evaluate the 

management or operation efficiency of a set of 

DMUs in interval and/or fuzzy environments 

is a worth-studying problem. This is the need 

of both the developments of DEA theory and 

methodology and its real applications  (Wang 

et al. 2005). Therefore, in this paper, location-

allocation models are combined with DEA in 

interval inputs and outputs environments to 

improve performance of these models. 

Location-allocation problems have several 

types. We have used uncapacitated facility 

location problem (UPLP) model and the 

capacitated facility location problem (CPLP) 

model as the base location modeling 

framework for our model formulations. The 

uncapacitated facility location problems take a 

great variety of forms, depending on the nature 

of the objective function (mini sum, mini max, 

problems with covering constraints). The 

uncapacitated model assumes each facility has 

unlimited capacity, and as a result, if a facility 

supplies a demand node, it will satisfy all the 

demand, i.e., only one facility is necessary to 

serve a particular demand. The mathematical 

formulation of the UPLP is 

𝑚𝑖𝑛   𝑐𝑘𝑙

𝑙

𝑑𝑒𝑚𝑙𝑡𝑘𝑙 +  𝐹𝑘𝑡𝑘
𝑘𝑘

                       (1) 

s.t: 

 𝑡𝑘𝑙 = 1

𝑘

    ∀𝑙 

𝑡𝑘𝑙 ≤ 𝑡𝑘       ∀𝑘, 𝑙 

𝑡𝑘𝑙 , 𝑡𝑘 = 0,1 

Where 

k : index of facility locations, 

l :index of demand locations, 
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𝑐𝑘𝑙 : cost of shipping one unit of demand from 

facility k to demand l, 

𝐹𝑘 : fixed cost of opening/using facility k, 

𝑑𝑒𝑚𝑙 : the amount of demand at node, 

 

𝑡𝑘 =  
1     𝑖𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑘 𝑜𝑝𝑒𝑛𝑑

0       𝑂𝑊                             

  

 

𝑡𝑘𝑙 =  
1     𝑖𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑘 𝑠𝑒𝑟𝑣𝑒𝑠 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙

0      𝑂𝑊                                                  

  

 

In the CPLP, a number of capacitated facilities 

are to be located among possible sites in order 

to satisfy demands of customers by 

minimizing total costs of transportation and 

fixed charges of establishing facilities. The 

CPLP has been effectively implemented to 

solve real-world applications such as plants 

location, power stations location, warehouses 

location, to just name a few. The CPLP is 

generalization of the simple plant location 

problem. In the CPLP each facility has limited 

capacity and so more than one facility may 

supply a demand node. The formulation for the 

CPLP is: 

𝑚𝑖𝑛   𝑐𝑘𝑙

𝑙

𝑏𝑘𝑙 +  𝐹𝑘𝑡𝑘
𝑘𝑘

                                (2) 

s.t: 

 𝑡𝑘𝑙 ≥ 1

𝑘

             ∀𝑙 

𝑡𝑘𝑙 ≤ 𝑡𝑘                    ∀𝑘, 𝑙 

 𝑏𝑘𝑙 = 𝑑𝑒𝑚𝑙       ∀𝑙

𝑘

 

𝑏𝑘𝑙 ≤ 𝑀𝑖𝑛 𝑑𝑒𝑚𝑙 , 𝑐𝑎𝑝𝑘 𝑡𝑘    ∀𝑘, 𝑙 

𝑡𝑘𝑙 , 𝑡𝑘 = 0,1 

𝑏𝑘𝑙 ≥ 0 

Where
 

𝑐𝑎𝑝𝑘 : capacity of facility k 

𝑏𝑘𝑙 : amount of units which shipped from 

facility k to demand location l. The other 

parameters and variables are the same with 

model (1). 

In this paper, we combine UPLP and CPLP 

with DEA in interval inputs and outputs to find 

optimal and efficient facility location/allocation 

patterns. 

