
 
Available online at http://ijdea.srbiau.ac.ir 

 

Int. J. Data Envelopment Analysis (ISSN 2345-458X) 

 

Vol. 12, No. 1, Year 2024 Article ID IJDEA-00422, Pages 60-79 

Research Article 

 

 

 

 

 

A New Three-Stage Robust Data Envelopment 

Analysis Model with application in diary industrial 

 

F. Sangcholi, S.E. Najafi*, F. Movahedi Sobhani 

Department of Industrial Engineering, Science and Research Branch, Islamic Azad 

University, Tehran, 

 
 

Received 3 June 2023, Accepted 12 December 2023 

 

Abstract 

Data Envelopment Analysis (DEA) is a non-parametric mathematical programming technique 

widely used for evaluating the relative efficiency of homogeneous decision-making units 

(DMUs) that use multiple inputs to produce multiple outputs. The DMUs may consist of 

several sub-processes that interact and perform various operations. The conventional DEA 

treats DMUs as "black boxes" and internal structure of the DMU is not taken into 

consideration. The Network DEA (NDEA) methods are capable of reflecting accurately the 

DMUs’ internal structure and considered the DMU as a network of interconnected sub-units. 

On the other hand, many real-world applications face with uncertain data which the optimal 

solutions of models may even become infeasible and the ranking of DMUs can be invalid. 

Robust DEA (RDEA) is the last uncertain DEA approach that is applied for performance 

assessment of DMUs in the presence of uncertain data. 

In this study we propose a new Robust Network DEA (RNDEA) model. We calculate the 

efficiency of this model by considering a series of intermediate measures and robust 

constraints. We present a case study in the dairy industry with three series stages to exhibit 

the efficacy of the approach and demonstrate the applicability of the proposed model. 
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1. Introduction 

Data Envelopment Analysis (DEA), a non-

parametric Linear Programming (LP) 

based method developed by Charnes et al. 

(1978) for relative efficiency measurement 

of Decision-Making Units (DMUs), is a 

generalization of the Farrell’s (1957) 

single-input single-output technical 

efficiency measure to the multiple-input 

multiple-output situations [1,2]. DEA 

gives relational performance efficiency by 

using a ratio of the weighted sum of 

outputs to the weighted sum of inputs and 

operations it with a mathematical 

programming. Unlike parametric methods, 

DEA does not require an explicit 

functional form relating inputs and 

outputs. This method for efficiency 

measurement is known as DEA constant 

returns to scale (CRS model), with an 

assumption that all firms are operating at 

an optimal scale. Later Banker et al. (2004) 

extended DEA to include Variable Returns 

to Scale (VRS) [3]. 

However, DEA has been widely accepted 

as a qualified methodology to estimate the 

efficiency of a system, but in many real-

life cases, DMUs have network internal 

structure and are composed of several – 

divisions that related to each other. 

Individual divisions have their inputs and 

outputs respectively. An intermediate 

output from one division becomes an 

intermediate input for another division  

[4-6]. Traditional DEA models look 

DMUs as "black box" that consume a set 

of inputs to produce a set of outputs which 

may result in inaccurate efficiency score 

[7]. 

To open the “black box” and get greater 

insight into the production process, the 

Network DEA (NDEA) model is 

generalized to analyze the network 

structure of systems by researchers, such 

as [4,6,8,9,], first introduced network 

DEA model, which was improved and 

extended by other researchers. Lewis and 

Sexton (2004) propose a network DEA 

model for multistage system which is an 

extension of the two-stage DEA model [9]. 

Their studies solve a DEA model for each 

node independently. Tone and Tsutsui 

(2009) propose a network slacks-based 

measure model (NSBM) to evaluate 

efficiency when inputs and outputs might 

change no proportionally [10]. 

The literature on Network DEA has 

increased substantially in the last few 

years, both as regards to theoretical 

aspects. For systems composed of two 

processes connected in series, Kao and 

Hwang (2008) developed a DEA model to 

measure the efficiencies of the system and 

component processes at the same time. An 

interesting finding is that the efficiency of 

the system is the product of those of the 

two processes [11]. Their model can be 

extended to more than two processes. Kao 

(2014) reviews studies on network DEA 

by examining the models used and the 

structures of the network system of the 

problem being studied. This review 

highlights some directions for future 

studies from the methodological point of 

view, and is inspirational for exploring 

new areas of application from the 

empirical point of view [12]. Tsihrintzis et 

al. (2019) described the underlying notions 

of network DEA methods and their 

advantages over the classical DEA ones. 

They also conducted a critical review of 

the state-of-the art methods in the field and 

provided a thorough categorization of a 

great volume of network DEA literature in 

a unified manner [12,13]. 

One of the most important issues 

associated with DEA is the uncertainty 

associated with data. Since the resulted 

problem formulation of DEA technique is 

in form of linear programming, when all 

input data are subject to uncertainty, it is 

practically impossible to use old fashion 
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methods to handle uncertainty. Soyster 

(1973) introduced robust optimization to 

handle uncertainty. He investigated a very 

simple approach to robust optimization. In 

this approach the column vectors of the 

constraint were assumed to belong to 

ellipsoidal uncertainty sets [14]. Peykani 

et al. (2020) reviewed the milestone 

approaches for handling uncertainty in 

data envelopment analysis (DEA). This 

paper presents the detailed classifications 

of robust data envelopment analysis 

(RDEA). RDEA is appropriate for 

measuring the efficiencies of decision-

making units (DMUs) in the presence of 

the data and distributional uncertainties. 

This paper reviews scenario-based and 

uncertainty set of DEA models. It covers 

73 studies from 2008 to 2019. The paper 

concludes with suggestions about the 

guidelines for future researches in the field 

of RDEA [15]. 

In this paper, we propose a new robust 

optimization formulation for Network 

DEA. Our suggested robust Network DEA 

model is based on Soyster approach and 

Kao and Hwang (2008) model. We first 

illustrate Network DEA model presented 

by Kao and Hwang in section 2. In section 

3, robust DEA with uncertain data 

proposed by Soyster are discussed. Our 

Robust Network DEA (RNDEA) models 

present in section 4. In section 5, we give 

a numerical example and compare with 

solutions of three-stage fuzzy DEA model. 

 

2. Multi-stage Data Envelopment 

Analysis 

Let introduce the following basic notation: 

 1,...,j J n  : The index set of the n 

DMUs. 

 1,...,k n : Denotes the index of 

evaluated DMU. 

 , 1,...,j ijX x i m  : The vector of first 

stage external inputs used by DMUj. 

 , 1,..., ; 1,..., 1t t

j djZ z d D t h    : 

The vector of stage-t intermediate outputs 

produced by DMUj. 

