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Abstract  

   Data envelopment analysis (DEA) is a technique used to evaluate the relative efficiency of comparable 

decision making units (DMUs) with multiple input-output. It computes a scalar measure of efficiency and 

discriminates between efficient and inefficient DMUs. It can also provide reference units for inefficient 

DMUs without consideration of the decision makers’ (DMs) preferences. In this paper, we deal with the 

problem of incorporating preferences over potential improvements to individual input output levels so that 

the resultant target levels reflect the DM’s preferences over alternative paths to efficiency. In this way, the 

paper will establish an equivalence model between DEA and multiple objective linear programming (MOLP) 

and show how a DEA problem can be solved interactively by transforming it into an MOLP formulation. As 

a result, all efficient units of variable returns to scale technology in DEA can be found by solving the 

proposed MOLP problem by parametric linear programming. Numerical examples confirm the validity of the 

proposed model as a means for solving different DEA problems. 

 

Keywords: Data envelopment analysis; Multiple objective linear programming; Additive model; Ecker-

Kouada method; Most preferred solution   

   

1. Introduction 

 

   Data envelopment analysis (DEA) is a technique used to evaluate the relative efficiency of comparable 

decision making units (DMUs) with multiple input-output. The DEA approach defines a non-parametric best 

practice frontier and then measures efficiency relative to that frontier. If a DMU lies on the frontier, it is 

referred to as an efficient unit, otherwise inefficient. It can also provide the reference units for inefficient 

DMUs without consideration of the decision makers’ (DMs) preferences. For a managerial point of view, 

there may be a need sometimes to have a number of alternatives between which the decision maker has to 

decide. Reference units are composite or virtual units which lie on the efficient frontier and are used as target 

units for inefficient DMUs to benchmark against. Various techniques have been proposed for incorporating 

DM’s preference information in DEA (e.g., see [3,4,12,…]). However, common to these approaches is that 

they all require a priori information from the DM, which in most cases can be subjective and difficult to 

obtain.  
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An appealing method to incorporate preference information into both efficiency analysis and target setting, 

without necessarily requiring prior judgments, is to use of interactive multiple objective linear programming 

(MOLP) techniques. Golany [14] first proposed the use of an interactive procedure to generate efficient 

solutions for characterizing the efficient frontier in DEA. 

 Thanassoulis and Dyson [22] developed models for estimating preferred input-output target levels to make 

relatively inefficient organizational units efficient, allowing both input reductions and output increases. 

Stewart [21] contrasts the concept of relative efficiency in DEA with that of pareto optimality in MOLP and 

discusses some issues in applying interactive MOLP techniques to solve the weight restriction problem in 

DEA. Korhonen [18] provided an interactive method which allows the DM to incorporate preference 

information into the efficient frontier analysis by enabling him/her to make a free search various target units 

on the efficient frontier in DEA. Joro et al. [17] showed that structurally the DEA formulation to identify 

efficient units is quite similar to the MOLP model based on the reference point or the reference direction 

approach to generate efficient solutions. The reference point model enhances the usefulness of DEA by 

providing added flexibility to it. Post and Spronk [19] combined the use of DEA and interactive multiple 

goal programming where DMs preference information is incorporated interactively by adjusting the upper 

and lower feasible boundaries of the input and output levels. Yang et al. [26] investigated interactive MOLP 

methods to conduct efficiency analysis and set realistic target values in an integrated way with the DMs 

preferences taken into account and with the DM supported to explore what could be technically achievable. 

In this way, they established the equivalence relationship between the output-oriented DEA dual models and 

the minimax formulations led to the construction of the three equivalence models: namely the super-ideal 

point model, the ideal point model and the shortest distance model.  

In a similar vein, the aim of this paper is to deal with the problem of incorporating preferences over potential 

improvements to individual input output levels so that the resultant target levels reflect the DM’s preferences 

over alternative paths to efficiency. In this way, the paper will establish the equivalence between the 

Additive model and the E-K formulation in MOLP and show how a DEA problem can be solved 

interactively without any prior judgment by transforming it into an MOLP formulation. To carry out our 

purpose, we use the method of Satisfactory Goals to reflect the DM's preferences in locating a most preferred 

solution (MPS) on the efficient frontier for target setting. As a result by solving the proposed MOLP 

problem, the efficient units of variable returns to scale technology in DEA can be obtained. The rest of this 

paper is organized as follows. Section 2 briefly reviews the basic DEA models used for this study. Section 3 

provides the equivalence model between DEA and MOLP followed by some important results. Two 

illustrative examples are documented in section 4. A conclusion and future directions for research are all 

summarized in the last section.  

