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Abstract 

We define a combined DEA score to evaluate efficiency in agricultural research. The 

production model we propose considers efficiency measurements under variable returns to 

scale for each year in the period 2012–2017. We postulate a first-order autoregressive process 

in the presence of covariates, to explain efficiency. Powers of the autocorrelation coefficient 

estimated assuming a dynamic panel specification, are used as weights to determine a 

combined efficiency score. A higher weight is given to recent efficiency measurements. We 

use a fractional regression model to investigate the statistical significance of covariates on the 

combined score further.  
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1. Introduction 

Since 1996, the Brazilian Agriculture 

Research Corporation (Embrapa) has been 

monitoring the production performance of 

its research centers by using a Data 

envelopment analysis (DEA) model [1–5]. 

Recently, the research centers’ evaluation 

system has been reviewed, and the 

efficiency component has gained renewed 

importance in the whole performance 

evaluation process. New goals 

contemplate performance for a time 

interlude and must accommodate different 

efficiency components computed within 

each year. 

Current DEA literature includes a plethora 

of models dealing with the performance 

measure in a time-series context. The 

combination with cross-sections is also 

possible. Malmquist DEA [6] is an 

instance of DEA analysis for panel data. 

Lynde and Richmond [7] consider a model 

for the study of time-series data on inputs 

and outputs, allowing the inclusion of 

shifting technology into the DEA 

framework. Dynamic DEA models and 

dynamic network DEA models are 

discussed in Tone [8]. It is not common, 

however, to model the DEA responses as 

evolving, satisfying a statistical time-

series model where the dependent variable 

follows a stochastic process. We intend to 

explore this feature of time-series DEA.  

We present a method to combine a series 

of DEA measurements computed in each 

point in time into a single score, reflecting 

average efficiency in the period. The 

method assigns a weight to the efficiency 

in each year. The weight sequence 

decreases with time, attributing more 

importance to recent years by assuming 

that the efficiency responses, for the panel 

of decision-making units (DMUs), follow 

a first-order autoregressive process. The 

autocorrelation coefficient is estimated by 

a generalized method of moments (GMM) 

method [9, 10], assuming a dynamic panel. 

To the best of our knowledge, the  
 

application is new in the DEA context.  

Finally, we investigate the effect of 

contextual classification variables on the 

efficiency score, with the objective of 

relating best productions practices with 

control variables. 

 

2. Production Data 

Embrapa considers as outputs of its 

production system, 50 real-valued 

production indicators of output. Each of its 

41 research centers provides a 50-

dimensional response vector, 

corresponding to a three-dimensional input 

vector defined by expenses in labor, 

capital and other inputs. The output is a 

single univariate response. These data 

(output and inputs) are the production 

dataset, which comprises a 1 × 41 output 

matrix Y, and a 3 × 41 input matrix X.   

Reducing the dimension of the output 

vector to a single quantity demands 

transformations, allowing aggregation and 

a proper weighting system. One approach 

to realizing this goal is via multivariate 

analysis and rank transformation or 

eliminating scale, transforming each 

indicator in a dimensionless index. Here, 

we achieve this transformation by 

measuring each research result, whether 

input or output, in per capita mean units. 

Division by a common constant is not 

likely to affect the validity of DEA 

production assumptions, as reported in 

Olesen et al. [11]. Instead of using a 

common set of weights, we allow each 

research center to have its particular 

weight structure. That is, we leave the 

process of weights determination to each 

research center, under the supervision of 

Embrapa’s managers. The weighting 

system determination follows a 

hierarchical structure. The 50 transformed 

indices are split into eight groups, and 

weights are assigned to each variable 

within each group and for each group. The 

final individual weights are multiplicative. 