2. Literature Review  

Location analysis is a specialized branch of 

combinatorial optimization that has grown 

from early foundations to maturity, with most 

growth occurring since the 1960s. A wide 

range of problems has emerged, which may be 

characterized in general as finding optimal 

locations for facilities. 

There are many researches which have been 

done in facility location’s context. Here, we 

review some of these researches which are in 

the context of UPLP or CPLP. Warehouse 

location problem which has appeared under a 

variety of different names, including 

uncapacitated/simple and warehouse/plant/ 

facility/site location, studied with Kuehn and 

Hamburger (1963). They developed basic 

greedy heuristic algorithm (drop, add, swap) 

for solving locating warehouses problem. 

Efroymson and Ray (1966) and Khumawala 

(1972) presented an efficient branch and 

bound algorithm for the warehouses location 

problem. Erlenkotter (1978) developed and 

tested a method for the uncapacitated facility 
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location problem that was based on a linear 

programming dual formation. A simple ascent 

and adjustment procedure frequently produces 

optimal dual solutions, which in turn often 

correspond directly to optimal integer primal 

solutions. If not, a branch-and-bound 

procedure completes the solution process. 

Erlenkotter (1978)’s method used Lagrangian 

relaxation with solutions to the dual problem 

achieves significantly quicker results in 

finding integer solutions, and can itself be said 

to be a milestone in algorithmic terms. 

Guignard and Spielberg (1979) give a direct 

dual method, consisting of several phases 

(each of which appears essential for some 

data), to resolve a strong relaxed form of the 

mixed plant location problem (mixed in the 

sense of allowing capacitated as well as 

uncapacitated plants) with additional 

constraints over the integer variables (user 

specified, or derived from the data 

themselves). Bilde and krarup (1977) 

presented a sharp lower bounds and efficient 

algorithms for the simple plant location 

problem. Cornuejols et al. (1991) presented an 

excellent theoretical analysis of all possible 

Lagrangian relaxations and the linear 

programming relaxation for the CPLP. 

DEA is an extension of Farrell (1957)'s idea of 

linking the computation of technical efficiency 

with production frontiers. The first DEA 

model was developed by Charnes et al. (1978). 

The CCR model is a fractional programming 

model, which measures the relative technical 

efficiency of a firm by calculating the ratio of 

weighted sum of its outputs to the weighted 

sum of its inputs. The fractional program is 

run for each firm to determine the set of input-

output weights, which maximizes the 

efficiency of that firm subject to the condition 

that no firm can have a relative efficiency 

score greater than unity for that set of weights. 

Thus, the DEA model calculates a unique set 

of factor weights for each firm. The set of 

weights has the following characteristics: It 

maximizes the efficiency of the firm for which 

it is calculated and it is feasible for all firms. 

The model (3) is linear programming of CCR 

model 

Max    uryrk

r

 

 uryrj −  vixij

s

r=1r

       𝑗 = 1,2, … , 𝑛                     3  

 viyik

i

= 1 

ur , 𝑣𝑖 ≥0    r = i, … , m , r = 1, … , s 

Here uij , 𝑣𝑟𝑗  are inputs and outputs of 𝐷𝑀𝑈𝑗  and 

ur , 𝑣𝑖 ≥0 are the variable weights to be 

determined by the solution of the problem.  

There have been some applications of DEA to 

evaluating the efficiency of spatial location 

patterns. Shroff et al. (1998) developed a 

model which incorporates efficiency 

measurement methodologies utilizing DEA to 

estimate the relative sitting efficiency of 26 

potential sites. Their study identified several 

Pareto-optimal sites as potential locations for 

the proposed long-term care facility. 

http://academic.research.microsoft.com/Keyword/23325/location-problem
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Klimberg and Ratick (2008) mentioned that 

