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Abstract 

Cross-efficiency evaluation in Data envelopment analysis (DEA) has been accepted as a 

useful tool for performance evaluation and ranking of decision making units. In this paper 

using Undesirable Multiple Form (UMF) model with specific risk of α, a new stochastic model 
called Expected Ranking Criterion is introduced using statistical techniques for efficiency 

evaluation decision making units (DMU). Another issue in applying cross-efficiency DEA 

models is considering stochastic in input and output variables. Also, the non-uniqueness of 

optimal weights in this evaluation has reduced the usefulness of this powerful method. As a 
result, it is recommended that secondary goals be introduced in cross-efficiency evaluation. 

In this paper, the cross-efficiency model is modified to deal with stochastic data by applying 

chance-constrained approach.  
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1. Introduction  
Cross-efficiency evaluation method was 

employed for the first time by Sexton [1] 

to address such concerns in DEA modeling 

by providing more flexible and realistic 
weighting approach which is called peer-

evaluation method. Successful 

applications of cross-efficiency in DEA 
literature shows the advantage of applying 

this method in the applications. The idea of 

using peer-evaluation instead of self-

evaluation in cross-efficiency method 
provided an extension to the theory of 

DEA by promoting the power of 

individual voices in the process peer 
valuation [2]. This method is then 

improved in Doyle [3]. Efficiency among 

DMUs with weight schemes was 
introduced by Anderson [4]. 

In spite of merits of DEA cross-efficiency 

evaluation and its wide applications, it still 

has some short falls. For each DMU, the 
fact that DEA optimal weights are not 

unique may reduce the usefulness of cross-

efficiency evaluation [1]. As Doyle [3] 
mentioned, multiple optimal weights 

acquired from classic DEA models can be 

used as secondary goals for better 
discrimination among DMUs. Evaluation 

of DEA cross-efficiency on the basis of 

Pareto improvement model was proposed 

by Wu [5]. During recent years, the 
research concerning cross-efficiency 

evaluation has developed fast. Some of the 

significant studies in this field are as 
follows: Javier Alcaraz [6], Oral [7], 

Soltanifar [8], Li [9]. 

In DEA, DMUs are evaluated using 

envelopment or multiplier models, via 
running n times for each DMU to obtain 

the relative efficiency of the whole DMUs. 

Traditional DEA models do not deal with 
imprecise data and presume that all input 

and output are exactly known. However, 

this assumption may not always be true, 
especially given the weakness in DEA 

models in dealing with stochastic 

variations in inputs and outputs. Land [10] 

formulated a chance-constrained 

envelopment model, when inputs and 
outputs are normally distributed but the 

probabilistic chance constraints in the 

model are individually imposed on the 

outputs. Although this formulation allows 
for dealing with dependencies among the 

different DMUs (decision making units), it 

does not incorporate the statistical 
dependencies among the outputs of the 

DMU to be considered. To cope with this, 

Olesen [11] presented a chance-

constrained multiplier model, in which the 
chance constraints are individually 

imposed on each DMU so that its outputs 

are stochastically dependent. Although 
both models have some advantages, it is 

reasonable to think that a model having the 

two features (stochastic dependences 
among the DMUs and among the outputs 

of the considered DMU) will provide a 

greater flexibility and reality in practical 

analysis. 
The overall attitude toward performance 

evaluation is to reduce inputs and increase 

outputs. The CCR and BCC models are 
based on this. But it should be noted that 

organizations are not always looking to 

maximize outputs and minimize inputs. 
Because outputs and inputs can be 

desirable or undesirable. For example, the 

number of defective goods, or the amount 

of pollution and waste, or the release of 
CO2 in the production process is 

undesirable, which should be reduced. 

