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Abstract 

 

     This research identifies returns to scale (RTS) of efficient decision making units (DMUs) with desirable 

(good) and undesirable (bad) inputs and outputs by presenting a new DEA (data envelopment analysis) 

approach. In this study, we first introduce a new input-output oriented model to determine efficient DMUs 

in the presence of undesirable factors and then, returns to scale of these DMUs are estimated by presenting 

a new non-radial DEA model. 

So far several RTS approaches has been proposed in DEA literature by many researchers, such as Banker 

and Thrall’s, Golany and Yu’s, Khodabakhshi’s et al., and Eslami and Khoveyni’s RTS approaches. In the 

proposed approaches, all inputs and outputs are respectively considered as desirable inputs and outputs 

while in real world, both desirable and undesirable data may be present. Note that advantage of our proposed 

approach is capable of estimating RTS of efficient DMUs in the presence of desirable and undesirable data. 

It is noticeable that, since an inefficient decision making unit (DMU) has more than one projection on the 

empirical function thus different returns to scales can be obtained for projections of the inefficient DMU 

by using our proposed RTS approach. 

Lastly, an empirical example for illustrating purpose is presented and also directions for future research are 

suggested. 

 

Keywords: Data Envelopment Analysis (DEA), Returns to Scale (RTS), Efficiency, Undesirable Factors 

 

1. Introduction  

   Data envelopment analysis (DEA) applies linear programming (LP) problems to assess the relative 

efficiencies and inefficiencies of decision making units (DMUs) with multiple inputs and outputs. Once the 

efficient frontier is identified by DEA and also using DEA, the performance of inefficient DMUs is 
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improved by decreasing and increasing their inputs and outputs, respectively. However, in real world, 

desirable (good) and undesirable (bad) input and output factors may be present. For instance, in a cement 

production factory, one of the undesirable outputs of pollutions is smoke. If inefficiency exists in the 

production, the undesirable pollutions should be decreased for improving the inefficiency. On the other 

word, in order to assess the production performance of cement factory, desirable and undesirable outputs 

should be treated differently. 

Therefore for improving the performance of an inefficient DMU, desirable and undesirable outputs should 

be respectively increasing and decreasing and also desirable and undesirable inputs should be decreasing 

and increasing, respectively. However, in the standard DEA models, inputs and outputs are only decreasing 

and increasing, respectively, and increasing inputs and decreasing outputs are not allowed in these models. 

A non-linear DEA program was developed by Färe et al. [1] for modeling the paper production system 

which desirable and undesirable outputs are increasing and decreasing, respectively. Furthermore, a DEA 

model was proposed by Vencheh et al. [2] for measuring efficiency of DMUs in the presence of undesirable 

factors. In addition, Amirteimoori et al. [3] presented a DEA model to improve the relative performance 

via decreasing undesirable outputs and increasing undesirable inputs. 

In DEA literature, so far several approaches were presented for estimating returns to scale of DMUs with 

desirable inputs and outputs [4]. For instance, Banker [5] estimated most productive scale size (MPSS) by 

using DEA. Moreover, Seiford and Zhu [6] developed an alternative approach that preserve the linearly and 

convexity in Banker’s et al. model [7]. Also, Banker et al. [7] provided an approach based on supporting 

hyperplane. In this vein, an alternative approach was provided to estimate RTS by Färe and Grosskopf [8] 

which is based on optimal solutions of BCC, CCR [9], and CCR-BCC models. In addition, a fractional 

model was provided to estimate MPSS by Cooper et al. [10]. A DEA method was introduced by Banker 

and Thrall [11] for estimating RTS of BCC-efficient DMUs. Also, Golany and Yu [12] presented another 

method to identify right and left returns to scales in DEA. In addition, Sueyoshi and Sekitani [13] introduced 

an alternative approach based on a non-radial (RAM) model. Moreover, Khodabakhshi et al. [14] presented 

an additive model approach for estimating returns to scale in imprecise data envelopment analysis. Also, 

Eslami et al. [15] introduced an imprecise-chance constrained input-output orientation model to estimate 

most productivity scale size (MPSS) in DEA. More recently, Eslami and Khoveyni [16] presented a DEA 

approach for estimating types and measuring values of right and left returns to scales of efficient DMUs. 