IJDEA Vol.4, No.2, (2016).737-749  

Geraldo da Silva e Souza, et al /IJDEA Vol.5, No.2, (2017).1311-1322 

 

1317 

Let 
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8
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j

ot
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y 

  
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Expenses on labor, capital and other inputs 

are normalized by the period means and 

consider as indices 
ot

ot

t

d
x

d






 , where 
otd  

denotes expenses on item   (labor, capital 

and other input expenses) by unit o in 

period t, and 
td  signifies the average item 

  expenses in period t. Table 1 shows the 

input and output data matrices for the year 

2012. Type is a categorization of the 

research centers, based on their research 

focus: research on agricultural products 

(Product), on agricultural specific themes 

(Thematic), and on issues related to 

environmental and ecological aspects 

(Ecological), respectively. 

 

Table 1 Production data for 2012 

Unit Type X1 X2 X3 Y 

DMU_01 Thematic 1.2596 1.6022 1.8564 1.2262 

DMU_02 Product 0.9640 0.6145 0.6243 1.8892 

DMU_03 Thematic 0.9248 0.8927 1.1162 0.6032 

DMU_04 Thematic 1.1331 1.1152 0.3523 0.6292 

DMU_05 Product 0.7788 0.7047 0.8194 0.4341 

DMU_06 Product 0.9784 1.0158 0.2970 0.2680 

DMU_07 Thematic 1.1117 1.1892 1.1169 0.6684 

DMU_08 Product 0.9212 0.9100 0.7916 0.3073 

DMU_09 Thematic 1.1944 1.2588 1.6828 3.5340 

DMU_10 Product 1.1585 1.0735 1.1758 0.8485 

DMU_11 Product 0.8747 0.9734 1.3100 0.5487 

DMU_12 Product 0.8772 0.5409 1.0461 1.2287 

DMU_13 Product 0.7949 0.9082 1.1966 0.8758 

DMU_14 Thematic 1.1740 1.1902 1.0041 1.4603 

DMU_15 Thematic 1.1367 0.8285 1.5117 1.0967 

DMU_16 Product 1.0151 1.2114 0.6319 1.3719 

DMU_17 Product 0.9043 0.7265 0.9144 0.6894 

DMU_18 Thematic 1.1939 0.7222 0.8624 0.8810 

DMU_19 Product 0.9414 1.0763 1.5327 1.3961 

DMU_20 Product 0.8337 0.9570 1.3607 1.0567 

DMU_21 Product 0.8756 0.7547 0.9975 0.6188 

DMU_22 Thematic 1.3235 0.9921 1.0863 6.9858 
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DMU_23 Product 0.9538 1.2033 1.4893 1.1431 

DMU_24 Ecological 0.9543 0.7536 0.7585 0.3006 

DMU_25 Ecological 0.8879 0.7614 1.0881 0.2147 

DMU_26 Ecological 1.0321 1.2781 0.0000 0.0642 

DMU_27 Ecological 0.9148 1.0708 1.1193 1.1552 

DMU_28 Ecological 1.1476 1.5037 1.1289 0.3723 

DMU_29 Ecological 1.1508 1.1897 0.6865 0.4400 

DMU_30 Ecological 0.9241 0.7893 0.5842 0.3452 

DMU_31 Ecological 1.1111 1.2159 0.8454 0.4286 

DMU_32 Ecological 0.8099 0.8341 0.4112 0.3961 

DMU_33 Ecological 0.9490 2.4303 0.3894 0.6524 

DMU_34 Ecological 0.8915 0.9107 0.8409 0.9681 

DMU_35 Ecological 1.1379 0.8255 0.8870 2.3713 

DMU_36 Ecological 1.0619 0.8323 0.7585 1.1690 

DMU_37 Ecological 0.7845 0.9097 0.7904 0.4018 

DMU_38 Ecological 1.0048 0.7678 0.5118 1.4188 

DMU_39 Product 0.9722 0.8572 1.2233 1.3563 

DMU_40 Product 0.8448 0.7719 2.2280 0.9666 

DMU_41 Thematic 1.0975 0.8366 1.9721 0.9905 

 

 