 

2. Basic DEA models 

   Assume that there are n DMUs each consumes m inputs to produce s outputs. Let 𝑋 ∈ ℝ𝑚×𝑛 and 𝑌 ∈

ℝ𝑠×𝑛 be the matrices consisting observed input and output measures for the DMUs, respectively. We denote 

by 𝑥𝑗 (the jth column of 𝑋) the vector of inputs consumed by DMUj. A similar notation is used for outputs. 

Also we assume that all the inputs and outputs are non-negative and at least one of the components of every 

input and output vector is positive. 
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In the original DEA model of Charnes, Cooper and Rhodes (CCR model [7]), the efficiency of a DMU can 

be obtained as the maximum of a ratio of weighted outputs to weighted inputs, subject to the condition that 

the same ratio for all DMUs must be less than or equal to one. The CCR model is based on constant returns 

to scale. However, in efficiency analysis, variable returns to scale (VRS) can also be considered. Banker      

et al. [5] proposed another version of DEA model with VRS, called the BCC model which we are interested 

in this paper. 

The CCR and BCC models are the basic model types in DEA. These models can be presented in a primal or 

dual form, called multiplier and envelopment models, respectively. While the multiplier model can inform 

the DM of the efficiency score and the output and input weights, the envelopment model can be used to 

generate not only the efficiency score but also the lacks of outputs and the surplus of inputs of a unit. It can 

also provide reference units known as composite or virtual units which lie on the efficient frontier and are 

used as target units for inefficient DMUs to benchmark against. 

Since, we are interested in BCC models in this paper, we represent the PPS of variable returns to scale 

(VRS) technology in the following manner: 

𝑇𝑣 = {(𝑥, 𝑦)|𝑥 ≥ 𝑋𝜆, 𝑦 ≤ 𝑌𝜆, 𝑒𝜆 = 1 , 𝜆 ≥ 0} 

Where e is the sum vector of ones. 

Based on the above definition, the envelopment form of BCC model is as follows: 

 

 Min        𝜃𝑜 

  𝑠. 𝑡.        𝑋𝜆 + 𝑆𝑜
− = 𝜃𝑜𝑥𝑜 

    𝑌𝜆 − 𝑆𝑜
+ = 𝑦𝑜          (1) 

     𝑒𝜆 = 1 

                𝜆 ≥ 0, 𝑆𝑜
− ≥ 0, 𝑆𝑜

+ ≥ 0 

 

DMUo (𝑜 ∈ {1, … , 𝑛}) is strongly BCC-efficient if and only if 𝜃𝑜
∗ = 1 and the amounts of slacks be zero in 

any optimal solutions. In this paper, frontier DMUs that are not strongly efficient DMUs referred to as 

efficient one. More precisely "efficient" we use in this paper includes "weakly efficient". 

The Additive model, proposed by Charnes et al. (20), is an alternative formulation to analyze the efficiency 

of DMUs which used the maximum distance between DMUs and the efficient frontier. There are several 

types of Additive models in DEA. The Additive model we select is  

 

               M𝑎𝑥       𝑒𝑆𝑜
− + 𝑒𝑆𝑜

+ 

  𝑠. 𝑡.        𝑋𝜆 + 𝑆𝑜
− = 𝑥𝑜 

    𝑌𝜆 − 𝑆𝑜
+ = 𝑦𝑜          (2) 

     𝑒𝜆 = 1 

                𝜆 ≥ 0, 𝑆𝑜
− ≥ 0, 𝑆𝑜

+ ≥ 0 
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A variant, which we do not explore here, is an Additive model which omits the condition 𝑒𝜆 = 1. 

As can be seen, the Additive model above has the same PPS as the BCC-model. 

DMUo is called ADD-efficient if and only if the optimal objective function value of model (2) is zero. 

Theorem 1. DMUo is ADD-efficient if and only if it is strongly BCC-efficient. 

A proof of this theorem may be found in Ahn et al. [1]. 

Theorem 2. Let us define �̂�𝑜 = 𝑥𝑜 − 𝑆𝑜
∗−

 and  �̂�𝑜 = 𝑦𝑜 + 𝑆𝑜
∗+

. Then (�̂�𝑜 , �̂�𝑜)  is ADD-efficient. 