Fisher and Rushton (1979), Desai and 

Storbeck (1990), Desai et al. (1995), and 

Athanassopoulos and Storbeck (1995), are a 

series of related papers which applied DEA to 

measure the relative spatial efficiency of 

location decisions. As part of their DEA 

models, they used two measures of access as 

input variables, the total travel distance and the 

extent of non-coverage populations not within 

a specified distance of a facility  (Klimberg 

and Ratick 2008). Thomas et al. (2002) have 

broadened the classic anti-center models to 

include generalized-distance measures. It 

includes in the inherent proximity measures 

other cost/benefit metrics. Unlike the classic 

data envelopment analysis (DEA), the 

combined location/DEA model proposed in 

their research assumes disposability of 

input/output's only. It represents a more 

flexible formulation. The locations of multiple 

sites are analyzed using a binary integer 

program, while evaluation is performed by the 

full strength of a DEA model. Through a case 

study, they show how location and DEA 

models can be used together to more 

realistically characterize a sitting decision.  

In previews studies, these two objectives i.e., 

spatial efficiency and facility efficiency have 

not been simultaneously applied to find and 

evaluate solutions to location problems. 

However, Klimberg and Ratick (2008) 

combined the DEA problem with the location 

problem and spatial efficiency with the facility 

efficiency were simultaneously optimized. 

Their model does not deal with imprecise data 

and assumes that all inputs and outputs data 

are exactly known. In real world situations, 

however, this assumption may not always be 

true. Due to the existence of uncertainty, we 

sometimes face the situation of imprecise data, 

especially when a set of decision-making units 

(DMUs) contains missing data, judgment data, 

forecasting data or ordinal preference 

information. Generally speaking, uncertain 

information or imprecise data can be expressed 

in interval or fuzzy numbers. Therefore, how 

to evaluate the management or operation 

efficiency of a set of DMUs in interval and/or 

fuzzy environments is a worth-studying 

problem. This is the need of both the 

developments of DEA theory and 

methodology and its real applications (Wang 

et al. (2005) ). So in the next section we 

develop and present formulations combining 

the uncapacitated and capacitated facility 

location problem with the DEA problem in 

interval inputs and outputs environments. 

3. Model Development 

The model which presented by Klimberg and 

Ratick (2008), deals with crisp data. They 

assume that inputs and outputs are measured 

by exact values. In some applications, 

however, inputs and outputs of DMUs are 

ever-changeful. In the real world situations, 

there always exists uncertainty in human 

thinking and judgment. As some authors point 

out, the precise data are not always possible 
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(Wang et al. (2005)). However, in real world 

condition many complicated factors are 

involved that makes difficult to measure inputs 

and outputs precisely. This makes a case 

where we need to measure the efficiency of 

DMUs with inexact values or interval data. 

3.1. CCR Model With Interval Data  

The approach proposed in this paper is based 

on Kabnurkar (2001)’s research. He 

presupposed that the decision-maker can 

define the risk free and impossible bounds for 

each interval input and output. Risk-free 

bounds are the conservative values that are 

most realistically attainable in real world 

condition, whereas impossible bounds are 

associated with those values, which represent 

management scenarios that are the least 

realistic. The risk-free and impossible bounds 

are used for determining the membership 

functions for the input and output data. All 

membership functions are assumed to vary 

linearly between the bounds. In addition, all 

membership functions have a value equal to 

zero at the impossible bounds and a value 

equal to one at the risk-free bounds 

(Kabnurkar 2001). 

If superscripts 0 and 1 represent impossible 

and risk-free bounds for input data, then the 

membership function associated with the 𝑖𝑡ℎ  

fuzzy input (𝑥𝑖𝑗 ) for the 𝑗𝑡ℎ  DMU is given by: 

𝜇𝑥  𝑥𝑖𝑗  =
𝑥𝑖𝑗

𝑜 − 𝑥𝑖𝑗

𝑥𝑖𝑗
𝑜 − 𝑥𝑖𝑗

1                                                   4  

Furthermore, if superscripts 0 and 1 represent 

impossible and risk-free bounds for output 

data, then the membership function associated 

with the 𝑟𝑡ℎ  output (𝑦𝑟𝑗 ) for the 𝑗𝑡ℎ  DMU is 

given by: 