Accordingly, models with undesirable 
inputs/outputs should be taken into 

account. In the event that the input and 

output values of DMUs are definitive, 

Mandal [12] show that in assessing the 
energy efficiency if the undesirable 

outputs are ignored then the biased results 

are observed in efficiency scores.  
In addition, Chen [13] use a stochastic 

network DEA model for Chinese airline 

efficiency under CO2 emissions and flight 
delays. Izadikhah [14] propose a chance-

constrained two-stage DEA model in the 

presence of undersiable factores to 

evaluate the sustainability of supply 
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chains. Jin [15] compare APEC countries 
in terms of efficiency in Gross Domestic 

Product (GDP) considering undesirable 

stochastic input and output (i.e. CO2 

production) with given risk. Wu [16] 
compare several provinces in China 

considering wasting water, emission of 

toxic gases, and the production of useless 
solid material as undesirable stochastic 

outputs with given error. Liu [17] 

proposed a multi-attribute decision 
making based on stochastic DEA cross-

efficiency with ordinal variable and Its 

application to evaluation of banks’ 

sustainable development by considering   
undesirable outputs with weak 

disposability. Ren [18] proposed a 

measuring the energy and carbon emission 
efficiency of regional transportation 

systems in China by chance-constrained 

DEA models. 
This article is organized as follows. In the 

following section, we first summarize the 

Undesirable Multiple Form (UMF) model. 

Then, in the third section, we obtain a 
stochastic model by taking into account 

the error α. Besides, we propose a model 

under the mean rating criterion. In order to 
prevent the possible elimination of 

desirable and undesirable outputs a new 

two-objective model is presented. In the 

fourth section, considering the uniqueness 
of the stochastic cross-efficiency 

solutions, we propose an aggressive 

stochastic cross-efficiency evaluation. 
Finally, in Section 5, applicability of the 

proposed models is examined using an 

Example and Discussion. In Section 6 
contains conclusions and suggestions for 

future research. 

 
 

2. Undesirable Multiple Form (UMF) 

model 
In this section, we first briefly introduce an 

Undesirable Multiple Form (UMF) model. 

Assume that there are no decision units for 

evaluation, each 𝐷𝑀𝑈j has 𝑚 inputs and 𝑠 

is the  number of desirable outputs and  𝑘 

is the number of undesirable outputs. Let 

𝑥𝑖𝑑 (j = 1, ..., m), 𝑦𝑟𝑗  (r = 1, ..., s) and 𝑧𝑝𝑗  

(p = 1, ..., k) be the inputs, desirable 

outputs and undesirable outputs, 

respectively. Kousmanen [19] introduced 
the following linear programming model 

for evaluating 𝐷𝑀𝑈𝑑    𝑑 ∈ {1, … , 𝑛} 
Min Ө 

s.t. 
∑ (𝜔𝑗+𝜇𝑗) 𝑥𝑖𝑑 ≤ Ө 𝑥𝑖𝑑

𝑛
𝑗=1    𝑖 = 1, … , 𝑚    

∑ 𝜔𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≥ 𝑦𝑟𝑑     𝑟 = 1, … , 𝑠  (1) 

∑ 𝜔𝑗𝑧𝑝𝑗
𝑛
𝑗=1 = 𝑧𝑝𝑑       𝑝 = 1, … , 𝑘  

∑ (𝜔𝑗+𝜇𝑗) = 1𝑛
𝑗=1                    

  𝜔𝑗 ≥ 0       𝜇𝑗 ≥ 0   𝑗 = 1, … , 𝑛 

 
Where 𝜔𝑗 , 𝜇𝑗  ≥ 0 (for j = 1, . . . , n) are 

structural variables for the production 

possibility set (PPS). This model seeks for 
decreasing the inputs of DMUd by rate of 

Ө. The model (1) is an input oriented 

model with an optimal value of Ө * ∈ (0, 

1]. If Ө * = 1, we say that DMUd is 

technical efficient. If we write the dual of 

model (1), the following model (2) is 

obtained that we name it as Undesirable 
Multiple Form (UMF): 
 𝐸∗

𝑑𝑑 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑑𝑦𝑟𝑑
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑑𝑧𝑝𝑑

𝑘
𝑝=1 + 𝛼𝑑  

 s.t. 