Proof. See [11]. 

By this theorem, improvement to an efficient unit is attained by the following formulae (projection by the 

Additive model): 

 

      �̂�𝑜 = 𝑥𝑜 − 𝑆𝑜
∗−

= 𝑋𝜆∗  

                 �̂�𝑜 = 𝑦𝑜 + 𝑆𝑜
∗+

= 𝑌𝜆∗                                                       

 

With  (�̂�𝑜 , �̂�𝑜) serving as the imaginary composite unit on the efficient frontier used to evaluate DMUo. 𝜆𝑗
∗ 

(jth element of 𝜆∗) is the reference weight for DMUj (j= 1,…,n) and 𝜆𝑗
∗ > 0 means that DMUj is used to 

construct the composite unit for DMUo. 

Note that such improvement strategy is imbedded in DEA a priori and does not necessarily take account of 

management preferences. In the following section, we will explore how DMs preferences can be 

incorporated into improvement strategies using interactive multiple objective optimization techniques. 

 

3. MOLP based procedures for integrating efficiency analysis and target setting 

   In the Additive model (2), the reference set can be generated for inefficient DMUs simultaneously by 

maximizing outputs and minimizing inputs in the sense of a vector optimization. So, such a problem can be 

regarded as a kind of multiple objective optimization problem. In this section, the equivalence relationship 

between the Additive DEA model and the E-K formulation in MOLP will be established. Also, we 

demonstrate that we get very useful results by combining both DEA and MOLP approaches. 

An MOLP problem can be represented in a general form as follows: 

 

 max       ℎ(𝜆) = [𝑐1𝜆, 𝑐2𝜆, … , 𝑐𝑚𝜆, 𝑐𝑚+1𝜆, … , 𝑐𝑚+𝑠𝜆] 

              𝑠. 𝑡.        𝜆𝜖Λ = {𝜆𝜖ℝ𝑛|𝐴𝜆 = 𝑏, 𝜆 ≥ 0, 𝑏 ∈ ℝ𝑘}     (4) 

 

Where Λ  is the feasible region in decision space and the constraint matrix 𝐴 ∈ ℝ𝑘×𝑛 is of full row rank. In a 

more compact format, this MOLP is sometimes written 

(3) 
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 max      {𝐶𝜆 = 𝑧|𝜆𝜖Λ}                 (5) 

 

Where 𝐶 is a (m+s)× n criterion matrix whose rows are the gradients 𝑐𝑖  of the (m+s) objectives and 𝑧 is the 

criterion vector (objective functions vector). Since multiple objective problems rarely have points that 

simultaneously maximize all of the objectives, the more generalized solution concept of efficiency is 

introduced. 

Definition 1. �̅�𝜖Λ is efficient iff there does not exist another 𝜆𝜖Λ such that 𝐶𝜆 ≥ 𝐶�̅�, 𝐶𝜆 ≠ 𝐶�̅�. Otherwise, �̅� 

is inefficient. 

The set of all efficient points is designated 𝐸 and is called the efficient set. There are several methods for 

characterizing an efficient point in the MOLP problems. From Ecker and Kouada [13], we have the 

following theorem: 

Theorem 3. Let 𝜆𝑜 be an extreme point of Λ and (6) be the E-K model. 

 

 Max       𝑒𝑡𝑆 

   𝑠. 𝑡.      𝐶𝜆 − 𝐼𝑆 = 𝐶𝜆𝑜 

     𝐴𝜆 =  𝑏                            (6) 

                   0 ≤ 𝜆 ∈ ℝ𝑛 

                0 ≤ 𝑆 ∈ ℝ𝑚+𝑠 

 

Then, (i) 𝜆𝑜 ∈ 𝐸 iff (6) has an optimal objective function value of zero, (ii) if (6) has a  

positive-unbounded objective function value, 𝐸 = ∅, and (iii) if (�̅�, 𝑆̅) is an optimal solution of (6), �̅� ∈ 𝐸. 

Proof. (i) 𝜆𝑜 is an efficient extreme point of Λ iff there does not exist another 𝜆 ∈ Λ such that 𝐶𝜆 ≥ 𝐶𝜆𝑜 and 

𝐶𝜆 ≠ 𝐶𝜆𝑜. So by the first group of constraints there can not exist any feasible solution that makes 𝑆 ≩ 0. 

