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Abstract  

Because of the piecewise linear nature of the data envelopment analysis (DEA) frontier, the 

optimal multipliers of the DEA models may not be unique. Choosing weights from alternative 

optimal solutions of dual multiplier models is one of the most frequently studied subjects in the 

context of DEA. In this paper, the authors have been inspired by the idea of Cooper et al. (2011) to 

propose a linear programming problem in which a specific decision making unit chooses the 

optimal solution of a linear program as the profile of weights for use in the cross-efficiency 

calculation. The approach proposed in this paper to determine input/output weights, prohibit the 

large differences in weights in cross efficiency evaluation. A real case on Chinese cities and 

special economic zones is given to illustrate the applicability of the proposed approach.  

Keywords: Data envelopment analysis, Cross-efficiency, input/output weights.    
 

 

1   Introduction 

  Data envelopment analysis (DEA) is a mathematical programming approach created to analyze the 

relative performance of a set of homogeneous decision making units (DMUs) which use similar types 

of multiple resources to generate similar kinds of multiple products. DEA has been used in many 

contexts including education systems, health care units, agricultural productions, military logistics and 

many other applications (See Nigam et al. (2012) and Sreekumar and Mahapatra (2011)). 

Discussion of how to determine optimal weights in DEA models is an important and most frequently 

studied subject in the context of DEA. This subject has been studied from different perspectives by 

different authors. (See Lam and Bai (2011), Cooper et al. (2007) and Cooper et al. (2011)). Because 

of the piecewise linear nature of the DEA frontier, the optimal multipliers of the DEA models may not 
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be unique. Specifically, extreme efficient units usually have alternative optimal solutions for their 

weights in the conventional DEA models. In these models, the existence of alternative optima has led 

to the use of secondary goals by some DEA researchers to choose a set of favorable weights for cross 

efficiency evaluations. (See Liang et al. (2008),Wu et al. (2009) and Wang and Chin (2010).). 

Suppose there are n DMUs and each
j

DMU uses m inputs mixij ,...,1:   to produce s outputs

sryrj ,...,1:  . Assume also that E is the set of all extreme efficient units and o
DMU  is a given 

DMU in E. Cooper et al. (2011) stated that d
DMU

  must choose, among of its alternative optima in 

the CCR model, the optimal solution of the following model: 
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As they stated, constraints (1.4) and (1.5) forces all the inputs virtual and all the outputs virtual to vary 

in between the bounds I
z  and I

h  , and the bounds O
z  and O

h , respectively. In (1.6) and (1.7) we have 

1I
d

I

z

h
   and 1O

d

O

z

h
   , respectively. Maximizing d

 means that they maximize the minimum of 

the two ratios and in this sense look for the weights profiles with the least dissimilar virtual inputs and 

outputs to allow d
DMU to be rated as efficient. In this model, , ,

I I O
h z h  and O

z  are decision 

variables and hence, this model is a nonlinear programming problem. Although they proved in 

proposition 1 that model (1) has a global optimum, however, the nonlinearity of this model could have 

some computational difficulties in practice. In the following section we make a moderate modification 

on the model proposed by Cooper et al. (2011) to reduce its computational complexity.  
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2   Secondary goal in weights selection 

  In this section, inspired by the idea of Cooper et al. (2011), a new linear programming problem has 

been proposed to determine optimal weights to an efficient DMU.  

The existence of the  constraints I
d

I

z

h
  and O

d

O

z

h
   leads to the nonlinearity problem in model (1). 

In the modified model the nonlinear constraints I
d

I

z

h
  and O

d

O

z

h
 are replaced by 

0
I I d

h z     and 0
O O d

h z    , respectively. Then, we minimize d
  such that 

I
z  and 

O
z

could be as close to 
I

h and
O

h , respectively, as possible. In this case, we propose the following linear 

programming problem:  
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in which 0  is a sufficiently small positive to ensure strict positivity of  
I

h , 
I

z , 
O

h  and 
O

z  (Note 

that O O
z h  and I I

z h .) The necessity of using 0   is that it prevents the zero values to the 

weights. Minimizing d
 means that we minimize the distance between I

h  and I
z , O

h and O
z , and in 

this sense, the model looks for the weights with the least dissimilar virtual inputs and outputs to allow

d
DMU to be efficient. Model (2) is a linear programming problem and it is easy to show that at 

optimality of (2), we have
* * * * *

{ , }
d I I O O

Max h z h z    . At the first sight, it seems that the existence 

of the small positive number  give raise difficulties in practice. However, it should be pointed out 
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that the structure of this   is different from the non-Archimedean constant 0   in CCR and BCC 

models that forces the weights 
r

u and 
i

v  to be positive.  