 , 1,...,j rjY y r s  : The vector of latest 

stage final outputs produced by DMUj. 

 , 1,...,iv v i m  :  The vector of 

weights for the first stage external inputs 

in Kao et al. model. 

 , ,..., ; 1,..., 1t t

dw w d D t h    : The 

vector of weights for stage-t intermediate 

outputs in Kao et al. model. 

 , 1,...,ru u r s  : The vector of 

weights for the latest stage final outputs in 

Kao et al. model. 

 , 1,..., ; 1,...,t t

j j n t h    : The 

vector of weights for DMUj in stage t in 

Chen et al. model. 

kE : The overall efficiency of DMU k. 

to have the same multiplier no matter how 

it is used while the former allows a factor 

to have different multipliers when it is 

used in different places. An interesting 

result of the relational model is that the 

system efficiency is the product of the two 

process efficiencies. Figure 1 is a pictorial 

expression of the series system with two-

stage.        
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Figure 1. Two- stage series system 

2.1 Two-stage DEA model by Kao 

and Hwang (2008) 

The system efficiency of DMU k is 

calculated by the input orientation model 

from the series system of Kao and Hwang: 

Kao and Hwang presented an input 

orientation model for calculating the 

system efficiency of DMU k. this model 

had an additional system constraint, by 

removing the additional system constraint 

in this model, the following reduced two-

step model is obtained: 

 
1

1

1 1

1 1

1 1

1 1

1

max                 1

. .    1

0, 1,...,

0, 1,...,

0, 0,  1,..., , 1,..., ,

0, 1,..., .





 

 





  

  

   

 





 

 

s

k r rk

r

m

i ik

i

D m

d dj i ij

d i

s D

r rj d dj

r d

r i

d

E u y

s t v x

w z v x j n

u y w z j n

u v r s i m

w d D

 

The efficiency score of model (1) is 

between zero and one ( 0 1kE   ). DMU 

k is efficient under this model if and only 

if its efficiency score be equal to one. The 

dual of model (1) is as follow 

 

 

1

1

1 2 1

1

2

1

min                            2

s.t.    , 1,...,

0, 1,...,

, 1,...,

0,             t=1,2 1,...,             









 

  

 

 







k

n

j ij ik

j

n

j j dj

j

n

j rj rk

j

t

j

E

x x i m

z d D

y y r s

j n



 

 





 

Chen et al (2010) shown that entirely 

efficiency scores of Kao and Hwang can't 

indicate the amount of input reductions or 

output increases in inefficient DMUs [16]. 

They represented a two-stage approach, 

which determined the DEA frontier or 

DEA projection for inefficient DMU under 

the framework of Kao and Hwang that 

expressed as  

 

1

1

1 1 1

1

2 1 1

1

2

1

min                 3

s.t.     , 1,...,

         , 1,...,

        , 1,...,

         , 1,...,

        0,        t=1,2, 1,...,











 

 

 

 

 









k

n

j ij ik

j

n

j dj dj

j

n

j dj dj

j

n

j rj rk

j

t

j

E

x x i m

z z d D

z z d D

y y r s

j n



 









1

   

       0,        t=1,2, 1,..., . djz d D
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2.2 A Multi-Stage DEA Model by 

Kao and Hwang (2008) 

Consider a series system of h processes. 

As in the preceding section, let ijx   and rjy  

be defined as the inputs and outputs of the 

system, respectively. Denote 
t

djz  as the 

thd  intermediate product, 1, ,d D  , of 

process t, t = 1,...,h-1, for DMUj. The 

intermediate products of process t are the 

outputs of process t as well as the inputs of 

process t + 1. Note that the intermediate 

products of the last process h are the 

outputs of the system. The number of 

intermediate products, D, can be different 

for each process. Here, it is assumed that 

they are the same for all processes just for 

simplification of notation. Figure 2 is a 

pictorial expression of the series system.  

 

 

 

 

 

Figure 2. Multi- stage series system 

Denote 
t

dw  as the multiplier, or the 

importance, associated with the 
thd  

intermediate product of process t. As in the 

previous section, after removing the 

useless system constraint, the system 

efficiency of DMU k is calculated by the 

following model generalized of model (1). 

 
1

1

1 1

1 1

1 1

1 1

1 1

1

max                  4

. . 1, i 1,...,

      0,  1,...,  

1,...,  
      0,

2,..., 1

      


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 
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 
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s
K NDEA

k r rk

r

m
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i

D m

d pj i ij

d i

D D
t t t t

d dj d dj

d d

s
h h

r rj d dj

r

E u y

s t v x m

w z v x j n

j n
w z w z

t h

u y w z
1

0, 1,...,  

      0, 0,    1,..., , 1,...,   

     0,             1,..., , 1,..., 1.



 

   

   


D

d

r i

t

d

j n

u v r s i m

w d D t h

 

Dual of the above model can be 

represented as follow. 

 

 

1

1

1

1

1

min                      5

s.t. , 1,...,

1,..., ,
    0,   

1,..., 1

      ,  1,...,

      0,  1,..., , 1,..., 1.













 


  

 

 

   







dK NDEA

k

n

j ij ik

j

n
t t t

j j dj

j

n
h

j rj rk

j

t

j

E

x x i m

d D
z

t h

y y r s

j n t h



 

 





                                              

Azizi and Kazemi Matin (2010) developed 

two-stage model of Chen et al (2010) to a 

multi-stage network model as follow [17]. 
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 

1

1

1

1

1

1

min                        6

s.t. : , 1,...,

, d 1,..., ,  1,..., 1

,d 1,..., ,  1,..., 1

, r 1,...,

0, 1,..., ,  t 1,..















 

   

   

 

  









Ch NDEA

n

j ij ik

j

n
t t t

j dj dk

j

n
t t t

j dj dk

j

n
h

j rj rk

j

t

j

E

x x i m

z z D t h

z z D t h

y y s

j n



 









t

dk

., 1

z 0, 1,..., , 1,..., 1.



   

h

d D t h

 

 

2.3 Robust DEA with Soyster 

formulation 

Soyster (1973) consider the following 

nominal linear optimal problem [14]: 

 max                                                   7

s.t.

         

        .



 

cx

Ax b

l x u

 

In above formulation, assume that only 

elements of matrix ijA a     are 

uncertain. Without losing the generality, 

suppose object function c  don't be 

uncertain while we can use maximize 

object z, and add constraint 0z cx   and 

so included this constraint in Ax b  [18]. 

He introduced the m m  matrix A  as 

 1 2, ,..., nA a a a . For each j, he defined 

the column 
ja  whose 

thi  component is 

equal to  * sup
j ji j a K ije K a  . The 

auxiliary linear programming to (7) will be 

denoted  LP A  as follows: 

   : max                            8

s.t.