This fact implies that it is not possible for (6) to have a positive objective function value. 

(ii) The dual of (6) is 

 Min       (𝐶𝜆0)𝑡𝑝 + 𝑏𝑡𝑦 

 𝑠. 𝑡.       𝐶𝑡𝑝 + 𝐴𝑡𝑦 ≥ 0 

   −𝐼𝑝 ≥ 𝑒𝑡                            (7) 

              𝑝, 𝑦   unrestricted 

 

Since the LP (6) is unbounded above, we conclude from the weak duality Theorem that the dual constraints 

in (7) must be inconsistent. But the dual constraints are independent of the vector 𝜆𝑜 and hence, if they are 

inconsistent for some 𝜆𝑜, they remain inconsistent for any 𝜆𝑜. We therefore conclude that (6) remains 

unbounded, even if we change 𝜆𝑜, as long as it remains feasible. Thus, from (i), the proof is completed. 
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(iii) Suppose �̅� ∉ 𝐸. Then, there exists a �̂�𝜖Λ such that 𝐶�̂� ≥ 𝐶�̅�, 𝐶�̂� ≠ 𝐶�̅�. With 𝐶�̂� − 𝐶𝜆𝑜 = 𝐼�̂� and 𝐶�̅� −

𝐶𝜆𝑜 = 𝐼𝑆̅, we have 𝐼�̂� ≥ 𝐼𝑆̅, 𝐼�̂� ≠ 𝐼𝑆̅. Since (�̂�, �̂�) contradicts the optimality of (�̅�, 𝑆̅), �̅�𝜖𝐸. 

Thus, the E-K model of (6) provides us with a means for finding an efficient point when 𝐸 ≠ ∅ and tells us 

that 𝐸 is empty when no efficient points exist. 

From the definition of feasible region Λ, the E-K model can be written as follows: 

  

 Max       𝑒𝑡𝑆 

   𝑠. 𝑡.      𝐶𝜆 − 𝐼𝑆 = 𝐶𝜆𝑜 

   𝜆 ∈ Λ                            (8) 

   𝑆 ≥ 0 

From formulation (2), the Additive model can be equivalently rewritten as follows: 

 

            M𝑎𝑥       𝑒𝑆𝑜
− + 𝑒𝑆𝑜

+ 

  𝑠. 𝑡.       − 𝑋𝜆 − 𝑆𝑜
− =  −𝑥𝑜 

               𝑌𝜆 − 𝑆𝑜
+ =  𝑦𝑜                           (9) 

              𝜆𝜖Λ𝑜 = {𝜆|𝑒𝜆 = 1, 𝜆 ≥ 0} 

                         𝑆𝑜
− ≥ 0 

                         𝑆𝑜
+ ≥ 0  

 

Now, we show that formulation (9) is the same as formulation (8) under certain conditions. The purpose for 

establishing this equivalence is to use formulation (8) to conduct efficiency analysis, so that interactive 

MOLP techniques can be used to locate the MPS or set target values for the observed DMUo. 

Suppose the feasible decision space Λ  in formulation (8) is set to be the same as defined in formulation (9), 

or Λ = Λo. Since 𝜆𝑜 is an extreme point of Λ𝑜, the set of column vectors of 𝑒 corresponding to positive 𝜆𝑜 is 

a linearly independent set by definition. On the other hand, 𝜆𝑜 must be the oth unit vector in ℝ𝑛. Therefore, 

the Additive model given in (9) can be written as follows: 

 M𝑎𝑥       𝑒𝑆𝑜
− + 𝑒𝑆𝑜

+ 

 𝑠. 𝑡.        − 𝑋𝜆 − 𝑆𝑜
− =  −𝑋𝜆𝑜 

               𝑌𝜆 − 𝑆𝑜
+ =  𝑌𝜆𝑜               (10) 

              𝜆𝜖Λ𝑜 = {𝜆|𝑒𝜆 = 1, 𝜆 ≥ 0} 

                         𝑆𝑜
− ≥ 0 

                         𝑆𝑜
+ ≥ 0 
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The equivalence relationship between the Additive model (2) or (9) and the E-K model (8) can be 

established by the following theorem. 