3. Methodology  

The response variable in our analysis is the 

classical input-oriented DEA measure of 

technical efficiency, computed under the 

assumption of variable returns to scale 

(DEA-VRS) [12]. If 
1 2 41( , , , )t t t tY y y y  is the output matrix, 

and 

1 2 41
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 
 

 is the input 

matrix, for period t, the DEA-VRS 

technical efficiency ˆot  for unit o is the 

solution of the following linear 

programming problem: 

,
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1 41
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1, ( , , ),

(1, ,1), 0
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i

Min

Y y

X x x d d d

e

e

  



 

   





 

  

  

  (2) 

The DEA estimates can be shown to be 

weakly consistent within years [13]. Under 

a deterministic frontier assumption in the 

context of univariate outputs, the DEA 

estimate is strongly consistent and is a 

nonparametric maximum likelihood 

estimate [14. 15]. Assuming independent 

production decisions under the same 

production function, these considerations 

justify the use of DEA responses in 

regression analysis when covariates are 

not endogenous or separable [16].  

Through time, we assume that the DEA 

measurements follow the dynamic panel 

data”: 
( 1)ˆ ˆ ,

1,..., 41,   2012,..., 2017

ot o t

ot o otz u

o t

       

 
         (3) 

 

Here  0 1   is the autoregressive 

parameter, 
otz  is a q-vector of strictly 

exogenous variables,   is the 

corresponding parameter vector, ou  are 

the random panel level effects (research 
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centers), and 
ot  are iid (independent and 

identically distributed) errors over the 

whole sample with constant variance. Both 

ou  and 
ot  are assumed to be independent 

for each o over all t. Therefore, the lagged 

dependent variables are correlated with the 

unobserved panel level effects, making 

standard estimation inconsistent [17]. 

With many panels and few periods, we 

follow the GMM approach suggested by 

Arellano and Bover [9] and Blundell and 

Bond [10]. The model accommodates less 

restrictive assumptions, regarding the 

covariates as endogeneity. A key 

assumption regarding the residual 

evolution through time is the non-

existence of second-order autocorrelation 

in the differenced series, which can be 

tested following Arellano and Bond [18]. 

Exploiting the autoregressive structure, we 

propose the final efficiency estimate as the 

following, where 
h  represents the 

correlation between efficiencies distant h 

periods apart.:  

(2017) (2016) 2 (2015) 3 (2014) 4 (2013) 5 (2012)

2 3 4 5

ˆ ˆ ˆ ˆ ˆ ˆ
,

1

  1,..., 41

o

o o o o o o

eff

o

         

    



     
       



(4) 

 

Higher-order processes can be considered 

and tested in the framework of dynamic 

panels. The correlation structure will be 

less trivial. 

In order to assess the significance of factor 

variables on the response oeff , we use a 

standard fractional regression model [19]. 

Let an observed response ˆ
oeff   with 

values in (0,1] be dependent on a vector of 

covariates w. It is assumed that 

 ˆ( | )E w G w  , where G(.) is typically 

a probability distribution function. The 

model is well-defined, even when ˆ
oeff   

puts positive probability mass at one. The 

unknown parameter   is then estimated 

by quasi-maximum likelihood (QML), 

maximizing 

  

  
1

ˆ log

ˆ(1 ) log 1

i in

i

i i

G w

G w

 

 


 
 
   

  [19]. 

 

Under the correct specification of the mean 

function  ˆ (0, )dn N V   . V is 

estimated as below in (5). The QML 

estimator is efficient within the class of 

estimators containing all linear, 

exponential family-based QML and 

weighted nonlinear least squares 

estimators:  
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
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(5) 

 

These formulas appear in Ramalho et al. 

[20]. The calculations may be performed 

with the use of Stata 15 [21], where the 

method is implemented.  