              

              0.





LP A cx

Ax b

x

 

Soyster showed that the optimal solution 

to  LP A is also the optimal solution to 

(7). 

 

2.4 DEA Counterpart Based on 

Soyster Approach 

Model (1) with uncertain outputs,

ˆy

rj rj rj rjy y y  ,  ˆ 0, 1,1y

rj rjy   

, will be as follow: 

 

1

1 1

max  

s.t.: 1

ˆ 0, 1,1

k

m
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i

s s
y y

r rk r rk rk rk

r r

E w
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w u y u y 



 





     



 

 

 
1 1 1

ˆ 0,  

                    1,..., , 1,1

, 0,      1,..., ,     r 1,...,

s s m
y

r rj r rj rj i ij

r r i

y

rj

r i

u y u y v x

j n

v u i m s





  

  
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  

 

By using the Soyster robustness method, 

 

1

1,11 1
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s.t.: 1

ˆsup 0,
y
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k

m
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i
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E w

v x

w u y u y





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


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
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 1,11 1

1
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In the first constraint we have 

   1,11,1 1 1

ˆ ˆsup min .
y

y
rk

rk

s s
y y

r rk rk r rk rk

r r

u y u y
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 
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   
   
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rk   , 
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y
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


 

 

 
  

 
  . 

So, its robust counterpart constraint is 
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ˆ 0
s s

k r rk r rk

r r

E u y u y
 

    . For the 

same reason in the second constraint, the 

robust counterpart constraint be obtained 

as 
1 1 1

ˆ 0
s s m

r rk r rk i ij

r r i

u y u y v x
  

     . 

As a result, the Soyster Robust DEA 

model (SRDEA) with uncertainty in 

outputs is as follows: 
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3. Robust Network DEA (RNDEA) 

We assume that the input data, ijx , are a 

definite value, but the values of 

intermediate products, 
t

ijz , and finished 

products, ijy , are subject to uncertainty 

data, that's mean 

 
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ˆ ˆ,  0, 1,1
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1,..., ,   1,..., ,         1,...,
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One should note that ˆ
rjy  and ˆt

djz  are a 

percentage of rjy  and 
t

djz , respectively. 

Then we have ˆ
rj rjy y  and ˆt t

dj djz z , so  

. 1,..., 1t h  0,t

djz  and 0rjy   

In the following, at the first, we produce 

Robust Network DEA models for two-

stage systems and then develop those to 

multi-stage systems. 

 

3.1 Two-stage robust network DEA 

model 

Consider two-stage system (Figure 1) 

where , 1,...,ijx i m , and ,rjy 1,...,r s

are inputs and final outputs and 
1 , 1,...,djz d D , as intermediate products, 

are the output value of the first stage and 

input values of second stage for 

, 1,...,jDMU j n  . 

3.1.1 Two-stage robust model 

based on Kao and Hwang (model (1)) 

In this case, by replacing assumptions (*) 

in model (1), it’s uncertain two-stage DEA 

model is as following: 
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1

1
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                                                              1,...,
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





   


D

z

d dj dj

d

r i d

w z
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u v w s i m d D
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As the previous section, the counterpart 

relation for second constraint is equal to 

1 1

ˆ 0
s s

k r rj r rj

r r

E u y u y
 

    . For the 

same reason, the robust counterpart 

constraint for third constraint is equal to 

1 1 1 1

1 1 1

ˆ 0
D D m

d dj d dj i ij

d d i

w z w z v x
  

     , and 
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as a result the robust counterpart DEA 

model for model (9), Based on Soyster 

approach, is as follows: 

 

1

1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

max                                                      10

s.t.   1

ˆ 0

ˆ 0,      1,...,

ˆ ˆ



 

  
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
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E
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1

1
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                                                         1,...,

, , 0, r 1,..., ,  1,..., , 1,...,







   


D

dj

d

r i d

z

j n

u v w s i m d D

                         

 

3.1.2 Two-stage robust model 

based on dual of Kao and Hwang 

(model (2)) 

According model (2), with replacement 

uncertain data presented in (*), uncertain 

model is obtained as follows: 

 

  

   

1

1

1 2 1 1

1

2

1

min                                                 11
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




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
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j

n
y y

j rj rj rj rk rk rk

j

E

s t x x i m

z z D

y y y y s



 

  

  

0                          t=1,2,         1,..., t

j j n

      

By the Soyster method, the robust 

counterpart model could write as follow. 

 
 

 

1

1

1 2 1 1 1

1,11 1

2 1

1,1 1

min                                          
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ˆsup ,  d 1,...,
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k
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j
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j dj dj
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
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
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

 


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 
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2
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2
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j
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j

t

j

y y y
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



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

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 

 





 

In second constraint, with the assumption 

that 
1ˆ0, 0t

j djz   , 

 

1 1 1 1

1,1 1 1

ˆ ˆsup
z
dj

n n
z

j dj dj j dj

j j

z z


  
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 
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or 
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Similarly, in third constraint, 

 
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y
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n n
y

j rj rj j rj

j j
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

  
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 
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Then, the counterpart robust linear model 

of model (11) will be as follows: 
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 
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3.1.3 Two-stage robust model 

based on Chen et al. (model (3)) 

As one can see, in model (3), by 

replacing the given uncertain values of 

problem and applying Soyster method, 

the robust model of uncertain two-

stage model can be written as follows: 

 

 

 
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For second constraint, because of 
1 1ˆ0, 0djz   , we have

   

1 1 1 1

1,11,1 1 1

1 1
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and so
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 
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In third constraint, for the same reason
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Then its robust counterpart constraint is 

equal to 
2 1 2 1 1

1 1

ˆ
n n

j dj j dj dk

j j

z z z 
 

   . 

In a similar way of previous model, the 

counterpart robust model based Soyster 

approach for model (13) is obtained as 

follows. 
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3.2 Multi-stage robust network 

DEA model 

Consider the h-stage series system as 

depicted in Fig.2. Denote 
ijx  as the ith 

input to the first stage. Here, at each stage 

t ( 1,..., 1t h  ), 
t

djz , intermediate 

products, indicates the values of output of 

t stage that becomes input to (t+1) stage. 

Also 
rjy  represents output of final stage. 

In fact, 
rjy  is considered as final product.  