 ∑ 𝑣𝑖𝑑𝑥𝑖𝑑 = 1𝑚
𝑖=1  

  ∑ 𝑣𝑖𝑑𝑥𝑖𝑗
𝑚
𝑖=1 − ∑ 𝑢𝑟𝑑𝑦

𝑟𝑗
𝑠
𝑟=1 −

  ∑ 𝑤𝑝𝑑𝑧𝑝𝑗
𝑘
𝑝=1 −𝛼𝑑 ≥ 0      𝑗 = 1, … , 𝑛  (2) 

  ∑ 𝑣𝑖𝑑𝑥𝑖𝑗
𝑚
𝑖=1 −𝛼𝑑 ≥ 0        𝑗 = 1, … , 𝑛   

 𝑣𝑖𝑑 ≥ 0          𝑖 = 1, … , 𝑚 

  𝑢𝑟𝑑 ≥ 0         𝑟 = 1, … , 𝑠 

   𝑤𝑝𝑑   𝑓𝑟𝑒𝑒  𝑝 = 1, … , 𝑘 

 𝛼𝑑    free 

 

In model (2)  𝑣𝑖𝑑 (i = 1, ..., 𝑚) ,                    

𝑢𝑟𝑑  (r = 1, ..., 𝑠) , 𝑤𝑝𝑑  (p = 1, ..., 𝑘) are 

weights of inputs and outputs and 

undesirable outputs, respectively. Given 

the existence of free variable𝑠 𝛼𝑑 and 𝑤𝑝𝑑 , 

the model can produce the-often-hidden 
negative efficiency. This efficiency shows 
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up when cross efficiency is computed. de 
Mello [20] showed that this can be 

corrected with creating non-negative 

constraints in the model. Following de 

Mello [20] we modify model (3) as 

follows: 
 𝐸∗

𝑑𝑑 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑑𝑦𝑟𝑑
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑑𝑧𝑝𝑑

𝑘
𝑝=1 +

𝛼𝑑  
 s.t. 
 ∑ 𝑣𝑖𝑑𝑥𝑖𝑑 = 1𝑚

𝑖=1  
 ∑ 𝑣𝑖𝑑𝑥𝑖𝑗

𝑚
𝑖=1 − ∑ 𝑢𝑟𝑑𝑦𝑟𝑗

𝑠
𝑟=1 −

∑ 𝑤𝑝𝑑𝑧𝑝𝑗
𝑘
𝑝=1 −𝛼𝑑 ≥ 0   𝑗 = 1, … , 𝑛 (3) 

∑ 𝑣𝑖𝑑𝑥𝑖𝑗
𝑚
𝑖=1 −𝛼𝑑 ≥ 0        𝑗 = 1, … , 𝑛   

∑ 𝑢𝑟𝑑𝑦𝑟𝑗
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑑 𝑧𝑝𝑗

𝑘
𝑝=1 +𝛼𝑑 ≥ 0  𝑗 = 1, … , 𝑛  

 𝑣𝑖𝑑 ≥ 0         𝑖 = 1, … , 𝑚 

  𝑢𝑟𝑑 ≥ 0         𝑟 = 1, … , 𝑠 

 𝑤𝑝𝑑   𝑓𝑟𝑒𝑒  𝑝 = 1, … , 𝑘 

 𝛼𝑑    free 
 

3. The stochastic model of the proposed 

model 

Assume that random variables �̃�𝑖𝑗, �̃�𝑟𝑗 , �̃�𝑝𝑗   

are inputs, desirable outputs and 
undesirable outputs, respectively , each of 

which has normal distribution.That is, 

𝑥𝑖𝑗~𝑁 (�̅�𝑖𝑗 , (𝜎𝑖𝑗
𝑥)

2
)            ∀ i, j 

�̃�𝑟𝑗~𝑁 (�̅�𝑟𝑗  , (𝜎𝑟𝑗
𝑦)

2
)          ∀ r, j 

�̃�𝑝𝑗~𝑁 (�̅�𝑝𝑗  , (𝜎𝑝𝑗
𝑧)

2
)         ∀ 𝑝, 𝑗 

Besides for each DMU, there is a variance 

covariance matrix Σ that it’s the main 

diameter shows the variance of variables 
and the other components of Σ represent 

the covariance of the variables. Therefore, 

taking into account the error value α 

(confidence coefficient (1-α)), the 
stochastic form of the model is as follows. 