 

4. Statistical Results 

Table 2 shows DEA-VRS efficiency 

measurements for each year and the 

combined estimate (column ‘Combined 

efficiency’). The panel efficiency graphs 

are shown in Figure 1. One can see that 

units 2, 5, 13 and 32 are efficient through 

the period. Units 10, 18 and 34 show an 

increasing trend. Units 4, 21, 26 and 40 

show a decreasing trend. For other units 

we do not identify a clear trend. The 

apparent volatility through time calls for 

an overall measure to capture average 

performance.   

The Arellano–Bover/Blundell–Bond 

estimation is computed using Stata v.14 

software [17]. Additional covariates 

included in the model specification are a 

time dummy variable for 2016, two 

dummy variables for type (base is 
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Thematic) and two dummy variables 

indicating size (base is Large). Research 

centers were classified into three groups of 

size, using cluster analysis (Ward’s 

method) applied to the evolution of total 

input expenses. 

 

Table 2: Efficiency scores, age and size (Size: 3 = large, 2 = medium, 1 = small; 

Age: 0 > 10 years, 1  10 years) 

Unit Size Age 
Technical efficiency Combined 

efficiency 2012 2013 2014 2015 2016 2017 

DMU_1 3 0 0.6552 0.7492 0.6606 0.6429 0.6295 0.6202 0.6414 

DMU_2 1 0 1.0000 1.0000 1.0000 0.9834 0.9695 1.0000 0.9899 

DMU_3 1 0 0.8515 0.8654 0.8532 0.8647 0.8287 0.8240 0.8392 

DMU_4 1 1 0.8563 1.0000 0.8360 0.6975 0.6909 0.6826 0.7345 

DMU_5 3 0 1.0000 1.0000 1.0000 0.9957 1.0000 1.0000 0.9993 

DMU_6 1 1 0.9563 0.7648 0.6852 0.8587 0.7546 0.7851 0.7855 

DMU_7 2 0 0.7199 0.7077 0.7084 0.8160 0.7141 0.7544 0.7446 

DMU_8 1 0 0.8571 0.8780 0.8889 0.8624 0.8428 0.8433 0.8543 

DMU_9 1 0 0.8581 0.8894 0.8423 0.8913 0.6651 0.6953 0.7571 

DMU_10 2 0 0.7027 0.7095 0.7769 0.9732 0.9144 0.9552 0.8994 

DMU_11 2 0 0.8951 0.9510 0.9838 0.9898 0.8902 0.9815 0.9545 

DMU_12 3 0 1.0000 1.0000 0.9754 0.9236 0.8597 1.0000 0.9508 

DMU_13 2 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

DMU_14 1 0 0.7442 0.7220 0.6779 0.7135 0.6507 0.6111 0.6588 

DMU_15 2 0 0.7497 0.7499 0.7239 0.7179 0.7876 0.7726 0.7594 

DMU_16 2 0 0.8696 0.8106 0.8373 0.8641 0.7800 0.8083 0.8166 

DMU_17 3 0 0.9107 0.8902 0.9219 0.9737 0.8877 0.8955 0.9095 

DMU_18 1 0 0.8290 0.8053 0.8308 0.8246 0.9431 0.9670 0.9053 

DMU_19 2 0 0.8923 0.8729 0.8823 0.8996 0.7813 0.8277 0.8402 

DMU_20 3 0 0.9723 0.9538 0.9857 0.9298 0.9257 0.9467 0.9448 

DMU_21 2 0 0.9116 0.9289 0.9353 0.9167 0.9085 0.9534 0.9308 

DMU_22 1 0 1.0000 1.0000 1.0000 1.0000 0.9067 0.9172 0.9468 

DMU_23 2 0 0.8577 0.8364 0.8435 0.8648 0.8234 0.8356 0.8393 

DMU_24 2 0 0.9040 0.9288 0.8697 0.9637 0.8562 0.8835 0.8925 

DMU_25 3 0 0.8936 0.9031 0.9498 0.9071 0.8897 0.9318 0.9156 

DMU_26 1 1 1.0000 1.0000 1.0000 0.8256 0.7114 0.7934 0.8255 