 

3.2.1 Multi-stage robust model 

based on Kao and Hwang model 

(model (4)) 

On the base of relations (*) and the Soyster 

method by using the methods mentioned in 

the previous subsection, non-linear robust 

model of model (4) is the following: 
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By implying a method similar to the 

method used in robust two-stage 

model, robust counterpart model of 

model (15) is written as follows: 
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3.2.2 Multi-stage robust model 

based on dual of Kao and Hwang 

model (model (5)) 

According model (5), replacing uncertain 

data equations in (*) and with Soyster 

assumptions the uncertain model is 

obtained as follows. 
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Similar to method used in model (12), 

counterpart robust model will be obtained 

as follows 
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3.2.3 Multi-stage robust model 

based on Chen et al. model (model 

(6)) 

In the similar way, by substituting given 

uncertain variables in (*) and based on 

Soyster method, the model (6) would be as 

follow: 
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ˆ+ sup

ˆsup





  

 

 



 







    
 











zt
dj

zt
dj

k

n

j ij ik

j

n
t t t

j dj dk

j

n
t zt t

j dj dj

j

n
t t t zt

j dj j dj

j

E

x x i m

z z
D

t h
z

z







 



 

  
1

d 1,..., , 1,..., 1



  
  

  


  


n

t t

dj dk

j

z z

D t h

 

 
 

 

1,11

1,1 1

ˆ+ sup

ˆ+ sup ,r 1,...,

 , 0,    1,..., ,  

1,..., ,  1,..., .

y
rk

tz
dj

n
h y

j rj rk rk rk

j

n
h y

j rj rj

j

t t

j dk

y y y

y s

z j n

d D t h





 

 



 

  







    
 

 

 





 

With a similar way used in model (14), 

robust model will be obtained as follows: 

 

 

 

1

1

1

1

1

1

min                (20)

s.t. , 1,...,

ˆ ,
 

d 1,..., , 1,..., 1

ˆ ,
 

d 1,..., , 1,..., 1

ˆ ˆ , r 1,.















 


 


   


 


   

   









Ch RNDEA

n

j ij ik

j

n
t t t t

j dj dj dk

j

n
t t t t

j dj dj dk

j

n
h

j rj rj rk rk

j

E

x x i m

z z z

D t h

z z z

D t h

y y y y



 





 ..,

, 0,  1,..., , 1,..., , 1,..., .   t t

j dk

s

z j n d D t h

   

 

4. The feasibility of the counterpart 

model and their equivalence 

In this section, first, we prove that robust 

counterpart models are equivalent with 

their uncertain Kao and Hwang multi-

stage model. For this purpose, we prove 

that model (15) and model (16) are 

equivalent.  Next, we show that models are 

feasible. For this we define an interval 

efficiency score for them. 

 

4.1 Equivalence of models 

Let 
0 0 0,  and t

r i du v w  for 1, , ,r s

1, ,  1, ,i m d D  and 1,t h  

be arbitrary feasible solution for uncertain 

model (15). Now we have 

 0

1

ˆ 0
s

y

k r rk rk rk

r

E u y y


    or 

0 0

1 1

ˆ 0
s s

y

k r rk r rk rk

r r

E u y u y
 

     for 

each  1,1y

rk   , then for 1y

rk   , we 

will have 
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0 0

1 1

0 0

1 1

ˆ

ˆ .

s s
y

k r rk r rk rk

r r

s s

k r rk r rk

r r

E u y u y

E u y u y


 

 

 

  

 

 
 

And so 0 0

1 1

ˆ 0
s s

k r rk r rk

r r

E u y u y
 

    . 

For the third constraint, let be 
1 1z

dj  , 

then 10 1 10 1

1 1 1

ˆ 0
D D m

d dj d dj i ij

d d i

w z w z v x
  

     . 

At the same way, for the fourth constraint 

 

   

1 00 0 1

1 1 1

1 0 1 1

1

ˆ

ˆ 0.

D D D
tt t t tz t t

d dj d dj dj d dj

d d d

D
t t z t

d dj

d

w z w z w z

w z





 

  

  




 



  


  



Suppose
( 1)1, 1tz t z

dj dj     , so 

 

 

1 00 0 1

1 1 1

1 0 1

1

ˆ

ˆ 0.

D D D
tt t t t t

d dj d dj d dj

d d d

D
t t

d

d

w z w z w z

w z

 

  

 



 

 

  


 

In the final constraint, assuming that
( 1)1, 1y h z

rj dj     , so  

 

 

1 0 1

1 1 1

1 0 1

1

ˆ

ˆ 0.

s s D
h h

r rj r rj d dj

r r d

D
h h

d

d

u y u y w z

w z

 

  

 



 

 

  


 

 

Then 
0 ,ru 0  iv  

0and t

dw are feasible 

solutions for counterpart model (16). 

On the other hand, suppose 
0 0 0,  and t

r i du v w  for 1, , ,r s

1, ,i m 1, ,d D and 1,t h  

be arbitrary feasible solution for 

counterpart model (16). In second 

constraint,  0

1

ˆ 0
s

k r rk rk

r

E u y y


   , 

because of 1 y

rk  , 

   ˆ ˆy

rk rk rk rk rky y y y    and then 

   0 0

1 1

ˆ ˆ 0.
s s

y

k r rk rk rk k r rk rk

r r

E u y y E u y y
 

        

In third constraint, we have

10 1 10 1

1 1 1

ˆ 0
D D m

d dj d dj i ij

d d i

w z w z v x
  

     . 

Since 
1 1z

dj   , then 

   1 1 1 1 1ˆ ˆz

dj dj dj dj djz z z z    and so 

10 1 10 1 1

1 1 1

ˆ 0
D D m

d dj d dj dj i ij

d d i

w z w z v x
  

      

or  10 1

1 1

ˆ 0
D m

z

d dj dj dj i ij

d i

w z z v x
 

    .  

In the next constraint 

     1 00 1 1

1 1

ˆ ˆ 0,
D D

tt t t t t

d dj dj d dj dj

d d

w z z w z z
  

 

      

while 1tz

dj   and 
 1

1
t z

dj


  , so 

   ˆ ˆt tz t t t

dj dj dj dj djz z z z    and 

   1 1 1 1ˆ ˆt t t tz t

dj dj dj dj djz z z z      , as a 

result 

 

   

0

1

1 0 1 1

1

ˆ 

ˆ 0.

D
t t tz t

d dj dj dj

d

D
t t tz t

d dj dj dj

d

w z z

w z z







  





  





Finally, like previous, one can see if 

     1 0 1 1

1 1

ˆ ˆ 0,
D D

h h t

r rj rj d dj dj

d d

u y y w z z
  

 

    

because 1y

rk   and 
( 1)1 h z

dj   , then 

      1 0 11 1

1 1

ˆ ˆ 0.
D D

h h zy h t

r rj rj rj d dj dj dj

d d

u y y w z z 
  

 

    

According to the previous section, one 

can see that 0 0 0,  and t

r i du v w  for 

1, , ,r s 1, ,i m 1, ,d D

and 1,t h  are feasible solution for 

uncertain model (15). 
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4.2 Interval Efficiency 

In this research, we assume that output and 

intermediate values are unknown exactly 

but lie in bounded intervals, namely 

ˆ
rj rj rjy y y   ( 1,..., ,   1,...,r s j n 

) and 
dj dj djz z z  ( 1,..., ,d D

 1,...,j n ) where the upper and lower 

bounds of intervals are positive constants. 