𝜇𝑦  𝑦𝑟𝑗  =
𝑦𝑟𝑗 − 𝑦𝑟𝑗

1

𝑦𝑟𝑗
0 − 𝑦𝑟𝑗

1                                                  5  

Both (𝑥𝑖𝑗 ) and(𝑦𝑟𝑗 )can be expressed in terms 

of the risk-free and impossible bounds and the 

membership functions as follows: 

𝑥𝑖𝑗 = 𝑥𝑖𝑗
𝑜 −  𝑥𝑖𝑗

𝑜 − 𝑥𝑖𝑗
1  𝜇𝑥                                          6  

 

𝑦𝑟𝑗 =  𝑦𝑟𝑗
0 − 𝑦𝑟𝑗

1  𝜇𝑦 + 𝑦𝑟𝑗
1                                       (7) 

Using these definitions, the model (3) can be 

modified as follows: Find u and v such that, 

𝑀𝑎𝑥  𝑢𝑟

𝑟

[ 𝑦𝑟𝑘
0 − 𝑦𝑟𝑘

1  𝜇𝑦 + 𝑦𝑟𝑘
1 ]  

s.t:                                                                                 (8) 

 𝑣𝑖

𝑖

[𝑥𝑖𝑘
𝑜 −  𝑥𝑖𝑘

𝑜 − 𝑥𝑖𝑘
1  𝜇𝑥 ] = 1  

 𝑢𝑟

𝑟

[ 𝑦𝑟𝑗
0 − 𝑦𝑟𝑗

1  𝜇𝑦 + 𝑦𝑟𝑗
1 ] −  𝑣𝑖

𝑖

[𝑥𝑖𝑗
𝑜 −  𝑥𝑖𝑗

𝑜 − 𝑥𝑖𝑗
1  𝜇𝑥 ] ≤ 0 

𝑣𝑖 ≥ 𝜀 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 

As was mentioned in Carlsson and Korhonen 

(1986), the decision for the above model is 

achieved when, 

𝜇𝑥 = 𝜇𝑦 = 𝜇 = 𝑚𝑖𝑛 𝜇𝑥 , 𝜇𝑦                                 (9) 

So, the model (8) can be written as 

𝑀𝑎𝑥  𝑢𝑟

𝑟

[ 𝑦𝑟𝑘
0 − 𝑦𝑟𝑘

1  𝜇 + 𝑦𝑟𝑘
1 ]  

s.t:          (10) 

 𝑣𝑖

𝑖

[𝑥𝑖𝑘
𝑜 −  𝑥𝑖𝑘

𝑜 − 𝑥𝑖𝑘
1  𝜇 ] = 1  

 𝑢𝑟

𝑟

[ 𝑦𝑟𝑗
0 − 𝑦𝑟𝑗

1  𝜇 + 𝑦𝑟𝑗
1 ] −  𝑣𝑖

𝑖

[𝑥𝑖𝑗
𝑜 −  𝑥𝑖𝑗

𝑜 − 𝑥𝑖𝑗
1  𝜇 ] ≤ 0 

𝑣𝑖 ≥ 𝜀 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 

Finally, the membership function μ, which is 

the parameter here, is varied at pre specified 
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intervals to observe the variations of the 

efficiency profile. Here, μ = 0 would yield 

overly optimistic values of technical efficiency 

and μ = 1 would yield ultra conservative 

values. 

 

3.2. Combined UPLP/interval DEA model 

In this section, we combine UPLP model and 

CCR model with DEA model by interval data 

i.e., model (10), which have been presented in 

previews section. The model (10) is non-linear 

because of existing 𝜇𝑣𝑖  and 𝜇𝑢𝑟 , therefore, to 

make it easier to solve, we convert it into a 

linear programming model as follows: 

𝜇𝑢𝑟 = 𝑞𝑟 => 0 ≤ 𝑞𝑟 < 𝑢𝑟                                    (11) 

𝜇𝑣𝑖 = 𝑝𝑖 => 0 ≤ 𝑝𝑖 < 𝑣𝑖                                       12  

With replacement of 𝑝𝑖  and 𝑞𝑟  in model (10) 

we get model (13). 