The following theorem guarantees the feasibility and boundedness of model (2).  

Theorem 1- The LP model (2) is feasible and bounded.  

Proof: A feasible solution to LP model (2) can be determined as: 
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in which 
*

r
u and 

*

r
u  are optimal solutions to the standard multiplier form of the CCR model. The 

objective value to this solution is nonnegative and hence, the LP model (2) is bounded. This 

completes the proof. 

Now, suppose that d
DMU  is a specific unit that does not belong to M. For such a DMU, we need to 

choose the optimal solution of the following linear programming problem as the optimal weights for 

use in the calculation of the cross-efficiencies: 
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Now, cross efficiency of 
j

DMU using the weights that
d

DMU has chosen, is defined as 

( ) 1

1

s
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r rj
d r

j m
d

i ij

i

u y

E

v x










                                      (4) 

For : 1, ,
j

DMU j n , the average of all 
( )

: 1, ,
d

j
E d n  is called the cross-efficiency score of

j
DMU .   

3   A simple example   

  In what follows, we illustrate the weights determination model in cross efficiency evaluation with a 

small-scale example consisting of five DMUs. The DMUs use two inputs to produce a single output 

whose value is normalized to one for each DMU. All of the five units are CCR-efficient.  

Table 1 

The data for simple example 

DMU 
1

x  
2

x  y  

A 1 10 1 

B 2 5 1 

C 4 2 1 

D 6 1 1 

E 12 0.5 1 

Model (2) is applied to this data set for DMUs A, B, C, D and E. The result to each DMU is an 

efficient surface of the production set as follows:  
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Figure 1 shows the production set in two-dimensional space along with the surfaces 

obtained from model 2.  

Table 2 

Matrix of cross efficiency scores 

DMU A B C D E 

A 1 0.8 0.4762 0.3279 0.1660 

B 0.8 1 0.8333 0.6250 0.3279 

C 0.3810 0.6667 1 1 0.6154 

D 0.1967 0.3750 0.75 1 0.8 

E 0.0996 0.1967 0.4615 0.8 1 

Mean 0.49546 0.60768 0.7042 0.75058 0.58186 

 

 

 

 

4   Chinese cities 

  To illustrate the applicability of the proposed approach, we use a data set consists of 13 open coastal 

Chinese cities and 5 Chinese special economic zones in 1989 (This example has been taken from Zhu 

(1998)). There are three outputs with two inputs. Inputs include investment in fixed assets by state-

owned enterprises ( 1
x ) and foreign funds ( 2

x ) and outputs include total industrial output value ( 1
y ), 
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total value of retail sales (
2

y ) and handling capacity of coastal ports (
3

y ). The input/output data set 

are listed in Table 3. The CCR model of Charnes et al. (1978) is used to determine the relative 

efficiency of each cities. The efficiency scores of all cities are listed in the last column of Table 3, and 

as the Table indicates, three cities/Zones are CCR-efficient. The model cities are hence

{ , , }M Qinhuangdao Weihai Wenzhou . The optimal absolute weights provided by the proposed 

models are listed in Table 4. It should be pointed out that we have calculated 

2 6
0.5893, 0.4376    and 10

0.3494  . So, in model 3 we assumed
*

0.5893  . The matrix 

of cross efficiency and cross efficiency scores are presented in Table 3. The last row in Table 3 shows 

the cross efficiency score of 
j

DMU  as the average of the cross efficiencies in Table 3. Different 

ranking methods have been applied to this data set and the results are listed in Table 6. Columns two 

and three report the cross efficiencies and rankings of the Liang et al. (2008) method, respectively. 

The fourth and fifth columns show the AP scores and rankings, respectively. We have also applied the 

super slack-based measure (SBM) of Tone (2002) to compare the results. Columns six and seven 

show the super SBM and rankings, respectively. As the Table shows, Qinhuangdao is the top-ranked 

city in all ranking methods. All methods have also determined Shenzhen as the low-ranked city. 

Regarding remaining cities/zones, there are no substantial and significant differences between ranking 

orders in different ranking procedures. 