𝐸∗
𝑑𝑑 = 𝑚𝑎𝑥 𝐸(∑ 𝑢𝑟𝑑�̃�𝑟𝑑

𝑠
𝑟=1 +

∑ 𝑤𝑝𝑑 �̃�𝑝𝑑
𝑘
𝑝=1 + 𝛼𝑑)                                          

𝑠. 𝑡.                                                                               
𝐸(∑ 𝑣𝑖𝑑 �̃�𝑖𝑑

𝑚
𝑖=1 ) = 1              (4) 

 𝑃(∑ 𝑣𝑖𝑑�̃�𝑖𝑗
𝑚
𝑖=1 − ∑ 𝑢𝑟𝑑�̃�𝑟𝑗

𝑠
𝑟=1 − ∑ 𝑤𝑝𝑑�̃�𝑝𝑗

𝑘
𝑝=1 −

𝛼𝑑 ≥ 0) ≥ 1 − 𝛼        𝑗 = 1, … , 𝑛  
𝑃(∑ 𝑣𝑖𝑑�̃�𝑖𝑗

𝑚
𝑖=1 − 𝛼𝑑 ≥ 0) ≥ 1 − 𝛼     𝑗 = 1, … , 𝑛  

𝑃(∑ 𝑢𝑟𝑑�̃�𝑟𝑗
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑑�̃�𝑝𝑗

𝑘
𝑝=1 + 𝛼𝑑 ≥ 0) ≥ 1 −

𝛼        𝑗 = 1, … , 𝑛  
 𝑣𝑖𝑑 ≥ 0        𝑖 = 1, … , 𝑚      
 𝑢𝑟𝑑 ≥ 0        𝑟 = 1, … , 𝑠              

 𝑤𝑝𝑑   𝑓𝑟𝑒𝑒  𝑝 = 1, … , 𝑘 

 𝛼𝑑    free 

 

We need to transform the model (4) into 

non-stochastic quadratic form to calculate 
the optimal solution. The stochastic 

version of UMF envelopment model is 

formulated as follow; Cooper [21]: 
 𝐸∗

𝑑𝑑 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑑𝑦𝑟𝑑
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑑𝑧�̅�𝑑 + 𝛼𝑑   

𝑘
𝑝=1   

  s.t.   

 ∑ 𝑣𝑖𝑑 �̅�𝑖𝑑 = 1        𝑚
𝑖=1  (5) 