If some of the data are in other forms of 

imprecise data, e.g., ordinal data or ratio 

bounded data, we can use the technique in 

Zhu (2003) to convert them into interval 

bounded data firstly. 

We note that under robust data, robust 

model of Kao and Hwang and robust 

model of dual of Kao and Hwang model 

are no longer equivalent and dual models. 

In fact, the efficiency score obtained from 

robust of Kao and Hwang model is always 

lesser than that from robust of dual of Kao 

and Hwang model. This is due to the fact 

that  

ˆ ˆ,

ˆ ˆ,

ˆ ˆ,

ˆ ˆ,

max max

     min min

rjrj rj rj rj rj

t t t t t dj
dj dj dj dj dj

rj rj rj rj rj rj

t t t t tdj
dj dj dj dj dj

yy y y y y
z

z z z z z

y y y y y y
z

z z z z z

E E

 

    
   
 

    
   
 



 
  

When imprecise data is considered in 

network DEA approach, the optimal 

efficiency scores become to interval data 

too, where the multiplier-type model 

yields the lower efficiency bound, and the 

envelopment-type models yields the upper 

efficiency bound. 

 

5. Numerical Example 

This section is provided to show the right 

approach and compare the results of 

models with a numerical example has used 

it. The proposed Robust NDEA models 

were coded using LINGO 14.0 software. 

The codes of proposed mathematical 

models were executed on a laptop with 

Core i7 and Windows 8.1. 

 

5.1 Three stage DEA example 

Khalili-damghani and taghavifard (2012) 

used a fuzzy three stage DEA model for 

evaluating performance efficiency for a set 

of 40 dairy supply chain [20]. We use the 

conceptual model (Figure 5) and data used 

in that research and convert the fuzzy data 

to robust data for run the models suggested 

in our research. The Upper and Lower 

bound of data presented in Table 1 and 

table2. We Consider   2L U

i i ix x x   

and  ˆ 2U L

i i ix x x  . The upper and 

lower bounds of data have been 

represented in Table 1 and Table 2, 

respectively. 

At the first, the problem is solved without 

considering any uncertainty in data by a 

three-stage network DEA model based on 

K-NDEA model (model 4) and results 

illustrated in third column in Table 3. 

Running K-RNDEA model (model 16), 

DK-RNDEA model (model 18) and CH-

RNDEA model (model 20) yielded lower 

and upper bounds of efficiency scores for 

all DMUs. The result has been represented 

in second, fourth and fifth columns in 

Table 3. In Figure 4 the result of K-NDEA 

model (blue line), K-RNDEA model 

(orange line), DK-RNDEA model (yellow 

line) and CH-RNDEA model (gray line) 

have been plotted. As one can see from 

Table 3 and Figure 4, K-RNDEA model 

create a lower bound and DK-RNDEA and 

CH-RNDEA models give upper bounds 

for K-NDEA model that the first is a better 

upper bound. 
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Figure 3. A three-stage Network System 
 

 

Figure 4.  Chart Of efficiency scores of nominal and robust models 

 

Figure 5. Chart of comparison TSFDEA and TS-SRDEA results 

Simply, it is seen from Table 3 and Figure 

4 that the K-RNDEA model is a lower 

bound and DK-RNDEA and CH-RNDEA 

models are the upper bounds for the 

efficiency scores of the K-NDEA model. 

Clearly seen that the upper bound obtained  

 

by the DK-RNDEA model than the value 

of the CH-RNDEA model is more 

accurate. Therefore, we can use the results 

of K-RNDEA model and DK-RNDEA 

model to define an efficiency interval for 

efficiency scores of DMUs. 
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5.2 Comparison of RNDEA 

models with TSFDEA models 

Khalili-Damghani and Taghavifard (2012) 

solved this problem by using a three-stage 

fuzzy DEA model (TSFDEA) and 

calculated its lower and upper bound 

values of efficiency scores. The Table 4 

shows the upper and lower bound values 

calculated by TSFDEA (column 5, 6) and 

the efficiency scores calculated by our 

three-stage Soyster robust DEA  

(K-RNDEA, DK-RNDEA) models 

(column 3, 4) [20]. 

It can be seen from Table 4 and Figure 5, 

al mostly, the upper bound obtained from 

DK-RNDEA for efficiency interval is 

more accurate than the TSFDEA model. 

On the other hand, the lower bound 

obtained from K-RNDEA for efficiency 

interval is less accurate than the TSFDEA 

model, al mostly.  

To compare the accuracy of the values 

obtained from TSFDEA models and 

RNDEA models, the Mean squared error 

method has been used. For this purpose, 

square values for the results of the models 

are given in columns 7 to 10 of Table 4. 

The Mean squared error of the upper and 

lower bound values in our proposed 

RNDEA model is 0.116742 and for the 

TSFDEA model is 0.181763. Also, the 

total length of the intervals obtained by the 

proposed method is equal to 17.42910008 

and the total length of the intervals 

obtained by the TSFDEA method is equal 

to 18.781213. Therefore, it seems that the 

proposed method in this article is more 

accurate. Of course, more experiments 

need to be done for certainty. 

 

6. Conclusion 

Performance efficiency of most of real 

systems cannot be evaluated with 

conventional DEA models, because of 

complicated structure and uncertain data. 

In this paper a brief review of some of 

series network models are presented. Then 

some Network DEA models are presented 

which can be used for efficiency 

evaluation of all the series Network 

structures that produce uncertain products. 

We use Soyster approach to overcome 

uncertainty. A set of Robust NDEA 

models have been proposed for assessing 

relative efficiency score of overall of 

multi-level serial processes.  

A numerical example used to illustrate the 

approaches. The proposed approaches 

were applied in assessment of efficiency of 

a three-stage model of top-forty Iranian 

dairy supply chains. Three linear crisp 

DEA model were produced for each DMU. 

The results are acceptable and reliable. 