Theorem 4. Suppose 𝐶 = [
−𝑋1 … −𝑋𝑛

𝑌1 …   𝑌𝑛
] and 𝑆𝑡 = [𝑆−𝑡 , 𝑆+𝑡] where 𝑆−𝑡 = (𝑠1

−, … , 𝑠𝑚
− ) is the input excess 

vector and  𝑆+𝑡 = (𝑠1
+, … , 𝑠𝑠

+) is the output shortfall vector. The Additive model (9) can be equivalently 

transformed to the E-K model (8) using formulation (10) and the following equations: 

Λ = Λ𝑜                                 (11) 

 𝑆 = S𝑜                                 (12) 

Proof. Using (10)-(12), the Additive model can be equivalently rewritten as follows: 

  Max       𝑒𝑆 

   𝑠. 𝑡.       𝐶𝜆 − 𝐼𝑆 = 𝐶𝜆𝑜 

    𝜆 ∈ Λ      

               𝑆 ≥ 0 

The above model is the E-K model (8). 

From theorem 4, we have the following results: 

1. The above analyses show that the Additive model is actually constructed to locate a specific efficient 

solution, termed as DEA efficient solution on the efficient frontier of the following generic MOLP 

formulation 

 Max      −𝑋𝜆 

 Max       𝑌𝜆 

  𝑠. 𝑡.       𝑒𝜆 = 1                  (13) 

   𝜆 ≥ 0 

that does not take account of management preferences into improvement strategies, so the efficient units in 

DEA can be obtained by solving formulation (13) (For more details see result 2). Hence an interactive 

tradeoff analysis procedure can be used for locating the MPS in DEA problems. 

Since different DMUs have different preferences and relative weights for the objectives, and the weight 𝜆 in 

formulation (13) can not be set individually for each DMU, hence the following model can be constructed 

and solved to generate a locally most preferred solution for DMUo: 

 Max      −𝑋𝜆 

 Max       𝑌𝜆 

  𝑠. 𝑡.       𝑋𝜆 ≤ xo                 (14) 

 𝑌𝜆 ≥ yo 

 𝑒𝜆 = 1 

   𝜆 ≥ 0 
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The above model defines the production possibility set for the observed DMUo, in which there may be more 

preferred efficient solutions than the DEA efficient solution. 

In the following, we will describe an interactive procedure to use the above result to support the DM to 

search for the MPS. We emphasize that it is no restrict at all to use any interactive MOLP method. 

 

An interactive MOLP procedure 

Interactive procedures constitute techniques that allow the decision maker to explore along the efficient 

frontier so that he or she can reach the MPS. At each iteration, a solution, or group of solutions, is generated 

for examination. As a result of the examination, the decision maker inputs information to the solution 

procedure. In these methods assume that the DM is unable to indicate a priori preference information due to 

the complexity of the problems, but that he/she is able to give preference information on a local level to a 

particular solution. It enables the decision maker to learn more about his or her problem. Interactive 

procedures allow the DM to do what he or she does best (make improved judgment in the face of new 

information). Because of this, interactive methods are powerful tools for solving MOLP problems. Much 

work has been done on this class of methods. The interactive method of Satisfactory Goals is considered in 

this paper. To explain this method, let us consider the general MOLP formulation in (4). 

The method of Satisfactory Goals, proposed by Benson [6], uses the "Bounded Objective Method" (see [16]) 

interactively to determine a satisfactory solution. In this method the DM specifies a set of acceptable initial 

goal levels 𝐿𝑗 , 𝑗 = 1, … , 𝑚, 𝑚 + 1, … , 𝑚 + 𝑠 (which must be feasible) and then identifies one objective 

function whose goal level is the least satisfactory (LS). The LS objective is maximized subject to the original 

constraints and to additional constraints formed by the rest of the objective functions. The analyst, who 

works iteratively and interactively with the DM, can tighten one or more goal attainments until the optimal 

tradeoffs are achieved and thus the MPS is found maximizing the implicit utility function of the DM (taken 

from [16]). In the next section, a practical application is solved with this method. 

2. A possible and currently popular way to generate efficient solutions of MOLP (13) is to use the weighted- 

sum approach. In this method, each objective is multiplied by a scalar weight. Then, the weighted objectives 

are summed to form a composite (or weighted-sums) objective function. Without loss of generality, we will 

assume that each weighting vector is normalized so that its elements sum to one. (taken from [20]). By 

solving the weighted-sums LP by parametric linear programming, all efficient units of variable returns to 

scale technology in DEA can be obtained. Since we consider the case where there is only one parameter 𝛼, 

the problem with one input and one output is discussed here. 