In this paper, we first introduce a new input-output oriented DEA model for identifying efficient DMUs 

and then a non-radial model is presented to estimate returns to scale of efficient DMUs in DEA. 

It is necessary to mention that the advantage of the proposed RTS approach is capable of estimating returns 

to scale of efficient DMUs in the presence of desirable (good) and undesirable (bad) input and output factors 

while the previous presented RTS approaches are incapable of estimating returns to scale in the presence 

undesirable data. 

It is noteworthy that, since an inefficient DMU has more than one projection on the empirical function 

hence, different returns to scales can be obtained for projections of the inefficient DMU by using the 

proposed approach. 

The remainder structure of this paper is organized as follows. Section 2 briefly explains some RTS 

approaches and related DEA models. In Section 3, our proposed RTS approach is described by presenting 

some theorems and models. An empirical example and computational results are provided to highlight the 

proposed approach in Section 4. Lastly, Section 5 includes concluding remarks along with future research 

agendas. 
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2.  Preliminaries 

 

     In this section, we briefly explain describe some RTS approaches which are presented by Banker and 

Thrall [11], Khodabakhshi et al. [14], and Eslami and Khoveyni [16]. Furthermore, in order to facilitate our 

extension, some related DEA models are described as follows. 

Now suppose a set of n  DMUs, i.e.  1, 2, ,
j

DMU j n , where each j
DMU  produces s   

different outputs 0 ( 1,2, , )
rj

y r s   by using by m  different inputs 0 ( 1, 2, , )
ij

x i m   that 

 1
, , , ,

j j ij mj
x x x X 0  and  1

, , , ,
j j rj sj

y y y Y 0 . Moreover, production possibility 

set (PPS) is defined as   ,PPS can be produced by X Y Y X . Production possibility set under 

variable RTS assumption is as below: 

 

 
1 1 1

, , , 1 , 0 ; 1, 2, , .
n n n

BCC V j j j j j j

j j j

PPS T j n   
  

  
       

  
  X Y X X Y Y  

 (1)  

 

Note that in this study, “* ” represents optimal solution values. 

The input and output efficiency scores of a DMU under evaluation   ; 1, 2, ,
p

DMU p n  can be 

evaluated by the following input and output oriented BCC models [7], respectively. 

 

1 1

1

1

1

:

. . , 1, , , (2)

, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , ,

m s

i r

i r

n

j ij i ip

j

n

j rj r rp

j

n

j

j

j

i

r

Input orientation Min s s

s t x s x i m

y s y r s

j n

s i m

s r s

  

 







  

 















 
    

 

  

  



 

 

 

 





     
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1 1

1

1

1

:

. . , 1, , , (3)

, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , ,

m s

i r

i r

n

j ij i ip

j

n

j rj r rp

j

n

j

j

j

i

r

Output orientation Max s s

s t x s x i m

y s y r s

j n

s i m

s r s

  



 





  

 















 
    

 

  

  



 

 

 

 





    

 

where ip
x  and rp

y  represent the amounts of 
th

i  input and 
th

r  output for p
DMU , respectively. Also,   

is a non-Archimedean small positive number. Furthermore, input and output slacks are respectively 

presented by ( 1,2, , )
i

s i m


  and ( 1, 2, , )
r

s r s


 . 

 

Definition 1 (BCC-efficient). p
DMU  is called BCC-efficient if and only if an optimal solution 

( , , , )
 

   
λ S S  ( ( , , , )

 
   
λ S S ) obtained from model (2) ((3)) satisfies 1 

  ( 1 
 ) and has no 

slack ( ,
 

 
 S 0 S 0 ). Otherwise, p

DMU  is BCC-inefficient. 

 

2.1. Banker and Thrall’s RTS approach 

 

     Banker and Thrall [11] presented a DEA approach to estimate returns to scale of BCC-efficient DMUs. 

In order to evaluate   1, 2, ,
p

DMU p n , consider the following dual (multiplier) form associated 

with model (2): 

 

. . 0, 1, , , (4)

1,

,

.

t

p p

t t

j j p

t

p

Max u

s t u j n



   







U Y

U Y V X

V X

U 0

V 0

       

  

 

 Note that hereafter, the superscript “t ” indicates a vector transpose. 
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Now assume that ( , , )
p

u
  

U V  is an obtained optimal solution from model (4). Banker and Thrall [11] 

presented the following theorem for estimating RTS of BCC-efficient DMUs. 