DMU_27 3 0 0.9065 0.8715 0.8699 0.8785 0.8344 0.8444 0.8551 

DMU_28 2 0 0.6819 0.7058 0.6980 0.6945 0.6865 0.7195 0.7023 

DMU_29 1 0 0.7019 0.7767 0.7052 0.7340 0.6901 0.6699 0.6982 

DMU_30 1 0 0.9327 0.9062 0.8661 0.8579 0.8462 0.8462 0.8586 

DMU_31 1 0 0.7167 0.8187 0.9510 0.8658 0.9122 0.8619 0.8744 

DMU_32 2 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

DMU_33 1 1 0.9273 0.6522 0.7361 0.8490 0.7612 0.7810 0.7801 

DMU_34 1 0 0.9290 0.9000 0.9063 0.8753 1.0000 1.0000 0.9592 
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DMU_35 1 0 0.8565 0.9069 0.9134 1.0000 0.7691 0.8532 0.8670 

DMU_36 2 0 0.8287 0.8046 0.7778 0.8016 0.7977 0.9846 0.8668 

DMU_37 3 0 0.9959 0.9869 0.9264 0.9090 0.9245 1.0000 0.9578 

DMU_38 3 0 0.9737 1.0000 1.0000 0.9992 0.9259 1.0000 0.9805 

DMU_39 1 0 0.8790 0.9583 1.0000 0.9970 0.9155 0.8468 0.9139 

DMU_40 1 0 0.9713 0.9147 0.9268 0.9389 0.8243 0.8532 0.8780 

DMU_41 2 0 0.7650 0.9288 1.0000 1.0000 0.7149 0.7609 0.8264 

 

 

 
Fig. 1 

 

We now analyze the significance of type, 

size and time effects on the DEA 

responses. Only a single time dummy was 

included (2016), to account for a reduction 

in the overall efficiency level observed in 

2016. This effect can be detected by 

computing the yearly averages (Figure 1). 

We see that type and size are 

nonsignificant effects. The results are 

summarized in Table 3. Exclusion of type 

and size leads to the final estimates shown 

in Table 4. The panel data parameters of 

Table 4 were used to compute the 

combined efficiency scores shown in 

Table 1. We see that the condition for 

stationarity holds since the autoregressive 

parameter satisfies 1ˆ0   . The 

Arellano–Bond autocorrelation test has a 

p-value of 90.1%, and there is no evidence 

of a second-order autocorrelation, which 

would invalidate the model specification.  
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Table 3: Preliminary dynamic panel estimation 

 Coefficient 
Standard 

Error 
z P>|z| 

[95% Confidence 

Interval] 

L1 0.4806 0.1530 3.14 0.002 0.1808 0.7804 

Type_Ecological -1.0494 8.5045 -0.12 0.902 -17.7180 15.6192 

Type_Product 0.7175 4.9223 0.15 0.884 -8.9301 10.3650 

Size_Small -1.9984 11.4951 -0.17 0.862 -24.5284 20.5316 

Size_Medium -1.7458 11.3044 -0.15 0.877 -23.9021 20.4105 

Time_2016 -0.0504 0.0128 -3.94 0.000 -0.0754 -0.0253 

Constant 2.0365 10.0591 0.20 0.840 -17.6790 21.7520 

 

Table 4: Final dynamic panel estimation 

 Coefficient 
Standard 

Error 
z P>|z| 

[95% Confidence 

Interval] 

L1 0.6643 0.0883 7.53 0.000 0.4913 0.8373 

Time_2016 -0.0558 0.0131 -4.25 0.000 -0.0815 -0.0301 

Constant 0.3003 0.0759 3.96 0.000 0.1516 0.4490 

Arellano–Bond test for zero autocorrelation in first-differenced errors 

 

Order z Prob > z 

1 -3.2497 0.0012 

2 0.12404 0.9013 

H0: no autocorrelation 

 