This procedure finds all efficient DMUs only by solving one parametric linear programming problem as 

follows: 

 Max      (1 − 𝛼)(−𝑋𝜆) +  𝛼(𝑌𝜆) 

  𝑠. 𝑡.        𝑒𝜆 = 1                  (15) 

     𝜆 ≥ 0
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where 𝛼 ∈ (−∞, +∞). 

In this way, the purpose is to determine a set of efficient units 𝑇𝑣 that is parametrically optimal as 𝛼 

goes from −∞ → +∞. 

Although, solving a parametric linear programming problem needs more computational effort, but for 

large n (number of DMUs), solving a parametric problem may be more preferable than solving n 

linear programs. Therefore, the proposed model (15) can be used to generate all efficient units of 𝑇𝑣 

with one input and one output. Our claim will be further illustrated by a simple example in [11]. 

3. So far, we have shown that structurally the DEA formulation to identify efficient units is quite 

similar to a linear model (6) to generate efficient solutions in the MOLP problems. Now, we redefine 

the efficiency in DEA: 

As discussed in section 2, DMUo is ADD-efficient iff the optimal objective function value of model 

(2) is zero. This is equivalent to part (i) of Theorem (3). Hence, by Theorem (1), DMUo is strongly 

BCC- efficient iff the E-K model has an optimal objective function value of zero. In other words, each 

pareto optimal solution of model (13) is corresponding to a strongly efficient production possibility in 

𝑇𝑣 and vice versa. Therefore, the efficient units in 𝑇𝑣 can be characterized by solving an MOLP 

problem. 

 

4. Numerical example 

   In this section, two numerical examples are examined to demonstrate the proposed interactive 

MOLP procedure to search for the MPS along the efficient frontier and illustrate the parametric linear 

programming problem to generate all efficient units of  𝑇𝑣. 

 

4.1. Taking preferences into account in setting target values 

   A case study is carried out to demonstrate how performance assessment and target setting can be 

conducted in an integrated way using the interactive MOLP method investigated in the previous 

section. Consider 20 Iranian bank branches with three inputs and three outputs as shown in Table 1. 

The data set we used is from [2]. Note that the data are scaled. The Additive model is run to find the 

amounts of improvement needed for the inputs and outputs of each branch. As shown in  

Table (2), branches 2, 5, 6, 10, 11, 13, 14, 16 and 18 are found to be inefficient with respect to all 20 

branches in the survey. For instance, the DEA composite unit of branch 2, which is an inefficient 

branch, can be represented as a linear combination of 0.5385 of branch 4, 0.4137 of branch 7 and 

0.0487 of branch 15. In fact, the corresponding composite inputs are [0.796, 0.5898, 0.2794] and the 

corresponding composite outputs are [0.227, 0.7252, 0.8394]. However, the DM is not accepted the 

DEA composite input and output values as the MPS for branch 2. Hence, an interactive MOLP 

procedure is needed for searching the MPS along the efficient frontier. We use Satisfactory Goals 

method to reflect the DM's preferences in locating a MPS on the efficient frontier for target setting 

and resource allocation. An initial set of acceptable goal levels 𝐿1= (-0.796, -0.5898, -0.2794, 0.227, 

0.7252, 0.8394) is given by the DM. The DM does not agree with the value of -0.796 for 𝑓1 and wants 

the first input be at most 0.7. With the help of the dual variables associated with the 𝑓3, 𝑓5 and 𝑓6  ([0, 

-0.4772, 0, -0.1773, -0.4276]), he / she revises some goals and sets new goals, 𝐿2= (-0.796,  

-0.5898, -0.3465, 0.227, 0.5447, 0.7646). The optimized 𝑓1 is -0.7285 and the composite input and 
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output values for branch 2 are as (0.7285, 0.5898, 0.3465, 0.227, 0.627, 0.7973). DM is still not 

satisfied with the target level for the first input at 0.7285. With the help of the dual variables, he / she 

agrees to the degradation of 𝑓2 and 𝑓3 simultaneously so as to increase the current value of 𝑓1 to -0.6. 