 ∑ 𝑣𝑖𝑑 �̅�𝑖𝑗
𝑚
𝑖=1 − ∑ 𝑢𝑟𝑑�̅�𝑟𝑗

𝑠
𝑟=1 − ∑ 𝑤𝑝𝑑 �̅�𝑝𝑗

𝑘
𝑝=1 −

𝛼𝑑 + 𝜎1𝑗𝛷−1(𝛼) ≥ 0         𝑗 = 1, … , 𝑛 

𝜎1𝑗
2 = ∑ ∑ 𝑣𝑖𝑑𝑣𝑘𝑑  𝑐𝑜𝑣(𝑥𝑖𝑗 , 𝑥𝑘𝑗)𝑚

𝑘=1
𝑚
𝑖=1 +

∑ ∑ 𝑢𝑟𝑑𝑢𝑘𝑑 𝑐𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑘𝑗)𝑠
𝑘=1

𝑠
𝑟=1 +

∑ ∑ 𝑤𝑝𝑑𝑤𝑞𝑑 𝑐𝑜𝑣(�̃�𝑝𝑗 , �̃�𝑞𝑗)𝑘
𝑞=1

𝑘
𝑝=1 −

2 ∑ ∑ 𝑣𝑖𝑑𝑢𝑟𝑑𝑐𝑜𝑣(𝑥𝑖𝑗 , �̃�𝑟𝑗)𝑠
𝑟=1

𝑚
𝑖=1 −

2 ∑ ∑ 𝑣𝑖𝑑𝑤𝑝𝑑𝑐𝑜𝑣(𝑥𝑖𝑗 , �̃�𝑝𝑗)𝑘
𝑝=1

𝑚
𝑖=1 +

2 ∑ ∑ 𝑢𝑟𝑑𝑤𝑝𝑑𝑐𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑝𝑗)𝑘
𝑝=1

𝑠
𝑟=1      𝑗 =

1, … , 𝑛  
∑ 𝑣𝑖𝑑 �̅�𝑖𝑗

𝑚
𝑖=1 + 𝜎2𝑗𝛷−1(𝛼) ≥ 0     𝑗 = 1, … , 𝑛  

𝜎2𝑗
2 = ∑ ∑ 𝑣𝑖𝑑𝑣𝑘𝑑  𝑐𝑜𝑣(𝑥𝑖𝑗 , 𝑥𝑘𝑗)𝑚

𝑘=1
𝑚
𝑖=1  𝑗 =

1, … , 𝑛  
∑ 𝑢𝑟𝑑�̅�𝑟𝑗

𝑠
𝑟=1 + ∑ 𝑤𝑝𝑑 �̅�𝑝𝑗

𝑘
𝑝=1 + 𝛼𝑑 +

𝜎3𝑗𝛷−1(𝛼) ≥ 0         𝑗 = 1, … , 𝑛  

𝜎3𝑗
2 = ∑ ∑ 𝑢𝑟𝑑𝑢𝑘𝑑 𝑐𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑘𝑗)𝑠

𝑘=1
𝑠
𝑟=1 +

  ∑ ∑ 𝑤𝑝𝑑𝑤𝑞𝑑  𝑐𝑜𝑣(�̃�𝑝𝑗 , �̃�𝑞𝑗)𝑘
𝑞=1

𝑘
𝑝=1 +

2 ∑ ∑ 𝑢𝑟𝑑𝑤𝑝𝑑𝑐𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑝𝑗)𝑘
𝑝=1

𝑠
𝑟=1     𝑗 =

1, … , 𝑛  
𝑣𝑖𝑑 ≥ 0       𝑖 = 1, … , 𝑚  
𝑢𝑟𝑑 ≥ 0       𝑟 = 1, … , 𝑠  
 𝑤𝑝𝑑   𝑓𝑟𝑒𝑒  𝑝 = 1, … , 𝑘 

 𝛼𝑑    free 

𝜎1𝑗 ≥ 0         𝑗 = 1, … , 𝑛      

𝜎2𝑗 ≥ 0         𝑗 = 1, … , 𝑛      

𝜎3𝑗 ≥ 0         𝑗 = 1, … , 𝑛      

 

In which ɸ(α)  is    the standard normal 

distribution function and ɸ−1(α) is the 

inverse of the standard normal distribution 

function in the value of α. 𝜎1𝑗
2 , 𝜎2𝑗

2and  

𝜎3𝑗
2, are the variance of the first, second 

and third constraints of model (4). 
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Definition 1: The feasible solution 
(v∗

id , u∗
rd, w∗

pd, α∗
d)  is an optimal 

solution of model (5) if  
∑ 𝑢∗

𝑟𝑑�̅�𝑟𝑑
𝑠
𝑟=1 + ∑ 𝑤∗

𝑝𝑑 �̅�𝑝𝑑 + 𝛼∗
𝑑 ≥𝑘

𝑝=1

∑ 𝑢𝑟𝑑�̅�𝑟𝑑
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑑 �̅�𝑝𝑑

𝑘
𝑝=1 + 𝛼𝑑  

For any feasible solution 
(𝑣𝑖𝑑 , 𝑢𝑟𝑑 , 𝑤𝑝𝑑 , 𝛼𝑑). 

 
Expected raking criterion: The higher 

 𝐸∗
𝑑𝑑 means the DMU is more efficient 

and higher rank of the DMUj. 
 From the optimal solution of model (5), 

we obtain stochastic efficiency score, but 

for better discrimination, we take into 
account the stochastic cross- efficiency. If 

the optimal solution of model (5) is 

(𝑣∗
𝑖𝑑 , 𝑢∗

𝑟𝑑 , 𝑤∗
𝑝𝑑 , 𝛼∗

𝑑) then, stochastic 

cross-efficiency of   𝐷𝑀𝑈𝑗 based on 

𝐷𝑀𝑈𝑑 is defined as below 
𝐸∗

𝑑𝑗

=
∑ 𝑢∗

𝑟𝑑�̅�𝑟𝑗
𝑠
𝑟=1 + ∑ 𝑤∗

𝑝𝑑 �̅�𝑝𝑗
𝑘
𝑝=1 + 𝛼∗

𝑑

∑ 𝑣∗
𝑖𝑑 �̅�𝑖𝑗

𝑚
𝑖=1

  (6)    

Therefore, the stochastic cross-efficiency 

of each 𝐷𝑀𝑈𝑗  is equal to the mean of 𝐸∗
𝑑𝑗 

,that is, 
𝐸∗

𝑗 =
1

𝑛
∑ 𝐸∗

𝑑𝑗                                                      (7)       𝑛
𝑑=1   

This value is a new stochastic efficiency 
score for each DMU. 