 

Theorem 1. Suppose that  ,
p p

X Y  is a point on the BCC-efficient frontier. Then, the following conditions 

identify the situation for RTS at the point: 

(i) Increasing RTS (IRS) prevail at  ,
p p

X Y  if and only if  0
p

u

  for all optimal solutions of 

BCC model in multiplier form. 

(ii) Decreasing RTS (DRS) prevail at  ,
p p

X Y  if and only if  0
p

u

  for all optimal solutions of 

BCC model in multiplier form. 

(iii) Constant RTS (CRS) prevail at  ,
p p

X Y  if and only if  0
p

u

  for at least one optimal 

solution of BCC model in multiplier form. 

 

Proof. Refer to [11].    

 

     In the next subsection, Khodabakhshi’s et al. RTS approach [14] is briefly described. 

 

 

2.2. Khodabakhshi’s et al. RTS approach 

 

     Khodabakhshi et al. [14] were provided a DEA approach to identify returns to scale of BCC-efficient 

DMUs as bellows. 

Suppose that   1, 2, ,
p

DMU p n  is a point on the BCC-efficient frontier and consider the following 

additive model that has been presented by Charnes et al. [17] to evaluate the target DMU  p
DMU : 

 

1 1

1

1

1

. . , 1, , ,

, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , .

m s

i r

i r

n

j ij i ip

j

n

j rj r rp

j

n

j

j

j

i

r

Max s s

s t x s x i m

y s y r s

j n

s i m

s r s









 

 

















  

  



 

 

 

 





  (5) 
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Definition 2. p
DMU  is called efficient if and only if the obtained optimal value of objective function 

from model (5) is zero. 

Now according to (1), we have the following theorem presented by Kodabakhshi et al. [14]: 

 

Theorem 2 [14]. Suppose that  p
DMU  with input-output combination  ,

p p
X Y  is efficient. Therefore, 

we have: 

(i) There is 0 1   so that  ,
p p

PPS  X Y  is inefficient if and only if  ,
p p

X Y  has DRS. 

(ii) There is 1   so that  ,
p p

PPS  X Y  is inefficient if and only if  ,
p p

X Y  has IRS. 

(iii) For each 0  ,  ,
p p

PPS  X Y  is efficient if and only if  ,
p p

X Y  has CRS. 

 

Proof. Refer to [14].    

 

     Now, the following model was proposed by Kodabakhshi et al. for estimating RTS of a DMU under 

evaluation  p
DMU : 

 

1 1

1

1

1

. . , 1, , ,

, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , .

m s

i r

i r

n

j ij i ip

j

n

j rj r rp

j

n

j

j

j

i

r

Max s s

s t x s x i m

y s y r s

j n

s i m

s r s

 

 





 

 

















  

  



 

 

 

 





  (6) 

 

Now according to model (6), the RTS of p
DMU  are detected as follows: 

 

Theorem 3 [14]. Suppose that  p
DMU  with input-output combination  ,

p p
X Y  is efficient. The 

following conditions estimate returns to scale of p
DMU  being evaluated by model (10): 

(i) The optimal value of the objective function is greater than zero and 1 
  if and only if p

DMU  

has IRS. 

(ii) The optimal value of the objective function is greater than zero and 1 
  if and only if p

DMU  

has DRS. 
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(iii) The optimal value of the objective function is zero if and only if p
DMU  has CRS 

 

Proof. Refer to [14].    

 

     In the next section, we will present our proposed approach for estimating RTS of efficient DMUs in the 

presence of undesirable factors. 

3.  New insights on estimating returns to scale in the presence of undesirable factors  

 

     Consider n  DMUs,  1, 2, ,
j

DMU j n , with input-output combination 

   , , , ,
g b g b m s

j j j j j j


 X Y X X Y Y . Note that   1

11
, , , ,

mg g g g

j j ij m j
x x x X  and 

  2

21
, , , ,

mb b b b

j j ij m j
x x x X  are desirable (good) and undesirable (bad) input vectors of j

DMU

, respectively. Also,   1

11
, , , ,

sg g g g

j j rj s j
y y y Y  and   2

21
, , , ,

sb b b b

j j rj s j
y y y Y  are 

respectively desirable (good) and undesirable (bad) output vectors of j
DMU . It is noteworthy that 

 ,
g b

j j j


 X X X 0  and  ,
g b

j j j


 Y Y Y 0 , therefore 1 2
m m m   and 1 2

s s s  . 