The approaching goal of 0.1285=(-0.6+0.7285) is divided in two (
0.1285

2
=0.0643) and distributed for 

𝑓2, ∆𝑓2=-0.0211(=
0.0643

−3.0495
) and for 𝑓3, , ∆𝑓3=-0.1298(=

0.0643

−0.4953
). The new set of goals is 𝐿3= (-0.7285, -

0.5898-0.0211, -0.3465-0.1298, 0.227, 0.5447, 0.7646)= (-0.7285, -0.6109, 

-0.4763, 0.227, 0.5447, 0.7646). 

Using this new set, the optimized 𝑓1 is calculated as -0.6941. In iteration 3, the composite unit of 

branch 2 is given by (0.6941, 0.5941, 0.3894, 0.227, 0.627, 0.7646). Note that the new "Learnt" target 

level is different from the previous target level in the second interaction. The change in the target 

level made by the DM represents part of the learning process about what could be achieved, which is 

the main features of the interactive procedure and can help the DM to set realistic target values. The 

DM indicates the attained value of 𝑓1 is satisfactory and that it can be relaxed to improve the second 

output. He specifies ∆𝑓1=0.0059 (i.e., 𝑓1 can be relaxed up to -0.7). Using the new goal level for 𝑓1 at 

-0.7, we obtain the maximum composite output 2 as 0.6421. The DM is satisfied with this value and 

does not want to relax it. This means the MPS has been found and hence we terminate the procedure. 

The final composite unit can he presented as "0.2921 branch 4 + 0.1879 branch 7 + 0.089 branch 15 + 

0.431 branch 20" with the input and output values as follows: 

(𝐼1, 𝐼2, 𝐼3, 𝑂1, 𝑂2, 𝑂3) = (0.7, 0.595, 0.3827, 0.227, 0.6421, 0.7646) 

Now, the interactive procedure is demonstrated for the fifth DMU, which is operating as an inefficient 

branch too. The DEA target unit for inefficient branch 5 is as a linear combination of 0.5176 of 

branch 4, 0.2429 of branch 7, 0.1718  of branch 12, 0.0678 of branch 15 with the following input and 

output values: 

(𝐼1, 𝐼2, 𝐼3, 𝑂1, 𝑂2, 𝑂3) = (0.8081, 0.6064, 0.268, 0.233, 0.722, 0.806) 

The DM is not satisfied with this initial target values and he prefers to improve the second output to 

above a value of 0.76 at the expense of 𝑓2 and 𝑓6. In fact, both the output level of charge and the input 

level of computer terminal are sacrificed for a higher output level of loan. In the first iteration, 𝑓6 is 

decreased by about ∆𝑓6=0.506 resulting in 𝐿2= (-0.8081, -0.6064, -0.268, 0.233, 0.722, 0.3). for the 

second iteration, the DM is satisfied with the value of -0.603 for the second input and wants to relax it 

to -0.7 (∆𝑓2=0.097) to improve the second output. In this step, the DM selects 𝑓5 (second output) from 

𝐿3= (-0.8081, -0.7, -0.268, 0.233, 0.722, 0.3) as 𝑓𝐿𝑆. The maximum feasible value of the second 

composite output of branch 5 is generated as 0.8216 resulting in the new target (0.8081, 0.6801, 

0.268, 0.233, 0.8216, 0.4688). DM agrees with the relaxation of ∆𝑓5=0.0216 so as to decrease the first 

input. So, the new goal level 𝐿4= (-0.8081, -0.7, -0.268, 0.233, 0.8, 0.3) is used for the next iteration. 

The Optimized 𝑓1 with this new set of goals is -0.7838 and the dual values of 𝑓3 and 𝑓5 against 𝑓1 are -

2.9427 and -1.1264 respectively. The DM does not agree with the value of  

-0.7838 for 𝑓1 and wants 𝑓1 be at least -0.75. With the help of the dual variables, he revises some 

goals and sets new goals, 𝐿5= (-0.7838, -0.7, -0.2822, 0.233, 0.7628, 0.3), leading to the new target 

(0.7469, 0.6803, 0.268, 0.233, 0.7628, 0.5121). However, DM accepted this solution as the MPS for 

branch 5 and hence the interactive method terminated. The MPS could be found for all inefficient 

branches using the interactive procedure. It can be observed that these inefficient branches have 

different MPS and DEA composite inputs and outputs. 
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4.2. Finding efficient units in DEA 

   Consider eight DMUs with one input and one output as listed in Table 3. The data reported here are 

from [11]. By employing the proposed model (14), we have the DMUs A, B, C, E and H are efficient 

as portrayed in Figure 1. Note model (14) also provides the range of values of 𝛼 within which each 

DMU remains efficient as shown in the forth column of Table 3. As can be seen, all efficient DMUs 

of 𝑇𝑣 are identified by solving one parametric linear programming problem. 