Table 3  

Data and CCR efficiencies 

J Cities/Zones 
1

x  2
x  1

y  2
y  3

y  Efficiency 

1 Dalian 2874.8 16738 160.89 80800 5092 0.4691 

2 Qinhuangdao 946.3 691 21.14 18172 6563 1 

3 Tianjin 6854 43024 375.25 144530 2437 0.2779 

4 Qingdao 2305.1 10815 176.68 70318 3145 0.5022 

5 Yantai 1010.3 2099 102.12 55419 1225 0.6311 

6 Weihai 282.3 757 59.17 27422 246 1 

7 Shanghai 17478.6 116900 1029.09 351390 14604 0.3580 

8 Lianyungang 661.8 2024 30.07 23550 1126 0.4959 

9 Ningbo 1544.2 3218 160.58 59406 2230 0.6577 

10 Wenzhou 428.4 574 53.69 47504 430 1 

11 Guangzhou 6228.1 29842 258.09 151356 4649 0.3010 

12 Zhanjiang 697.7 3394 38.02 45336 1555 0.7866 

13 Beihai 106.4 367 7.07 8236 121 0.7514 

14 Shenzhen 4539.3 45809 116.46 56135 956 0.1382 

15 Zhuhai 957.8 16947 29.2 17554 231 0.1867 

16 Shantou 1209.2 15741 65.36 62341 618 0.4704 

17 Xiamen 972.4 23822 54.52 25203 513 0.3059 

18 Hainan 2192 10943 25.24 40267 895 0.1953 
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Table 4 

Cross-efficiency evaluation: Absolute weights 

Cities/Zones 
1

u  
2

u  
3

u  
1

v  
2

v  

1 0.00053145 0.00000173 0.00003465 0.00027642 0.00001227 

2 0.00647515 0.00000753 0.00011065 0.000217 0.00115 

3 0.00050418 0.0000001 0.00001532 0.00011594 0.00000477 

4 0.00164958 0.0000001 0.00004612 0.00034474 0.00001899 

5 0.00246312 0.00000456 0.00010316 0.00078655 0.00009783 

6 0.01151632 0.00000826 0.00037447 0.00281491 0.00027127 

7 0.00016842 0.0000001 0.00000592 0.00004546 0.00000176 

8 0.00303643 0.00000723 0.00015402 0.00120074 0.00010146 

9 0.00355205 0.0000001 0.00003914 0.00019068 0.00021925 

10 0.00764787 0.00001241 0.0000001 0.00185493 0.00035775 

11 0.00026372 0.00000079 0.00001608 0.00012759 0.00000688 

12 0.0000001 0.0000097 0.00014373 0.00113896 0.0000605 

13 0.0000001 0.00006547 0.00095449 0.00746852 0.00055954 

14 0.0002869 0.00000111 0.00002171 0.00017506 0.00000448 

15 0.00122176 0.00000532 0.00010223 0.00082966 0.00001212 

16 0.0000001 0.00000535 0.00008132 0.00065717 0.00001305 

17 0.00351742 0.0000001 0.00010713 0.0008172 0.00000862 

18 0.0000001 0.00000308 0.00004571 0.00036252 0.00001877 

 

2 6 10
0.5893, 0.4376, 0.3494      

Table 5 

Matrix  of cross - efficiency and cross-efficiency scores. 

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0.4 1 0.22 0.42 0.63 1 0.27 0.46 0.57 1 0.27 0.65 0.66 0.11 0.11 0.31 0.16 0.15 

2 0.11 1 0.07 0.16 0.46 0.66 0.08 0.2 0.43 1 0.09 0.19 0.27 0.02 0.02 0.05 0.02 0.04 

3 0.41 1 0.24 0.45 0.6 1 0.3 0.4 0.62 0.73 0.25 0.49 0.44 0.11 0.1 0.23 0.17 0.1 

4 0.39 1 0.24 0.44 0.59 1 0.29 0.39 0.63 0.71 0.24 0.46 0.41 0.1 0.09 0.2 0.15 0.09 

5 0.33 1 0.19 0.38 0.63 1 0.22 0.41 0.59 1 0.23 0.52 0.56 0.08 0.07 0.2 0.1 0.12 

6 0.35 1 0.21 0.4 0.61 1 0.25 0.4 0.61 0.86 0.23 0.48 0.49 0.09 0.08 0.2 0.11 0.11 