 

In what follows, we first introduce a new DEA model in input-output orientation for determining efficient 

DMUs in the presence undesirable factors and then, a new non-radial model is presented to estimate RTS 

of these efficient DMUs in DEA. 

 

 

3.1. Determining efficient DMUs in the presence of undesirable inputs and outputs 

 

     In order to evaluate the efficiency of a target DMU   ; 1, 2, ,
p

DMU p n  in the presence of 

undesirable data, we present the following input-output oriented DEA model: 
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1

1

2

1

1

1

2

1

1

. . , 1, , ,

, 1, , ,

, 1, , ,

, 1, , ,

1,

1,

1,

0, 1, , .

p p p

n
g g

j ij p ip

j

n
b b

j ij ip

j

n
g g

j rj p rp

j

n
b b

j rj rp

j

n

j

j

p

p

j

Max z

s t x x i m

x x i m

y y r s

y y r s

j n

 

 



 





















 

 

 

 

 







 











 (7) 

 

Note that in model (7), in order to improve the performance of p
DMU , desirable inputs and outputs of 

p
DMU are respectively decreased and increased while undesirable inputs and outputs of p

DMU are not 

allowed decreasing and increasing, respectively. 

     It is noticeable that 1
p

  , 1
p

  , 1
p

  , and 0 ( 1, , ; )
j

j n j p     is a feasible solution 

of model (7) thus, model (7) is a feasible model. 

Now, assume that  , , ,
p p p

z     
λ  is an obtained optimal solution of model (7). Since 0

p p p
z      

and model (7) is as maximization model, therefore 0
p

z

 . Also according to desirable input constraints, 

p
 

 is positive. 

 

Definition 3. p
DMU is called efficient under model (7) if and only if two following conditions are 

satisfies: 

(i) 0
p

z

 , 

(ii) All slacks are zero. 

 

 

3.2. Estimating returns to scale of efficient DMUs in the presence of undesirable inputs and outputs 

 

     The dual (multiplier) form associated with model (7) is as follows: 
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2 2

1 2 1 2

1

1

1 1

1 1 1 1

1

1

1

2

1

. . 0, 1, , ,

1, (8)

1,

0, 1, , ,

0, 1, , ,

0, 1, , ,

m s

b b b b

i ip r rp p p p

i r

m m s s

g g b b g g b b

i ij i ij r rj r rj p

i i r r

m

g g

i ip p

i

s

g g

r rp p

r

g

i

b

i

g

r

r

Min v x u y u t w

s t v x v x u y u y u j n

v x t

u y w

v i m

v i m

u i s

u

 

   





   

     

 

 

 

 

 

 

   





2
0, 1, , .

b
i s 

   

 

By considering variable RTS assumption, we have the following production possibility set (PPS): 

 

 
1 1 1 1

1

, , , , , , ,

1 , 0 ; 1, 2, , . (9)

n n n n
g b g b g g b b g g b b

j j j j j j j j

j j j j

n

j j

j

PPS

j n

   

 

   



    


   



   



X X Y Y X X X X Y Y Y Y

   

 

Let 

 

  ( ) max , , ,
g b g b

PPS       X X Y Y , (10) 

 

then, we define 


 and 


 as bellows: 

 

1 1

( ) 1 ( ) 1
, .

1 1
Lim Lim
 

   
 

  

 

 

 
 

 
 

 

Theorem 4. Suppose that  p
DMU  with input-output combination  , , ,

g b g b

p p p p
X X Y Y  is efficient DMU 

by using model (7). Then, we have: 

(i) 1 
  and 1 

  if and only if p
DMU  has increasing RTS (IRS). 

(ii) 1 
  and 1 

  if and only if p
DMU  has decreasing RTS (DRS). 