𝑀𝑎𝑥  𝑞𝑟

𝑟

[ 𝑦𝑟𝑘
0 − 𝑦𝑟𝑘

1  + 𝑢𝑟  𝑦𝑟𝑘
1 ]  

s.t:         (13) 

 

𝑖

[𝑣𝑖𝑥𝑖𝑘
𝑜 − 𝑝𝑖 𝑥𝑖𝑘

𝑜 − 𝑥𝑖𝑘
1  ] = 1  

 𝑞𝑟

𝑟

[ 𝑦𝑟𝑗
0 − 𝑦𝑟𝑗

1  + 𝑢𝑟𝑦𝑟𝑗
1 ] −  [𝑣𝑖𝑥𝑖𝑗

𝑜 − 𝑝𝑖 𝑥𝑖𝑗
𝑜 − 𝑥𝑖𝑗

1  ]

𝑖

≤ 0 

𝑣𝑖 ≥ 𝜀 ,  𝑢𝑟 ≥ 𝜀, 0 ≤ 𝑞𝑟 < 𝑢𝑟 , 0 ≤ 𝑝𝑖 < 𝑣𝑖 , 

𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 

The model (14) maximizes the sum of the 

efficiencies for all DMUs. Where 𝑑𝑘  is the 

level of inefficiency of DMU k. (Klimberg and 

Ratick 2008) 

𝑀𝑎𝑥  (1 − 𝑑𝑘)

𝑘

 

s.t:          (14) 

 𝑣𝑖

𝑖

𝑥𝑖𝑘 = 1      ∀𝑘 

 𝑢𝑟

𝑟

𝑦𝑟𝑘 + 𝑑𝑘 = 1      ∀𝑘 

 𝑢𝑟

𝑟

𝑦𝑟𝑗 −  𝑣𝑖

𝑖

𝑥𝑖𝑗 ≤ 0      ∀𝑗,𝑘 

𝑑𝑘 , 𝑣𝑖 , 𝑢𝑟 ≥ 0    ∀𝑖, 𝑗, 𝑘, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 

By Combination the model (13) and the model 

(14), we will get the model (15). 

𝑀𝑎𝑥  (1 − 𝑑𝑘)

𝑘

 

s.t:          (15) 

 

𝑖

[𝑣𝑖𝑥𝑖𝑘
𝑜 − 𝑝𝑖 𝑥𝑖𝑘

𝑜 − 𝑥𝑖𝑘
1  ] = 1  

 

𝑟

[𝑞𝑟 𝑦𝑟𝑘
0 − 𝑦𝑟𝑘

1  + 𝑢𝑟  𝑦𝑟𝑘
1 ] + 𝑑𝑘 = 1 

 𝑞𝑟

𝑟

  𝑦𝑟𝑗
0 − 𝑦𝑟𝑗

1  + 𝑢𝑟  𝑦𝑟𝑗
1  −  [𝑣𝑖𝑥𝑖𝑗

𝑜 − 𝑝𝑖 𝑥𝑖𝑗
𝑜 − 𝑥𝑖𝑗

1  ]

𝑖

≤ 0 

𝑣𝑖 ≥ 𝜀 ,  𝑢𝑟 ≥ 𝜀, 0 ≤ 𝑞𝑟 < 𝑢𝑟 , 0 ≤ 𝑝𝑖 < 𝑣𝑖 , 

𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 

The combination of model (15) with model 

UPLP (model (1)) results in the final model, 

i.e, model (16). 