 

Table 1: 

Data set for 20 

branches of 

bank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Branch  Inputs Outputs 

 Staff Computer 

terminals 

Space 

(m2) 

Deposits Loans Charge 

DMU1  0.950 0.700 0.155 0.190 0.521 0.293 

DMU2  0.796 0.600 1.000 0.227 0.627 0.462 

DMU3  0.798 0.750 0.513 0.228 0.970 0.261 

DMU4  0.865 0.550 0.210 0.193 0.632 1.000 

DMU5  0.815 0.850 0.268 0.233 0.722 0.246 

DMU6  0.842 0.650 0.500 0.207 0.603 0.569 

DMU7  0.719 0.600 0.350 0.182 0.900 0.716 

DMU8  0.785 0.750 0.120 0.125 0.234 0.298 

DMU9  0.476 0.600 0.135 0.080 0.364 0.244 

DMU10  0.678 0.550 0.510 0.082 0.184 0.049 

DMU11  0.711 1.000 0.305 0.212 0.318 0.403 

DMU12  0.811 0.650 0.255 0.123 0.923 0.628 

DMU13  0.659 0.850 0.340 0.176 0.645 0.261 

DMU14  0.976 0.800 0.540 0.144 0.514 0.243 

DMU15  0.685 0.950 0.450 1.000 0.262 0.098 

DMU16  0.613 0.900 0.525 0.115 0.402 0.464 

DMU17  1.000 0.600 0.205 0.090 1.000 0.161 

DMU18  0.634 0.650 0.235 0.059 0.349 0.068 

DMU19  0.372 0.700 0.238 0.039 0.190 0.111 

DMU20  0.583 0.550 0.500 0.110 0.615 0.764 
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Table 2: 

DEA composite unite results 

 

 Table 3: 

DMUs data and results of model (14) for Example 4.2 

DMU Input Output  Characteristic interval 

A 2 1      [1, +∞) 

B 3 3        [0.4, 0.5] 

C 2 2     [0.5, 1] 

D 4 3  

E 6 5      [0, 0.4] 

F 5 2  

G 6 3  

H 8 5      (−∞, 0] 

 

 1 3 4 7 8 9 12 15 17 19 20 

1 1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0.5385 0.4137 0 0 0 0.0478 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 0 0 0 0 0 

5 0 0 0.5176 0.2429 0 0 0.1718 0.0678 0 0 0 

6 0 0 0.8469 0.1339 0 0 0 0.0192 0 0 0 

7 0 0 0 1 0 0 0 0 0 0 0 

8 0 0 0 0 1 0 0 0 0 0 0 

9 0 0 0 0 0 1 0 0 0 0 0 

10 0 0 0.3369 0 0 0 0 0 0 0 0.6631 

11 0 0 0.1651 0.6598 0 0.1251 0 0.0501 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 

13 0 0 0 0.6663 0 0.161 0 0.0257 0 0 0.147 

14 0 0 1 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 1 0 0 0 

16 0 0 0 0.2206 0 0 0 0 0 0 0.7794 

17 0 0 0 0 0 0 0 0 1 0 0 

18 0 0 0.1478 0.4135 0 0.4386 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 1 0 

20 0 0 0 0 0 0 0 0 0 0 1 
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Figure 1. Efficient frontier of Tv 

5. Conclusion 

In this paper, we established an equivalence model between DEA and MOLP and show how a DEA 

problem can be solved interactively by transforming it into an MOLP formulation. This provides a 

basis to apply interactive methods and other techniques in MOLP to solve DEA problems. In this 

way, the use of the interactive Satisfactory Goals method for target setting was considered. An 

example on the assessment of Iranian bank branches was shown to illustrate the equivalence model 

and interactive procedure to search for MPS along the efficient frontier. In addition, an analysis of 

results led to finding efficient units on the frontier of 𝑇𝑣. Using other algorithms in characterizing the 

efficient set of an MOLP problem for conducting an interactive tradeoff analysis procedure in DEA is 

an interesting and useful issue for future research.  
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