(iii) 1 
  and 1 

  if and only if p
DMU  has constant RTS (CRS). 
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Proof. Case (i): First, suppose that p
DMU  has IRS and also, assume that 

     , ,
g b g b

F F  Y Y Y X X X  is production function. Therefore according to the definition of 

increasing RTS, we have: 

 

   

   

: 1 , , , (11)

&

: 1 , , . (12)

g b g b

p p p p

g b g b

p p p p

F F

F F

    

    

   



   

X X X X

X X X X

 

 

Thus, associated with (10), (11), and (12): 

 

   

   

( ) , ( ) , ( ) ( ) , ( 1, , ),

&

( ) , ( ) , ( ) ( ) , ( 1, , ),

( ) ( ) 1 1,

&

( ) ( ) 1 1,

1,

&

1.

g b g b

p p p p p p rp rp

g b g b

p p p p p p rp rp

y y r s

y y r s

          

          

     

     









      




     

    


 
     

 


 




Y Y Y Y Y Y

Y Y Y Y Y Y

 

 

Conversely, suppose that 1 
  and 1 

  then, we respectively have: 
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       

     

( ) 1
1 ( ) 1 1,

1

&

( ) 1
1 ( ) 1 1,

1

( ) ( ) , ( 1, , ) ( ) ,

&

( ) ( ) , ( 1, , ) ( ) ,

, , ,

&

,

rp rp p p

rp rp p p

g b g b

p p p p p p

g b

p p p p

y y r s

y y r s

F F F F

F F F

 
  



 
  



        

        

    

    


     



 
     



     


 
      

  



  

Y Y

Y Y

X X X X X X

X X X X  , .
g b

p p
F







X X

 

 

Therefore according to the definition of increasing RTS, p
DMU  has IRS.  

Other cases can be proved, similarly.    

 

     Suppose that  , , , , , ,
g b g b

p p p
u t w

   
  

V V U U  is an obtained optimal solution from model (8). 

 

Theorem 5. Suppose that p
DMU  with input-output combination  , , ,

g b g b

p p p p
X X Y Y  is efficient DMU by 

using model (7). Then, we have: 

(i) p
DMU  has IRS if and only if 0

p
u


  for all optimal solutions of model (8). 

(ii) p
DMU  has DRS if and only if 0

p
u


  for all optimal solutions of model (8). 

(iii) p
DMU  has CRS if and only if 0

p
u


  for at least one optimal solution of model (8). 

 

Proof. Case (i): First, suppose p
DMU  has IRS. Then according to Theorem 4, 1 

  and 1 
 . Since 

1 
 , we include ( )   . Moreover, p

DMU  is efficient, therefore: 

 

        0
T T T T

g g b b g g b b

p p p p p
u

   


    V X V X U Y U Y . (13) 

 

According to (10), we imply that: 

 

               ( ) ( ) 0
T T T T

g g b b g g b b

p p p p p
u     

   


    V X V X U Y U Y . (14) 
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Since ( )   , so associated with (14), we have: 

 

               

               

0,

(1 ) 0.

T T T T
g g b b g g b b

p p p p p

T T T T
g g b b g g b b

p p p p p p

u

u u

   

 

   

   



 

       
           

       

 
        

 

V X V X U Y U Y

V X V X U Y U Y

 

 

Thus, according to (13), we include that (1 ) 0
p

u 
  . Since 1   then 0

p
u


 . 

Similarly, for 1 
 , we obtain (1 ) 0

p
u 

   and imply 0
p

u

 . 

Conversely, assume that 0
p

u

  for all optimal solutions of model (8). Now consider Z  as below: 

 

        1 , 1 , 1 , 1
g b g b

p p p p        Z X X Y Y , 

 

where   is a small positive number. 

Therefore, 

 

                   

         

1 1 1 1 ,

1 .

T T T T
g g b b g g b b

p p p p p

T T T T
g g b b g g b b

p p p p p p

u

u u

   

 

   

   



 

       

 
       

 

V X V X U Y U Y

V X V X U Y U Y

(15) 

 

Thus according to (13) and (15), we include that 0
p

u 
  . So, Z  does not lie on the efficient frontier. 

Hence, p
DMU  has IRS. 

Other cases can be proved, similarly.    