𝑀𝑎𝑥    1 − 𝑑𝑘𝑙  

𝑙𝑘

 

𝑀𝑖𝑛  𝑐𝑘𝑙

𝑙

𝑑𝑒𝑚𝑙𝑡𝑘𝑙 +  𝐹𝑘𝑡𝑘
𝑘𝑘

                              (16) 

s.t: 

 𝑡𝑘𝑙 = 1

𝑘

    ∀𝑙 

𝑡𝑘𝑙 ≤ 𝑡𝑘       ∀𝑘, 𝑙  

 [𝑣𝑖𝑘𝑙𝑥𝑖𝑘𝑙
𝑜 − 𝑝𝑖𝑘𝑙  𝑥𝑖𝑘𝑙

𝑜 − 𝑥𝑖𝑘𝑙
1  ] = 𝑡𝑘𝑙

i

            ∀𝑖, 𝑘, 𝑙  

 [𝑞𝑟𝑘𝑙  𝑦𝑟𝑘𝑙
0 − 𝑦𝑟𝑘𝑙

1  + 𝑢𝑟𝑘𝑙  𝑦𝑟𝑘𝑙
1 ]

𝑟

+ 𝑑𝑘𝑙 = 𝑡𝑘𝑙     ∀𝑟, 𝑘, 𝑙  

  𝑞𝑟𝑠ℎ 𝑦𝑟𝑠ℎ
0 − 𝑦𝑟𝑠ℎ

1  + 𝑢𝑟𝑘𝑙  𝑦𝑟𝑠ℎ
1  

𝑟

 

−  𝑣𝑖𝑘𝑙𝑥𝑖𝑠ℎ
𝑜 − 𝑝𝑖𝑠ℎ 𝑥𝑖𝑠ℎ

𝑜 − 𝑥𝑖𝑠ℎ
1   ≤ 0

𝑙

 

𝑡𝑘𝑙 , 𝑡𝑘 = 0,1    
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𝜀𝑡𝑘𝑙 ≤ 𝑞𝑟𝑘𝑙 ≤ 𝑢𝑟𝑘𝑙  

𝜀𝑡𝑘𝑙 ≤ 𝑝𝑖𝑘𝑙 ≤ 𝑣𝑖𝑘𝑙 , 

𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 

Where  

𝑥𝑖𝑘𝑙
𝑜 : impossible bound for thi  input of DMU kl 

𝑥𝑖𝑘𝑙
1 : risk free bound for thi  input of DMU kl 

𝑦𝑟𝑘𝑙
0 : risk free bound for thr  output of DMU kl 

𝑦𝑟𝑘𝑙
1 : impossible bound for thr output of DMU kl 

𝐹𝑘  : fixed cost of opening/using facility k 

𝑑𝑒𝑚𝑙 : the amount of demand at node l 

 

𝑡𝑘 =  
1     𝑖𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑘 𝑜𝑝𝑒𝑛𝑑

0       𝑂𝑊                             

  

 

𝑡𝑘𝑙 =  
1     𝑖𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑘 𝑠𝑒𝑟𝑣𝑒𝑠 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙

0      𝑂𝑊                                                  

  

 

𝑐𝑘𝑙 : cost of shipping one unit of demand from 

facility k to demand l, 

𝑑𝑘𝑙 : the level of inefficiency of DMU kl.  

𝑣𝑖𝑘𝑙 : input weight for 𝑖𝑡ℎ  input of DMU kl 

𝑢𝑟𝑘𝑙 : output weight for 𝑟𝑡ℎ  output of DMU kl 

 

3.3. Numerical Example I 

An example with four facilities and two 

demand nodes was created to test model (16). 

The input and output values, fixed cost of 

opening/using facilities, the amount of demand 

at node l and cost of shipping one unit of 

demand from facilities to demand nodes are 

listed in Table 1 and Table 2. The model (16) 

was run with the data discussed above by 

assigning weights to objective functions and 

yielded the following results which are shown 

in Table 3 and Table 4. Here, 1w  is the weight 

on the DEA objective function and 2w  is the 

weight on the cost objective function. 