The results were promising and 

computations were straightforward. More 

formally, the proposed approach can be 

utilized to distinguish the relative 

efficiency scores of overall and sub-

processes of a complicated process. So, the 

proposed approach can be assumed as a 

proper framework for handling multi-stage 

processes mixed with uncertainty in 

several areas of management and 

engineering. 
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Table 1. The upper bounds of inputs, intermediate measures, and outputs [20] 

 
1

uX  2

uX  3

uX  4

uX  
1

1

uZ  
1

2

uZ  
1

3

uZ  
1

4

uZ  
2

1

uZ  
2

2

uZ  
2

3

uZ  
2

4

uZ  1

uY  2

uY  3

uY  4

uY  

D1 0.8 0.6 0.6 0.5 0.4 0.7 0.3 0.7 0.9 0.7 0.3 0.5 0.9 0.5 0.4 0.8 

D2 0.98 0.8 0.6 0.9 0.9 0.3 0.9 0.6 0.7 0.8 0.4 0.7 0.4 0.9 0.8 0.4 

D3 0.5 0.5 0.6 0.7 0.74 0.4 0.8 0.9 0.7 0.9 0.9 0.5 0.4 0.4 0.4 0.4 

D4 0.7 0.9 0.5 0.7 0.3 1 0.7 0.33 0.7 0.3 0.53 0.9 0.4 0.7 0.7 0.63 

D5 0.5 0.3 0.4 0.85 0.46 1 0.9 0.6 0.74 0.3 0.3 0.67 0.7 0.7 0.96 0.6 

D6 0.6 0.5 0.8 0.5 0.63 0.63 0.3 0.64 0.3 0.5 0.9 0.4 0.6 0.9 0.8 0.6 

D7 0.8 0.6 0.74 0.98 0.6 0.6 0.5 0.3 0.7 0.8 0.9 0.9 0.7 0.5 0.4 0.63 

D8 0.4 0.96 0.9 0.5 0.7 0.7 0.7 0.6 0.84 0.5 0.24 0.73 0.84 1 1 0.4 

D9 0.94 1 0.94 0.5 0.5 0.95 0.83 0.5 0.42 0.7 0.7 0.3 0.5 0.4 0.3 0.5 

D10 0.9 0.87 0.6 0.6 0.4 0.8 0.5 0.8 0.7 0.9 0.73 0.34 0.8 0.6 0.6 0.8 

D11 0.6 0.6 0.4 0.7 0.9 0.98 0.7 0.93 0.6 0.8 0.7 0.6 0.5 0.6 0.95 0.42 

D12 0.8 0.6 1 0.5 0.76 0.6 0.7 0.3 0.86 0.9 0.83 0.65 0.9 0.7 0.6 0.9 

D13 0.4 0.7 0.9 0.9 0.7 0.7 0.9 0.9 0.4 0.85 0.4 0.7 0.4 1 1 0.4 

D14 1 0.64 0.7 0.4 0.96 0.56 0.3 0.53 0.9 0.8 1 0.42 0.7 0.8 0.75 0.7 

D15 0.4 0.4 0.6 0.94 0.4 0.4 0.3 0.3 0.63 0.74 0.6 0.4 0.6 0.7 0.6 0.6 

D16 0.95 0.7 0.4 0.6 0.3 0.3 0.5 0.9 0.4 0.5 0.5 0.7 0.7 0.6 0.5 0.6 

D17 0.5 0.4 0.95 0.3 0.67 0.6 0.8 0.8 0.9 0.8 0.6 0.5 0.5 0.7 0.6 0.5 

D18 0.7 0.8 0.7 0.6 0.54 0.4 0.75 0.4 0.73 0.73 0.6 0.9 0.9 0.5 0.5 0.85 

D19 0.98 0.4 0.84 0.6 0.4 0.4 0.6 0.6 0.3 0.4 1 0.83 0.8 0.5 0.94 0.8 

D20 0.7 0.7 0.6 0.7 0.7 0.66 0.9 0.4 0.4 1 0.87 0.7 0.5 0.83 0.5 0.8 

D21 0.7 0.7 0.86 0.5 0.94 0.97 0.53 0.75 0.9 0.75 0.3 0.85 0.9 0.4 0.9 0.84 

D22 0.8 0.98 0.6 0.9 0.9 0.3 0.9 0.56 0.7 0.8 0.4 0.7 0.93 0.7 0.23 0.9 

D23 0.5 0.5 0.6 0.7 0.74 0.4 0.8 0.9 0.7 0.89 0.9 0.41 0.7 0.6 0.7 0.83 

D24 0.7 0.9 0.5 0.7 0.3 1 0.7 0.53 0.62 0.3 0.63 0.9 0.7 0.7 0.63 0.7 

D25 0.5 0.3 0.94 0.95 0.48 1 0.9 0.6 0.54 0.3 0.3 0.87 0.9 0.84 0.9 0.7 

D26 0.6 0.6 0.7 0.5 0.86 0.63 0.3 0.6 0.3 0.5 0.9 0.4 0.74 0.5 0.5 0.9 

D27 0.97 0.6 0.5 0.98 0.6 0.6 0.5 0.3 0.6 0.7 0.87 0.9 1 0.8 0.92 0.84 

D28 0.4 0.96 0.9 0.6 0.7 0.7 0.7 0.6 0.4 0.5 0.74 0.83 0.4 0.5 0.4 1 

D29 0.4 1 0.4 0.6 0.5 0.95 0.83 0.53 0.4 0.6 0.6 0.3 0.6 0.9 0.65 0.63 

D30 0.9 0.7 0.7 0.6 0.32 0.8 0.5 0.8 0.7 0.9 0.4 0.36 0.6 0.4 0.6 0.6 

D31 0.7 0.7 0.4 0.97 0.9 0.98 0.7 0.23 0.6 0.8 0.7 0.66 0.7 0.7 0.64 0.6 

D32 0.98 0.76 1 0.5 0.86 0.6 0.7 0.3 0.76 0.81 0.86 0.5 1 0.6 0.9 0.56 

D33 0.5 0.7 0.9 0.8 0.7 0.7 0.9 0.9 0.4 0.5 0.4 0.6 0.87 0.76 0.8 1 

D34 1 0.94 0.7 0.4 0.96 0.96 0.3 0.53 0.9 0.7 1 0.4 0.7 0.4 0.7 0.8 

D35 0.31 0.4 0.6 0.4 0.4 0.4 0.3 0.75 0.64 0.4 0.64 0.4 0.6 0.9 0.75 0.7 

D36 0.5 0.8 0.4 0.6 0.3 0.3 0.5 0.9 0.4 0.5 0.5 0.7 0.7 0.8 0.6 0.6 

D37 0.5 0.41 0.95 0.4 0.64 0.6 0.8 0.8 0.9 0.8 0.5 0.5 0.84 0.6 0.4 0.7 

D38 0.7 0.8 0.7 0.6 0.42 0.4 0.85 0.4 0.73 0.83 0.69 0.9 0.5 0.7 0.4 0.5 

D39 0.9 0.4 0.74 0.85 0.4 0.4 0.6 0.6 0.3 0.4 1 0.63 0.6 0.5 0.5 0.42 

D40 0.7 0.7 0.6 0.7 0.66 0.64 0.9 0.4 0.4 1 0.8 0.7 0.7 0.6 0.5 0.6 
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Table 2. The lower bounds of inputs, intermediate measures, and outputs [20] 