 

4. The stochastic priority ranking model 
Given that the optimal solution of the 

models may not be unique, the obtained 

stochastic cross- efficiency scores are 
some extent arbitrarily. To solve this 

problem, a new model is proposed to rank 

DMUs. The proposed model not only 

maintains the stochastic efficiency value, 
but also increases stochastic cross- 

efficiency. 
R∗

pd = min ∑  zj
n
j=1   

  s.t.   

 ∑ vidx̅id = 1        m
i=1  (8) 

∑ urdy̅rd
s
r=1 + ∑ wpdz̅pd + αd =k

p=1 E∗
dd     

∑ vidx̅ij
m
i=1 − ∑ urdy̅rj

s
r=1 − ∑ wpdz̅pj

k
p=1 −

αd + σ1jΦ
−1(α) ≥ 0         j = 1, … , n  

σ1j
2 = ∑ ∑ vidvkd cov(x̃ij, x̃kj)

m
k=1

m
i=1 +

∑ ∑ urdukd cov(ỹrj, ỹkj)
s
k=1

s
r=1 +

∑ ∑ wpdwqd cov(z̃pj, z̃qj)
k
q=1

k
p=1 −

2 ∑ ∑ vidurdcov(x̃ij, ỹrj)
s
r=1

m
i=1 −

2 ∑ ∑ vidwpdcov(x̃ij, z̃pj)
k
p=1

m
i=1 +

2 ∑ ∑ urdwpdcov(ỹrj, z̃pj)
k
p=1

s
r=1      j =

1, … , n  
∑ vidx̅ij

m
i=1 + σ2jΦ

−1(α) ≥ 0         j = 1, … , n  

σ2j
2 = ∑ ∑ vidvkd cov(x̃ij, x̃kj)

m
k=1

m
i=1      j = 1, … , n  

  ∑ urdy̅rj
s
r=1 + ∑ wpdz̅pj

k
p=1 + αd +

σ3jΦ
−1(α) ≥ 0         j = 1, … , n  

σ3j
2 = ∑ ∑ urdukd cov(ỹrj, ỹkj)

s
k=1

s
r=1 +

  ∑ ∑ wpdwqd cov(z̃pj, z̃qj)
k
q=1

k
p=1 +

2 ∑ ∑ urdwpdcov(ỹrj, z̃pj)
k
p=1

s
r=1    j = 1, … , n  

E∗
dd ∑ vidx̅ij

m
i=1 − ∑ urdy̅rj

s
r=1 − ∑ wpdz̅pj −k

p=1

αd + sj = 0             j = 1, … , n  

sj ≤ M ×  zj        j = 1, … , n 

 zjϵ{0,1}       j = 1, … , n 

sj free         j = 1, … , n 

vid ≥ 0       i = 1, … , m  
urd ≥ 0       r = 1, … , s           
 wpd  free  p = 1, … , k 

 αd    free 

σ1j ≥ 0         j = 1, … , n      

σ2j ≥ 0         j = 1, … , n      

σ3j ≥ 0         j = 1, … , n    

 

The main idea of model (8) is that the first 

and second constraints ensure that the 

stochastic efficiency 𝐷𝑀𝑈𝑑 is maintained. 

In the seventh constraint, it is easy to see 

that 
 E∗

dd ∑ vidx̅ij
m
i=1 − ∑ urdy̅rj

s
r=1 −

∑ wpdz̅pj
k
p=1 −αd = −sj      

 If    𝑠𝑗>0, then 

  E∗
dd <

∑ urdy̅rj
s
r=1 + ∑ wpdz̅pj

k
p=1 + αd

∑ vidx̅ij
m
i=1

=  E∗
dj 

This means that the cross-efficiency of 

𝐷𝑀𝑈𝑗 based on 𝐷𝑀𝑈𝑑is greater than the 

stochastic efficiency of 𝐷𝑀𝑈𝑑 . If 𝑠∗
𝑗<0 
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then 𝐸∗
𝑑𝑑>𝐸∗

𝑑𝑗, that is, the stochastic 

cross- efficiency of 𝐷𝑀𝑈𝑗based on 

𝐷𝑀𝑈𝑑is smaller than the stochastic 

efficiency of  𝐷𝑀𝑈𝑑. 