 

Consider the following non-radial DEA model for evaluating p
DMU  in the presence of undesirable 

factors: 
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1 1 2 2

1 1 1 1

1

1

2

1

1

1

2

1

1

. . , 1, , ,

, 1, , ,

, 1, , ,

, 1, , ,

1,

0, 1, , ,

g g b b

g

b

g

b

m s m s

i r i r

i r i r

n
g g

j ij i ip

j

n
b b

j ij i ip

j

n
g g

j rj r rp

j

n
b b

j rj r rp

j

n

j

j

j

i

Max s s s s

s t x s x i m

x s x i m

y s y r s

y s y r s

j n

s













   

   





















  

  

  

  

  



 

   











1 1

2 2

0, 1, , , 0, 1, , ,

0, 1, , , 0, 1, , .

g g

b b

r

i r

i m s j s

s i m s j s



 

   

   

(16) 

 

Definition 4. p
DMU is called efficient under model (16) if and only if the optimal value of its objective 

function is zero. 

 

Theorem 6. Suppose that  p
DMU  with input-output combination  , , ,

g b g b

p p p p
X X Y Y  is efficient DMU 

by using model (7). Then, we have 

(i) There is 1   so that  , , ,
g b g b

p p p p
PPS    X X Y Y  is inefficient if and only if p

DMU  has 

IRS. 

(ii) There is 0 1   so that  , , ,
g b g b

p p p p
PPS    X X Y Y  is inefficient if and only if p

DMU  

has DRS. 

(iii) There is 0   so that  , , ,
g b g b

p p p p
PPS    X X Y Y  is efficient if and only if p

DMU  has 

CRS. 

 

Proof. Case (i): Assume that  , , , , , ,
g b g b

p p p
u t w

   
  

V V U U  is an obtained optimal solution from model 

(8) in assessing p
DMU . Since p

DMU  is efficient, so: 

 

        0
T T T T

g g b b g g b b

p p p p p
u

   


    V X V X U Y U Y . (17) 

 



220                                                                                R. Eslami, et al /IJDEA Vol.1, No. 4 (2013).207- 226                                                                                               
 

Also,  , , ,
g b g b

p p p p
PPS    X X Y Y  is inefficient, thus we have: 

 

               

               

0,

0. (18)

T T T T
g g b b g g b b

p p p p p

T T T T
g g b b g g b b

p p p p p p p

u

U u u u

   

 

   

   



  

    

 
        

 

V X V X U Y U Y

V X V X Y U Y

 

 

Therefore according to (17) and (18), we conclude that (1 ) 0
p

u 
  . Since 1   then 0

p
u


 . Thus 

associated with Theorem 5, p
DMU  has IRS. 

Conversely, suppose that p
DMU  has IRS. Then according to Theorem 5, 0

p
u


 . Contrary: assume that 

for each 1  ,  , , ,
g b g b

p p p p
PPS    X X Y Y  is efficient. Therefore, each convex combination of 

 , , ,
g b g b

p p p p
X X Y Y  and  , , ,

g b g b

p p p p
   X X Y Y  lies on the efficient frontier. Thus, there is supporting 

hyperplane         0
T T T T

g g b b g g b b

p
u    V X V X U Y U Y  of PPS which it passes from 

 , , ,
g b g b

p p p p
X X Y Y  and  , , ,

g b g b

p p p p
   X X Y Y . So, if  

T
g g

p p
t  V X  and 

 
T

g g

p p
w  U Y  then, the following optimal solution of model (8) in assessing p

DMU  which is 

active on  , , ,
g b g b

p p p p
X X Y Y  and  , , ,

g b g b

p p p p
   X X Y Y : 

 

 

         


1 1
1 1 1 1

1 1

, , , , , ,

, , , ,1 ,

, .

g b g b

p p p

T T T T
g b b b b b g b b b b b

p p p p p p

p p

u t w

t w

t w

   

 

   
  

 
   

 


    


V V U U

V U Y V X V U U Y V X U

 

 

Hence, we have: 

 

                0
T T T T

g g b b g g b b

p p p p p
V X V X U Y U Y u

   


     , (19) 

                0
T T T T

g g b b g g b b

p p p p p
u   

   


    V X V X U Y U Y . (20) 

 

Thus, according to (19) and (20): 

 

                0
T T T T

g g b b g g b b

p p p p p p p
u u u 

   
   

       
 

V X V X U Y U Y . (21) 
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So, associated with (17) and (21), we imply that (1 ) 0
p

u 
  . Since 1   then 0

p
u


 . Hence, 

according to Theorem 5, p
DMU  has CRS and it is a contradiction. Thus, the contrary suppose is false and 

the proof is complete. 