 
1

uX  2

uX  3

uX  4

uX  
1

1

uZ  
1

2

uZ  
1

3

uZ  
1

4

uZ  
2

1

uZ  
2

2

uZ  
2

3

uZ  
2

4

uZ  1

uY  2

uY  3

uY  4

uY  

D1 0.6 0.5 0.5 0.3 0.3 0.6 0.2 0.6 0.7 0.6 0.2 0.4 0.7 0.3 0.3 0.7 

D2 0.7 0.7 0.4 0.8 0.7 0.2 0.8 0.4 0.5 0.6 0.2 0.5 0.2 0.7 0.7 0.2 

D3 0.4 0.3 0.5 0.6 0.3 0.3 0.7 0.7 0.5 0.8 0.7 0.3 0.2 0.2 0.2 0.2 

D4 0.6 0.8 0.3 0.5 0.2 0.8 0.6 0.2 0.5 0.2 0.2 0.7 0.2 0.5 0.5 0.2 

D5 0.3 0.2 0.3 0.4 0.3 0.8 0.8 0.4 0.3 0.2 0.2 0.6 0.5 0.5 0.5 0.5 

D6 0.4 0.4 0.6 0.3 0.5 0.2 0.2 0.5 0.2 0.4 0.7 0.3 0.4 0.7 0.7 0.4 

D7 0.6 0.4 0.3 0.7 0.5 0.5 0.4 0.2 0.5 0.6 0.7 0.7 0.5 0.3 0.3 0.5 

D8 0.2 0.5 0.7 0.4 0.6 0.5 0.5 0.4 0.3 0.4 0.2 0.12 0.3 0.8 0.8 0.3 

D9 0.3 0.8 0.2 0.4 0.4 0.4 0.2 0.4 0.3 0.5 0.5 0.2 0.3 0.2 0.2 0.3 

D10 0.8 0.6 0.5 0.4 0.2 0.6 0.4 0.6 0.5 0.7 0.2 0.2 0.6 0.4 0.4 0.6 

D11 0.5 0.5 0.2 0.6 0.7 0.7 0.6 0.2 0.4 0.6 0.5 0.5 0.3 0.4 0.4 0.3 

D12 0.7 0.4 0.8 0.4 0.5 0.5 0.6 0.2 0.5 0.7 0.7 0.4 0.7 0.5 0.5 0.7 

D13 0.3 0.5 0.7 0.7 0.5 0.5 0.8 0.7 0.3 0.4 0.3 0.5 0.2 0.8 0.8 0.2 

D14 0.8 0.3 0.6 0.2 0.5 0.5 0.2 0.2 0.7 0.6 0.8 0.3 0.5 0.6 0.6 0.5 

D15 0.2 0.3 0.5 0.3 0.3 0.3 0.2 0.2 0.5 0.3 0.5 0.3 0.4 0.5 0.5 0.4 

D16 0.4 0.6 0.2 0.5 0.2 0.2 0.4 0.7 0.3 0.4 0.4 0.3 0.5 0.4 0.4 0.5 

D17 0.4 0.3 0.4 0.2 0.5 0.5 0.6 0.7 0.7 0.6 0.4 0.3 0.3 0.5 0.5 0.3 

D18 0.5 0.7 0.5 0.4 0.3 0.3 0.4 0.3 0.2 0.2 0.5 0.7 0.7 0.3 0.3 0.7 

D19 0.7 0.2 0.3 0.4 0.3 0.3 0.5 0.5 0.2 0.3 0.8 0.2 0.6 0.3 0.3 0.6 

D20 0.6 0.5 0.4 0.6 0.5 0.5 0.7 0.2 0.2 0.8 0.6 0.5 0.3 0.2 0.3 0.6 

D21 0.6 0.5 0.5 0.3 0.3 0.6 0.2 0.6 0.7 0.6 0.2 0.4 0.7 0.2 0.7 0.3 

D22 0.7 0.7 0.4 0.8 0.7 0.2 0.8 0.4 0.5 0.6 0.2 0.5 0.2 0.5 0.2 0.7 

D23 0.4 0.3 0.5 0.6 0.3 0.3 0.7 0.7 0.5 0.8 0.7 0.3 0.5 0.4 0.5 0.2 

D24 0.6 0.8 0.3 0.5 0.2 0.8 0.6 0.2 0.5 0.2 0.2 0.7 0.5 0.5 0.5 0.5 

D25 0.3 0.2 0.3 0.4 0.3 0.8 0.8 0.4 0.3 0.2 0.1 0.6 0.7 0.3 0.7 0.5 

D26 0.4 0.4 0.6 0.3 0.5 0.2 0.2 0.5 0.2 0.4 0.7 0.3 0.3 0.3 0.3 0.7 

D27 0.6 0.4 0.3 0.7 0.5 0.5 0.4 0.2 0.5 0.6 0.7 0.7 0.8 0.6 0.8 0.3 

D28 0.2 0.5 0.7 0.4 0.6 0.5 0.5 0.4 0.3 0.4 0.26 0.11 0.2 0.3 0.2 0.8 

D29 0.3 0.8 0.2 0.4 0.4 0.4 0.2 0.4 0.3 0.5 0.5 0.2 0.4 0.7 0.4 0.2 

D30 0.8 0.6 0.5 0.4 0.2 0.6 0.4 0.6 0.5 0.7 0.2 0.2 0.4 0.2 0.4 0.4 

D31 0.5 0.5 0.2 0.6 0.7 0.7 0.6 0.2 0.4 0.6 0.5 0.5 0.5 0.5 0.5 0.4 

D32 0.7 0.4 0.8 0.4 0.5 0.5 0.6 0.2 0.5 0.7 0.7 0.4 0.8 0.4 0.8 0.5 

D33 0.3 0.5 0.7 0.7 0.5 0.5 0.8 0.7 0.3 0.4 0.3 0.5 0.6 0.5 0.6 0.8 

D34 0.8 0.3 0.6 0.2 0.5 0.5 0.2 0.2 0.7 0.6 0.8 0.3 0.5 0.3 0.5 0.6 

D35 0.2 0.3 0.5 0.3 0.3 0.3 0.2 0.2 0.5 0.3 0.5 0.3 0.4 0.7 0.4 0.5 

D36 0.4 0.6 0.2 0.5 0.2 0.2 0.4 0.7 0.3 0.4 0.4 0.6 0.5 0.6 0.5 0.4 

D37 0.4 0.3 0.4 0.2 0.5 0.5 0.6 0.7 0.7 0.6 0.4 0.3 0.3 0.4 0.3 0.5 

D38 0.5 0.7 0.5 0.4 0.3 0.3 0.4 0.3 0.2 0.2 0.5 0.7 0.3 0.5 0.3 0.3 

D39 0.7 0.2 0.3 0.4 0.3 0.3 0.5 0.5 0.2 0.3 0.8 0.2 0.4 0.4 0.4 0.3 

D40 0.6 0.5 0.4 0.6 0.5 0.5 0.7 0.2 0.2 0.8 0.6 0.5 0.5 0.4 0.4 0.4 
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Table 3. Efficiency scores for three stage sample 