In the eighth constraint, the M value is 

defined as the largest positive value. If 

𝑠∗
𝑗>0, then the value of 𝑧∗

𝑗  will be one, 

and if 𝑠∗
𝑗<0, then the value 𝑧∗

𝑗 is zero. 

And since the objective function is the 

minimum type, then the most values of 𝑧∗
𝑗 

is zero. Thus, 𝑠∗
𝑗<0 is further observed. In 

this case, the stochastic cross- efficiency of 

DMUj is lower than the 𝐷𝑀𝑈𝑑. 

In model (8), the optimal solution may not 

be unique, so we consider below 

aggressive model which not only 
maintains stochastic efficiency but also 

minimizes the cross-efficiency score of 

other DMUs: 
In model (8), the optimal solution may not 

be unique, so we consider the following 

aggressive model which not only 

maintains stochastic efficiency but also 
minimizes the cross-efficiency score of 

other DMUs: 
𝑚𝑎𝑥 ∑ 𝛹𝑗

𝑛
𝑗=1   

 s.t 

 ∑ vidx̅id = 1 m
i=1        (9) 

 ∑ urdy̅rd
s
r=1 + ∑ wpdz̅pd + αd =k

p=1 E∗
dd    

 ∑ vidx̅ij
m
i=1 − ∑ urdy̅rj

s
r=1 −

∑ wpdz̅pj−αd
k
p=1 − Ψj  = 0       j = 1, … , n 

 E∗
dd ∑ vidx̅ij

m
i=1 − ∑ urdy̅rj

s
r=1 −

∑ wpdz̅pj
k
p=1 −αd + sj = 0         j = 1, … , n 

 ∑  zj
n
j=1 = R∗

pd 

sj ≤ M ×  zj        j = 1, … , n                                       

  zjϵ{0,1}         j = 1, … , n 

sj free           j = 1, … , n 

vid ≥ 0         i = 1, … , m    
urd ≥ 0         r = 1, … , s 

 wpd  free  p =  1, … , k 

 αd    free 

 

The model (9) increases the efficiency 

deviation of other 𝐷𝑀𝑈𝑠 in order to 

improve cross-efficiency of 𝐷𝑀𝑈𝑑 while 

maintaining the stochastic efficiency 

of 𝐸∗
𝑑𝑑. In the model (9), 𝑅∗

𝑝𝑑  value is the 

same as obtained in model (8). 

                                                                                                                                                              
Therefore, if (𝑣∗

𝑖𝑑 , 𝑢∗
𝑟𝑑 , 𝑤∗

𝑝𝑑 , 𝛼∗
𝑑) is an 

optimal solution of the model (11), then 

stochastic cross-efficiency of 𝐷𝑀𝑈𝑗   
based on 𝐷𝑀𝑈𝑑  is as follows: 
 
𝜃′𝑑𝑗

=
∑ 𝑢∗

𝑟𝑑�̅�𝑟𝑗
𝑠
𝑟=1 + ∑ 𝑤∗

𝑝𝑑 �̅�𝑝𝑗 
𝑘
𝑝=1 +𝛼∗

𝑑

∑ 𝑣∗
𝑖𝑑 �̅�𝑖𝑗

𝑚
𝑖=1

          (10)  

  

Therefore, for each 𝐷𝑀𝑈𝑗 , the mean 

stochastic cross-efficiency is equal to 

𝜃𝑗 =
1

𝑛
∑ 𝜃′𝑑𝑗                            

𝑛
𝑑=1  (11) 

which is a new stochastic cross-efficiency 

score for 𝐷𝑀𝑈𝑗 (𝑗 = 1, … , 𝑛). 

 

5. Numerical Example and Discussion 

 In this section, we illustrate the proposed 
models for 15 DMUs. Any DMUs has two 

inputs and two outputs, one of which is 

undesirable. The first input variable (�̃�1) 

and the second input variable ( �̃�2) . Also, 

the first output variable (�̃�1)  is desirable, 

and the second output (�̃�1)  is undesirable. 

Suppose that the mean values and standard 

deviation and covariance variance matrix 
were estimated. Tables 1and 2 show the 

estimated parameters of data and their 

distribution. 
 