3.4. Combined CPLP/interval DEA model 

Like the section 3.2, we combine the CPLP 

model (model (2)) with the model (15) and get 

the simultaneous CPLP/interval DEA model 

i.e, model (17). 

𝑀𝑎𝑥    1 − 𝑑𝑘𝑙  

𝑙𝑘

 

𝑀𝑖𝑛  𝑐𝑘𝑙

𝑙

𝑏𝑘𝑙 +  𝐹𝑘𝑡𝑘
𝑘𝑘

                                        (17) 

 𝑡𝑘𝑙 ≥ 1

𝑘

    ∀𝑙 

𝑡𝑘𝑙 ≤ 𝑡𝑘       ∀𝑘, 𝑙  

 𝑏𝑘𝑙

𝑖

= 𝑑𝑒𝑚𝑙       ∀𝑘 

𝑏𝑘𝑙 ≤ [𝑑𝑒𝑚𝑙 , 𝑦𝑘𝑙
0 ]𝑡𝑘           ∀𝑘, 𝑙 

 [𝑣𝑖𝑘𝑙𝑥𝑖𝑘𝑙
𝑜 − 𝑝𝑖𝑘𝑙  𝑥𝑖𝑘𝑙

𝑜 − 𝑥𝑖𝑘𝑙
1  ] = 𝑡𝑘𝑙

i

            ∀𝑖, 𝑘, 𝑙  

 [𝑞𝑟𝑘𝑙  𝑦𝑟𝑘𝑙
0 − 𝑦𝑟𝑘𝑙

1  + 𝑢𝑟𝑘𝑙  𝑦𝑟𝑘𝑙
1 ]

𝑟

+ 𝑑𝑘𝑙 = 𝑡𝑘𝑙     ∀𝑟, 𝑘, 𝑙  

  𝑞𝑟𝑠ℎ 𝑦𝑟𝑠ℎ
0 − 𝑦𝑟𝑠ℎ

1  + 𝑢𝑟𝑘𝑙  𝑦𝑟𝑠ℎ
1  

𝑟

 

−  𝑣𝑖𝑘𝑙𝑥𝑖𝑠ℎ
𝑜 − 𝑝𝑖𝑠ℎ 𝑥𝑖𝑠ℎ

𝑜 − 𝑥𝑖𝑠ℎ
1   ≤ 0

𝑙

 

𝑡𝑘𝑙 , 𝑡𝑘 = 0,1    

𝜀𝑡𝑘𝑙 ≤ 𝑞𝑟𝑘𝑙 ≤ 𝑢𝑟𝑘𝑙  

𝜀𝑡𝑘𝑙 ≤ 𝑝𝑖𝑘𝑙 ≤ 𝑣𝑖𝑘𝑙 , 

𝑏𝑘𝑙 ≥ 𝑡𝑘𝑙  

Here, 𝑏𝑘𝑙  is amount of shipping units from 

facility k to demand node l. The other 

parameters and variable are the same with the 

model (16). 

 

3.5. Numerical Example II 

The model (17) was run with the data 

discussed in Numerical Example I and the 

results are shown in Table 5 and Table 6. 
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Table 1. Fixed cost of opening facilities, input/output values and cost 

of shipping one unit of demand from facilities to demand nodes 

𝑐𝑘𝑙  output values input values demand node 

fixed cost of 

opening 

facilities 

facilities 

5$ [31,38] [11,17] 1 220$ 1 

9$ [32,37] [12,15] 2  1 

6$ [26,30] [11,15] 1 270$ 2 

7$ [27,31] [12,16] 2  2 

5$ [25,30] [5,13] 1 240$ 3 

7$ [27,31] [11,17] 2  3 

9$ [24,32] [6,12] 1 300$ 4 

7$ [31,38] [11,18] 2  4 
 

 

 

Table 2. Demand requirement of each demand node 

2 1 demand node 

20 8 
amount of 

demand 
 

 

 

Table 3. Results for Numerical Example I 

weights on objective functions  

1

2

1

0

w

w




 