Other cases can be proved, similarly.    

Now in order to estimate returns to scale of p
DMU , we present the following non-radial DEA model: 

1 1 2 2

1 1 1 1

1

1

2

1

1

1

2

1

1

. . , 1, , ,

, 1, , ,

, 1, , ,

, 1, , ,

1,

0, 1,

g g b b

g

b

g

b

m s m s

p

i r i r

i r i r

n
g g

j ij i ip

j

n
b b

j ij i ip

j

n
g g

j rj r rp

j

n
b b

j rj r rp

j

n

j

j

j

Max s s s s

s t x s x i m

x s x i m

y s y r s

y s y r s

j

 

 

 

 





   

   



















    

  

  

  

  



 

   











1 1

2 2

, ,

0, 1, , , 0, 1, , ,

0, 1, , , 0, 1, , .

g g

b b

i r

i r

n

s i m s j s

s i m s j s

 

 

   

   

 (22) 

 

 Let  , , , , , ,
g b g b

p 
   


     

 λ S S S S  is an obtained optimal solution of model (22). 

 The following theorem is provided to identify returns to scale of p
DMU  by using model (22). 

 

Theorem 7. Suppose that p
DMU  with input-output combination  , , ,

g b g b

p p p p
X X Y Y  is efficient by using 

model (7). The following conditions estimate returns to scale of evaluated p
DMU  by model (22): 

(i) The optimal value of the objective function is non-zero and 1 
  if and only if p

DMU  has IRS. 

(ii) The optimal value of the objective function is non-zero and 0 1 
   if and only if p

DMU  has 

DRS. 

(iii) The optimal value of the objective function is zero if and only if p
DMU  has CRS. 
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Proof. Case (i): Assume that the optimal value of the objective function of model (22) is non-zero and 

1 
 . Therefore,  , , ,

g b g b

p p p p
PPS      

X X Y Y  is inefficient under model (16). So, associated 

with Theorem 6, p
DMU  has IRS. 

Conversely, let p
DMU  has IRS. Then according to Theorem 6, there is 1   so that 

 , , ,
g b g b

p p p p
PPS      

X X Y Y  is inefficient. Thus, inefficiency of  , , ,
g b g b

p p p p
      

X X Y Y  

implies that the value of its objective function is non-zero. Since model (16) is as maximization, so in 

evaluating  , , ,
g b g b

p p p p
      

X X Y Y , the optimal value of its objective function must be non-zero. 

Hence,  , , ,
g b g b

p p p p
PPS      

X X Y Y  is inefficient. Now, we must prove that 1 
 . Contrary: 

suppose that 1 
 . If 1 

  than according to Theorem 6, p
DMU  has DRS and also, if 1 

  then 

p
DMU  is inefficient. Thus, there are two contradictions. Hence, the contrary suppose is false and the 

proof is complete. 

Other cases can be proved, similarly.    

 

In the next section, we explicitly survey an empirical example to highlight the proposed RTS approach. 

 

 

4.  Empirical example 

 

     In this section, we apply our proposed RTS approach on 20 Greek schools to estimate returns to scale 

which their set of inputs and outputs has been shown in Table 1. These schools have 3 inputs as: budget, 

facilities index (desirable inputs), and stupid students (undesirable input). Furthermore, they have 4 outputs 

as: excellent graduated students, admission (desirable outputs), lazy graduated students, and expelled 

students (undesirable outputs). Data of inputs and outputs of schools has been listed in Table 2. 

 

 

Table 1.   

The set of inputs and outputs of schools . 

 

Desirable and undesirable inputs    Desirable and undesirable Outputs 

 

(I1) Budget (D)    (O1) Excellent graduated students (D) 

(I2) Facilities index (D)   (O2) Admission (D) 

(I3) Stupid students (U)   (O3) Lazy graduated students (U) 

      (O4) Expelled students (U) 
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Table 2.  