 K-RNDEA K-NDEA DK-RNDEA CH-RNDEA 

D1 0.15544 0.51110 0.59553 0.59553 

D2 0.08049 0.26079 0.34244 0.34244 

D3 0.04502 0.20451 0.32648 0.32648 

D4 0.07842 0.29629 0.45968 0.45968 

D5 0.15620 0.56706 0.77022 0.77022 

D6 0.11880 0.41157 0.49821 0.49821 

D7 0.08567 0.30066 0.40595 0.40595 

D8 0.08567 0.52659 0.77417 0.77417 

D9 0.06151 0.23635 0.33358 0.33358 

D10 0.11826 0.39739 0.50930 0.50930 

D11 0.07293 0.31998 0.52054 0.52054 

D12 0.11636 0.38202 0.47954 0.47954 

D13 0.14569 0.50001 0.50448 0.50448 

D14 0.12901 0.44361 0.57234 0.57234 

D15 0.13647 0.49390 0.66604 0.66604 

D16 0.11751 0.41110 0.54479 0.54479 

D17 0.10502 0.36896 0.46018 0.46018 

D18 0.13255 0.43594 0.52028 0.52028 

D19 0.15273 0.50740 0.71324 0.71324 

D20 0.08447 0.29594 0.48614 0.48614 

D21 0.11934 0.46716 0.55249 0.55249 

D22 0.08604 0.28570 0.45350 0.45350 

D23 0.09572 0.39680 0.58229 0.58229 

D24 0.10072 0.36134 0.49722 0.49722 

D25 0.18388 0.63788 0.91869 0.91869 

D26 0.12062 0.40464 0.52521 0.52521 

D27 0.12605 0.49562 0.63436 0.63436 

D28 0.15828 0.52280 0.62272 0.62272 

D29 0.15879 0.53088 0.79246 0.79246 

D30 0.07593 0.27722 0.36673 0.36673 

D31 0.09730 0.37374 0.53910 0.53910 

D32 0.11258 0.41978 0.46807 0.46807 

D33 0.14282 0.45565 0.64997 0.64997 

D34 0.12635 0.41675 0.54152 0.54152 

D35 0.20873 0.71652 0.87222 0.87222 

D36 0.11878 0.45194 0.64448 0.64448 

D37 0.10705 0.39455 0.59274 0.59274 

D38 0.07738 0.27255 0.37194 0.37194 

D39 0.09142 0.35516 0.49268 0.49268 

D40 0.08230 0.30924 0.39591 0.39591 

 



Sangcholi, et al./ IJDEA Vol.12, No.1, (2024), 60-79 

 

78 

Table 4. Comparison results of RNDEA models and FTSDEA model 

 K-RNDEA LB-TSFDEA K-NDEA DK-RNDEA UB-TSFDEA 

D1 0.15544 0.3479595 0.51110 0.59553 0.958486404 

D2 0.08049 0.2403438 0.26079 0.34244 0.732388614 

D3 0.04502 0.130298 0.20451 0.32648 0.533159083 

D4 0.07842 0.219912 0.29629 0.45968 0.784724982 

D5 0.15620 0.4335226 0.56706 0.77022 0.776165434 

D6 0.11880 0.3211291 0.41157 0.49821 0.906117657 

D7 0.08567 0.289095 0.30066 0.40595 0.906117657 

D8 0.08567 0.4659895 0.52659 0.77417 0.575780282 

D9 0.06151 0.2486869 0.23635 0.33358 0.746330186 

D10 0.11826 0.2819946 0.39739 0.50930 0.847015167 

D11 0.07293 0.2270316 0.31998 0.52054 0.644190479 

D12 0.11636 0.3276272 0.38202 0.47954 0.964517485 

D13 0.14569 0.3473709 0.50001 0.50448 0.645035033 

D14 0.12901 0.3528425 0.44361 0.57234 0.932113829 

D15 0.13647 0.3797547 0.49390 0.66604 0.846589218 

D16 0.11751 0.3638269 0.41110 0.54479 0.886526503 

D17 0.10502 0.2623749 0.36896 0.46018 0.692678146 

D18 0.13255 0.3620847 0.43594 0.52028 0.676876741 

D19 0.15273 0.4579346 0.50740 0.71324 0.899787961 

D20 0.08447 0.2355745 0.29594 0.48614 0.670920786 

D21 0.11934 0.3386424 0.46716 0.55249 0.946499051 

D22 0.08604 0.2754563 0.28570 0.45350 0.810064371 

D23 0.09572 0.2882303 0.39680 0.58229 0.870195759 

D24 0.10072 0.3078927 0.36134 0.49722 0.920122078 

D25 0.18388 0.5517692 0.63788 0.91869 0.787821803 

D26 0.12062 0.3072108 0.40464 0.52521 0.868243405 

D27 0.12605 0.4531317 0.49562 0.63436 1 

D28 0.15828 0.4528382 0.52280 0.62272 0.575780282 

D29 0.15879 0.4548555 0.53088 0.79246 0.888358693 

D30 0.07593 0.1921567 0.27722 0.36673 0.718053002 

D31 0.09730 0.326676 0.37374 0.53910 0.810097928 

D32 0.11258 0.347212 0.41978 0.46807 0.968854176 

D33 0.14282 0.4085115 0.45565 0.64997 0.659232528 

D34 0.12635 0.3352685 0.41675 0.54152 0.891927157 

D35 0.20873 0.4888391 0.71652 0.87222 0.865318629 

D36 0.11878 0.398574 0.45194 0.64448 0.914430012 

D37 0.10705 0.2937327 0.39455 0.59274 0.675561156 

D38 0.07738 0.213271 0.27255 0.37194 0.614393154 

D39 0.09142 0.3196149 0.35516 0.49268 0.860523435 

D40 0.08230 0.2444869 0.30924 0.39591 0.803938629 
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