1

2

0.8

0.2

w

w




 

1

2

0.4

0.6

w

w




 

1

2

0

1

w

w




 ,k klt t  

1 0 0 0 1t  

1 0 0 0 2t  

1 1 1 1 3t  

1 0 0 0 4t  

0 0 0 0 11t  

0 0 0 0 12t  

0 0 0 0 21t  

0 0 0 0 22t  

1 1 1 1 31t  

1 1 1 1 32t  

1 0 0 0 41t  

0 0 0 0 42t  

1030$ 240$ 240$ 240$ Total fixed costs 

188$ 180$ 180$ 180$ 
Total transport 

costs 

1218$ 420$ 420$ 420$ Total costs 

7.8069 6.6783 6.6783 6.5351 
Total sum of 

efficiency scores 
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Table 4. Efficiency scores for DMUs in Numerical Example I 

1

2

1

0

w

w




 

1

2

0.8

0.2

w

w




 

1

2

0.4

0.6

w

w




 

1

2

0

1

w

w




 

weights on 

objective functions 

DMUs 

1 1 1 1 (1,1) 

1 1 1 1 (1,2) 

1 1 1 1 (2,1) 

1 1 1 1 (2,2) 

1 0.3404 0.3404 0.025 (3,1) 

0.8069 0.3379 0.3379 0.5101 (3,2) 

1 1 1 1 (4,1) 

1 1 1 1 (4,2) 
 

Table 5. Results of Numerical Example II 

weights on objective functions  

1

2

1

0

w

w




 

1

2

0.8

0.2

w

w




 

1

2

0.4

0.6

w

w




 

1

2

0

1

w

w




 ,k klt t  

1 1 1 1 1t  

1 1 1 1 2t  

1 1 1 1 3t  

1 0 0 0 4t  

1 1 1 1 11t  

0 0 0 0 12t  

0 0 0 0 21t  

0 0 0 1 22t  

1 0 0 1 31t  

0 1 1 1 32t  

1 0 0 0 41t  

1 0 0 0 42t  

1030$ 730$ 730$ 730$ Total fixed costs 

195$ 188$ 188$ 188$ Total transport costs 

1225$ 608$ 608$ 608$ Total costs 

8 7.5082 7.5082 5.9643 
Total sum of 

efficiency scores 
 

Table 6. Efficiency scores for DMUs in Numerical Example II 

1

2

1

0

w

w




 

1

2

0.8

0.2

w

w




 

1

2

0.4

0.6

w

w




 

1

2

0

1

w

w




 

weights on 

objective functions 

DMUs 

1 0.987 0.987 0.987 (1,1) 

1 1 1 1 (1,2) 

1 1 1 1 (2,1) 

1 1 1 0.3593 (2,2) 

1 1 1 0.3202 (3,1) 

1 0.5212 0.5212 0.2978 (3,2) 

1 1 1 1 (4,1) 

1 1 1 1 (4,2) 
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4. Conclusion  

In this paper, we combined location/allocation 

models with DEA in interval inputs and 

outputs environments to improve performance 

of these models. Solving for the DEA 

efficiency measure, simultaneously with other 

location modeling objectives, provides a 

promising rich approach to multi objective 

location problems. The ability to use location 

models to test trade-offs between spatial 

efficiency and facility efficiency provides a 

promising new rich approach for multi 

objective location analysis. We presented a 

new pair of location/DEA models for dealing 

with interval data. The presented models used 

the interval CCR model and combined it with 

UPLP and CPLP models to optimize two 

efficiencies, spatial efficiency and facilities 

efficiency. Due to the existence of uncertainty 

in real world conditions, our models dealt with 

interval inputs and outputs.  The models were 

run with the data discussed in Numerical 

Example I and the results obtained. Since 

interval efficiencies measure the performances 

of DMUs more comprehensively than the 

traditional DEA efficiency, they are expected 

to have widely potential applications in the 

future.  
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