Table 1: The estimated parameters of inputs 

normal distributions 
DMU 𝑥1 𝑥2 

1 N(23.6,5.8) N(22.4,4.3) 

2 N(32.6,4.3) N(72,3.6) 

3 N(6,2.5) N(23.2,3.3) 

4 N(12.6,5.3) N(19.4,4.13) 

5 N(37.4,3.3) N(36.8,4.27) 

6 N(7.4,4.3) N(45.4,2.3) 

7 N(21.8,2. 3) N(15.6,8.6) 

8 N(32.6,2.3) N(37,2.5) 

9 N(17.2,8.7) N(32.8,6.2) 

10 N(13.2,1.2) N(47.2,2.12) 

11 N(19.4,5.3) N(42.4,4.12) 

12 N(7.8,2.7) N(32,13) 

13 N(16.8,3.8) N(23.4,4.13) 

14 N(12.2,5.6) N(47.8,3.17) 

15 N(73.2,14.2) N(17,18.5) 
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Table 2: The estimated parameters of outputs 

normal distributions 
DMU �̃�1 �̃�1 

1 N(41.72,3.8) N(2.08,0.01) 

2 N(23,3.5) N(2.14,0.03) 

3 N(95.4,286.3) N(3.22,0.02) 

4 N(17.6,2.8) N(5.03,0.07) 

5 N(33,3.5) N(3.6,0.05) 

6 N(44.4,6.8) N(2.9,0.03) 

7 N(15.2,0.7) N(2.54,1 3) 

8 N(42.4,7.8) N(1.44,0. 03) 

9 N(32.4,5.8) N(1.94,0.02) 

10 N(83,31) N(2.54,0.04) 

11 N(35.4,5.9) N(3.96,0.05) 

12 N(41.6,1.8) N(6.18,0.07) 

13 N(31.6,1.9) N(2.78,0.03) 

14 N(23,4.5) N(3.18,0.04) 

15 N(84.4,28.3) N(2.212,0.03) 

 
For each DMU we estimated a variance-

covariance symmetric matrix. For 

instance, Table 3 shows this matrix for 

DMU1.  
 
Table 3: The variance-covariance symmetric 

matrix for DMU1 

covariance 𝑥1 𝑥2 �̃�1 �̃�1 

𝑥1 2.3 2.01 3.55 0.44 

𝑥2 2.01 1.4 2.55 0.06 

�̃�1 3.55 2.55 4.9 0.025 

�̃�1 0.44 0.06 0.025 0.61 

 

For example, in Table 4, when α = 0.05, 
stochastic cross-efficiency are derived 

from model (7) and aggressive model (13). 

As we see the stochastic cross-efficiency 
ranking from models (7) and (11) change 

in some DMUs. 

 
Table 4: Stochastic cross-efficiency scores of 

the DMUs (𝛼 = 0.05) 

 Using model (7) Using model (11) 

DMU 𝐸∗
𝑑 Rank 𝜃𝑗 Rank 

1 0.257306 15 0.240489 15 

2 0.491782 9 0.426745 9 

3 0.704516 2 0.680328 2 

4 0.576423 4 0.500328 5 

5 0.737885 1 0.689765 1 

6 0.381304 10 0.365998 10 

7 0.293780 14 0.242265 14 

8 0.494318 8 0.474606 8 

9 0.324968 13 0.306799 12 

10 0.371087 11 0.364414 11 

11 0.534212 7 0.497253 6 

12 0.560378 5 0.514563 4 

13 0.346360 12 0.297978 13 

14 0.536418 6 0.483297 7 

15 0.670433                 3             0.634228                3             

 

 

6- Conclusions and suggestions for 

further research 

The purpose of this paper was to propose a 

model based on which we can calculate the 

efficiency of DMUs in the presence of 
stochastic inputs / outputs, as well as in 

case of undesirable outputs. Using 

stochastic UMF model and statistical 
techniques and normal distribution, 

stochastic models were proposed for 

calculating stochastic efficiency and based 
on this we defined the mean ranking 

criterion`. Then the stochastic cross-

efficiency for ranking in DEA was 

proposed based on the stochastic 
constrained and the mean value of the 

objective function. Finally, we 

implemented the proposed models for 32 
energy-producing plants. For future 

research, new models can be found for 

other models in DEA, as well as for other 
distributions such as Normal skew and 

Weibull and Riley. Similarly, models can 

be extended to determine the coverage of 

fuzzy and hybrid data. 
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