Data of inputs and outputs of schools. 

 

School I1 I2 I3 O1 O2 O3 O4 

S1 23940 6 11 19 10 9 5 

S2 25450 5 9 38 14 11 2 

S3 24000 4 5 34 4 7 1 

S4 26500 7 18 29 4 10 8 

S5 31200 6 4 48 11 9 9 

S6 32600 5 3 36 17 8 4 

S7 31580 5 17 73 18 6 4 

S8 35600 5 6 40 22 13 3 

S9 39160 4 23 33 38 12 1 

S10 42800 4 8 62 13 4 8 

S11 42840 7 12 78 27 14 4 

S12 41000 4 10 62 27 5 9 

S13 45980 7 4 70 28 5 5 

S14 51000 7 3 59 15 10 2 

S15 52200 5 11 76 25 16 7 

S16 56000 7 19 56 26 9 3 

S17 56700 7 7 59 33 15 4 

S18 58140 4 21 78 34 2 6 

S19 52000 4 6 96 18 7 6 

S20 60100 7 6 95 35 3 5 

 

 

 

Table 3. 

The obtained results from model (7) and definition 3. 

 

School 
p

 
 p

 
 p

z


 
1

g

s



 2

g

s



 1

g

s



 2

g

s



 

Results of 

definition 3 

S1 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S2 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S3 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S4 1.0000 1.6160 0.6160 0.0000 2.6702 0.0000 2.1536 Inefficient 

S5 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S7 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S8 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S9 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S10 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S11 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S12 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S13 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S14 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S15 0.8752 1.0000 0.1248 0.0000 0.0000 0.0000 0.0000 Inefficient 
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S16 0.6953 1.0858 0.3905 0.0000 0.0000 0.0000 0.0000 Inefficient 

S17 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S18 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S19 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

S20 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Efficient 

 

      

 

As can be seen in Table 3, by using the proposed method, schools 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

17, 18, 19, and 20 are efficient and schools 4, 15, and 16 are inefficient. We are going to estimate returns 

to scale of these 17 efficient schools by our proposed RTS approach. Table 4 represents the obtained results 

from the proposed RTS approach. 

 

 

Table 4.  

The obtained results from model (22). 

 

Efficient 

school 
 

 
1

g

s



 2

g

s



 1

b

s



 1

g

s



 2

g

s



 1

b

s



 2

b

s



 

p


  Results of 

the 

proposed 

approach 

S1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 1 

S2 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S3 1.8775 5.6E+3 1.1887 0.0000 0.0000 1.6E+1 0.0000 2.4167 5.6E+3 IRS 2 

S5 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S6 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S7 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S8 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S9 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S10 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S11 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S12 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S13 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S14 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S17 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S18 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S19 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 

S20 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CRS 
1 Constant returns to scale. 
2 Increasing returns to scale. 

 

As presented in Table 4, RTS of efficient schools can be estimated by 
p


  and 

. According to Table 4 

and Theorem 7, S3 has IRS because 5.6E+3> 0
p


   and 1.8775 >1 
  while other efficient schools 

have CRS because 0
p


   and 1.0000 > 0 
 . 
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5.  Conclusion and future extensions 

 

     In this research, we first introduce a new input-output oriented model for determining efficient DMUs 

in the presence of undesirable (bad) inputs and outputs factors and then, a new non-radial model is presented 

to estimate RTS of these DMUs in DEA. Thus, this paper opens up the new RTS approach which determines 

RTS in the presence of undesirable factors. In this vein, using an illustrative empirical example is also 

summarized in Tables. 

In the DEA literature, there are many RTS approaches for estimating RTS of DMUs with desirable (good) 

data while in the real world, both desirable (good) and undesirable (bad) inputs and outputs may be present. 

Our proposed RTS approach is capable of identifying RTS of efficient DMUs in the presence of undesirable 

factors which is a advantage of this study. 

Note that, since an inefficient DMU has more than one projection on the empirical function so, different 

returns to scales can be obtained for projections of the inefficient DMU by using the proposed RTS 

approach. 

It is necessary to mention that, this article can be similarly extended for special desirable and undesirable 

data such as; interval, integer, stochastic, fuzzy, and etc. 
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