A joint analysis of type, size and age (a 

dummy variable indicating whether the 

research center has been in operation for 

less than 10 years, age = 1) is then 

performed by applying fractional 

regression, assuming the probit or the 

logistic response to explain the combined 

efficiency score. The model below 

assumes the quasi-likelihood function, 

where  .  is the standard normal or the 

logistic distribution function; 21  , sizesize  

are dummies for small and medium 

research centers, and age is the indicator of 

whether a research center is aged more 

than 10 years. A further classification of 

type was considered in the analysis. We do 

not detect the importance of this effect in 

the panel regression. The corresponding 

dummy variables for ecological and 

product are 21  , typetype , respectively. In 

the following equation, the betas () are 

parameters to be estimated:  
41

1

0 1 1 2 2

3 4 1 5 2

0 1 1 2 2

3 4 1 5 2

ln

ln

1

(1 ) ln

jj

j

L escore

size size

age type type

size sizeescore

age type type

  

  

  

  




    
   

    

 
 

          


(6) 

 

Table 5 shows the results of the analysis, 

assuming the logistic distribution. Results 

with the normal distribution function are 

similar. We computed bootstrap standard 

errors (1,975 replications, seed = 1211) 

instead of the QML estimates. Confidence 

intervals are bias-corrected. We see that 

the joint analysis conveys the same 

impression as the marginal chi-square 

analyses. 
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Table 5: Fractional logit regression for combined efficiency score 

 Coefficient Bias 
Standard 

Error 

[Bias-corrected 95% 

Confidence Interval] 

Age -0.5922 -0.0191 0.2863 -1.2026 -0.0667 

Size_Small -0.2519 -0.0754 0.4474 -1.2010 0.5041 

Size_Medium -0.3752 -0.0749 0.4246 -1.2748 0.3363 

Type_Ecological 0.6050 -0.0161 0.3232 -0.0410 1.2016 

Type_Product 0.9640 0.0030 0.3011 0.3405 1.5174 

Constant 1.6077 0.0992 0.5059 0.9684 2.8162 

 

We see significant type and age effects, but 

not a size effect. Figure 2 and 3 are box-

plots describing the observations on the 

combined efficiency considering, 

separately, type and age effects. They are 

not related to the fractional regression 

model, but are in close agreement. 

Comparing the medians (center of the 

boxes), one can observe the dominance of 

the Product type and of the older research 

centers.  

 

 

 
Fig, 2 

 

 
Fig. 3 
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5. Concluding Remarks 

We were successful in modeling 

Embrapa’s production system by applying 

a deterministic frontier DEA model. The 

model is justified, given the nature of the 

response where it is less likely to observe 

idiosyncratic than deterministic errors. 

Indeed, a stochastic frontier using the 

whole sample and a similar specification 

does not seem to converge.   

A better approach was achieved by 

modeling the DEA time measurements for 

each research center as a dynamic first-

order autoregressive panel, including 

covariates effects. This idea has appeal 

since it assumes a common autoregressive 

coefficient. With only a few time 

observations for each research center, it is 

not sensible to estimate separate 

coefficients. The common estimated 

autoregressive coefficient is used to define 

a sequence of weights that decrease over 

time, reflecting the decreasing importance 

of lagged efficiency scores. The Arellano–

Bond test validates the dynamic model.  

The final combined scores show a strong 

association with age and type, but not with 

the size of a research center. The size of the 

research center is important since 

production variables were normalized 

according to the number of employees, to 

make units more comparable, reducing 

unwanted scale effects from potentially 

biasing the results. Fractional regression 

consubstantiates this approach.  

We also notice from the fractional 

regression that previous experience with 

the production evaluation process has a 

positive effect on the combined efficiency 

score. It was not possible to include this 

effect on the dynamic panel, due to 

collinearities in differences. Research 

centers classified as Product are more 

efficient than the others (Ecological and 

Thematic). This classification of the 

research centers has been an object of 

discussion in the company. Based on the 

fractional regression, we see that in terms 

of efficiency levels, the classification is 

not unreasonable.  
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