7 0.41 1 0.24 0.45 0.6 1 0.3 0.42 0.61 0.8 0.26 0.53 0.5 0.11 0.11 0.25 0.17 0.11 

8 0.36 1 0.2 0.4 0.63 1 0.24 0.44 0.58 1 0.25 0.58 0.6 0.09 0.09 0.24 0.12 0.14 

9 0.18 1 0.13 0.27 0.63 1 0.15 0.27 0.66 1 0.14 0.22 0.3 0.04 0.03 0.07 0.04 0.04 

10 0.2 0.19 0.17 0.27 0.56 1 0.17 0.27 0.49 1 0.17 0.34 0.48 0.06 0.06 0.16 0.07 0.09 

11 0.39 1 0.22 0.41 0.63 1 0.26 0.45 0.57 1 0.26 0.63 0.64 0.1 0.11 0.29 0.15 0.15 

12 0.35 1 0.17 0.35 0.56 0.82 0.2 0.45 0.46 1 0.24 0.66 0.68 0.09 0.1 0.3 0.13 0.16 

13 0.33 1 0.16 0.33 0.55 0.8 0.19 0.43 0.45 1 0.23 0.63 0.66 0.08 0.08 0.26 0.1 0.16 

14 0.43 1 0.23 0.44 0.63 1 0.28 0.47 0.56 1 0.28 0.69 0.68 0.12 0.14 0.36 0.2 0.17 

15 0.44 1 0.24 0.45 0.63 1 0.29 0.48 0.56 1 0.29 0.72 0.7 0.13 0.15 0.4 0.23 0.17 

16 0.4 1 0.19 0.38 0.57 0.85 0.24 0.47 0.47 1 0.27 0.73 0.72 0.11 0.13 0.38 0.19 0.18 

17 0.45 1 0.27 0.49 0.59 1 0.34 0.41 0.63 0.68 0.27 0.51 0.43 0.13 0.14 0.27 0.25 0.1 

18 0.36 1 0.17 0.35 0.56 0.82 0.21 0.45 0.46 1 0.24 0.67 0.68 0.09 0.1 0.3 0.13 0.17 
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Table 6 

Different ranking results 

Unit Liang et 

al. Score 

Liang 

et al. 

Rank 

AP Score AP-

Rank 

Super-SBM SBM-Rank New cross eff. 

Score 

New rank 

1 0.4461 10 0.4685 11 0.27970 10 0.349444 10 

2 1 1 12.6072 1 1.44309 1 0.955 1 

3 0.2436 15 0.2742 15 0.09187 15 0.197778 14 

4 0.4522 9 0.5005 8 0.30578 9 0.38 9 

5 0.6050 6 0.6311 7 0.47351 5 0.592222 4 

6 0.9722 2 1.6698 3 1.15476 3 0.941667 2 

7 0.3047 12 0.3413 12 0.18228 11 0.237778 12 

8 0.4545 8 0.4959 9 0.33657 8 0.403889 8 

9 0.5693 7 0.6553 6 0.48098 4 0.552778 5 

10 0.8870 3 2.2848 2 1.31655 2 0.932222 3 

11 0.2788 14 0.3004 14 0.16928 12 0.233889 13 

12 0.6576 4 0.7864 4 0.41334 6 0.538889 7 

13 0.6086 5 0.7514 5 0.38881 7 0.55 6 

14 0.1288 18 0.1377 18 0.04599 18 0.092222 18 

15 0.1665 16 0.1864 17 0.05249 17 0.095 17 

16 0.3877 11 0.4697 10 0.13918 13 0.248333 11 

17 0.2819 13 0.3052 13 0.11725 14 0.138333 15 

18 0.1513 17 0.1951 16 0.08609 16 0.125 16 

 

 

4   Conclusions 

  Cross efficiency evaluation in DEA is used to discriminate between DMUs and it eliminates 

unrealistic and unfavorable weights in conventional DEA models. The existence of unrealistic and 

unfavorable weights in DEA models may lead to incorrect assessment in efficiency analysis. In this 

paper, we have extended the multiplier form of CCR model for use in cross-efficiency evaluations 

with the aim of preventing unrealistic weighting schemes. The paper has modeled a linear 

programming model to choose a set of favorable weights for use in the cross-efficiency calculation.  
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