Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran, 13 (2) 155-171: Summer 2016 (J. Phys. Theor. Chem. IAU Iran) ISSN 1735-2126

Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of *N*-(2-benzoyl-phenyl) oxalyl: A DFT study

Masoome Sheikhi^{a,*}, Ebrahim Balali^b and Hadi Lari^c

^a Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran

^b Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran

^c Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Received April 2016; Accepted July 2016

ABSTRACT

The *N*-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of *N*-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric parameters were obtained and experimental measurements were compared with the calculated data. The NMR parameters such as chemical shift isotropic (CS^I) and chemical shift anisotropic (CS^A), natural charge (NBO), thermodynamic parameters such as relative energy (Δ E), standard enthalpies (Δ H), entropies (Δ S), Gibbs free energy (Δ G) and constant volume molar heat capacity (Cv), frontier molecular orbitals (FMOs), total density of states (DOS), molecular electrostatic potential (MEP) of the two structures were investigated by theoretical calculations. Molecular properties such as Ionisation Potential (*I*), Electron affinity (*A*), chemical hardness (η), electronic chemical potential (μ) andelectrophilicity (ω) obtained and three-centered intramolecular hydrogen bonding were investigated by NBO analysis.

Keywords: oxalyl; DFT; DOS; Natural charge; NBO analysis

INTRODUCTION

Oxamide derivatives are used as a model to study bonds in biomolecules, particularly intermolecular and intramolecular hydrogen bonding [1]. The hydrogen bond is a weak chemical bond between an electronegative atom, such as fluorine, oxygen or nitrogen and a hydrogen atom bound to another electronegative atom. Hydrogen bonds are responsible of water and many biological molecules [2-4]. These hydrogen-bond attractions can occur between molecules (intermolecular) or within different parts of a single molecule (intramolecular) three-center [5]. А intramolecular hydrogen bonding interaction can be seen in all oxamides. intramolecular hydrogen Three-center bonding is bifurcated hydrogen bonding. There are two types of bifurcated hydrogen bonding in biological systems, organic compounds, that can be as intermolecular, intramolecular or both. One is three centered hydrogen bond where а electronegative participate as atom

^{*}Corresponding author: m.sheikhi@gorganiau.ac.ir

acceptor group and two hydrogen atoms as donor in two different hydrogen bonds, and the other kind is where two same electronegative atoms participate as acceptor groups and a hydrogen as acceptor atom [6].

recent years, computational In chemistry has become an important tool for chemists and a well-accepted partner for experimental chemistry [7-10]. Density functional theory (DFT) method has become a major tool in the methodological arsenal of computational organic chemists [11]. Isabel Rozas and et al. investigated bifurcated or three-centered hydrogen bonds (HB) using DFT (B3LYP/6-31G*) on different families of compounds such as monomers with intramolecular threecentered HB, dimers with a HB donor (HBD) and a molecule with two HB acceptor (HBA) groups, and trimers with one HBD and two HBAs [12]. A. Lakshmipriya et al. studied existence of three-centered C=O...H(N)...X-Cdiphenyloxamide hvdrogen bond in derivatives involving halogens using NMR spectroscopy and quantum theoretical studies [13]. Martinez-Martinez reported synthesis of N-(2-benzoyl-phenyl) oxalyl derivatives [14]. Three crystal structures *N*-(2-benzoylphenyl) acetamide, *N*-(2benzoylphenyl) oxalamate and N1,N2bis(2-benzoylphenyl)oxalamide is reported by Carlos Z. Gomez-Castro et al [15]. They studied the formation of three-center hydrogen bonds in three oxalyl derivatives was by the X-ray diffraction analysis. In the present work, we investigate the energetic and structural properties of title two crystal structures (N-(2benzoylphenyl) oxalamate and N1, N2bis(2-benzoylphenyl)oxalamide) using DFT calculations. The optimized geometry. frontier molecular orbitals

(FMO), detail of quantum molecular descriptors, molecular electrostatic potential (MEP), chemical tensors, natural charge and three-center hydrogen bonds using NBO analysis were calculated.

COMPUTATIONAL METHODS

In this work, we have carried out quantum theoretical calculations for the compounds I and II using B3LYP/6-311+G* level (DFT) [16] by the Gaussian 03W program package [17] and calculate their properties. At first we have optimized structure using Gaussian 03W program (see Figure 1). We calculated NMR parameters such as chemical shift isotropic (CS^I) and chemical (CS^A) shift anisotropic for title structuresusing B3LYP/6-311+G* level [18,19]. The electronic properties such as E_{HOMO}, E_{LUMO}, HOMO-LUMO energy gap (ΔE), E_{HOMO-1}, E_{LUMO+1}, natural charges, molecular properties, dipole moment (μ_D) and point group were detected [20]. The optimized molecular structure, HOMO and LUMO surfaces were visualized using GaussView 03 program [21]. We also studied the thermodynamic parameters of molecules using the B3LYP/6-311+G* level, and obtained the energy (ΔE), enthalpies (Δ H), Gibbs free energy (Δ G), entropiy (S) and constant volume molar heat capacity (Cv) of the structures [20,22]. The electronic structure of compounds I and II were studied by using Natural Bond Orbital (NBO) analysis at the same level in order to understand various second-order interactions between the filled orbitals of one subsystem and vacant orbitals of another subsystem, which is a measure of the inter-molecular delocalization or hyper conjugation [18]. We also is obtained the calculated natural charge (NBO) of three structures.

Fig. 1. (a) The Crystallographic numbering of the compounds **I** and **II**, (b) The theoretical geometric structure of the compounds **I** and **II** (optimized with B3LYP/6-311+G* level).

RESULTS AND DISCUSSION

Optimized geometry

The optimized structure of the molecules I and II has been calculated by DFT $(B3LYP/6-311+G^*)$ (see Figure 1) and the selected bond lengths and bond angles of the crystallographic structures¹⁵ and the theoretical parameters of listed in Table 1. As can be seen in Table 1, the calculated parameters show good approximation and can be used as a foundation to calculate the other parameters for the title compounds. We found that most of the calculated bond lengths are slightly longer than X-ray values that it is due to the fact that result experimental corresponds to interacting molecules in the crystal lattice, whereas computational method deals with

[23,24]. The average differences of the theoretical parameters from the experimental for bond lengths of compound I were found to be about 0.01Å $(O_{17}-C_{16}), 0.001\text{\AA} (O_{8}-C_{7}), 0.003\text{\AA} (N_{15}-C_{16})$ C_3), 0.02Å (N₁₅- C_{16}), 0.008Å (C₃- C_2), 0.006Å (C₂-C₇), 0.012Å (C₁₆-C₁₈), 0.004Å (C_7-C_9) . According to Table 1, the bond length of N₁₅-C₃ in X-ray and optimized structure of compound I is 1.399Å and 1.402Å respectively, whereas experimental and theoretical value for the bond length of $N_{15}-C_{16}$ is 1.346Å and 1.366Å. respectively. It shown the bond length of N_{15} - C_{16} is shorter than N_{15} - C_3 that it is due

an isolated molecule in gaseous phase

to the fact that lone pair of N_{15} conjugated with the C_{16} (carbonyl group). Also according to Table 1, the average differences of the theoretical parameters from the experimental for bond lengths of compound II were found to be about 0.006Å (O₃₄-C₁₇), 0.004Å (O₈-C₇), 0.008Å $(N_{15}-C_4), 0.018\text{\AA} (N_{15}-C_{16}), 0.01\text{\AA} (C_4-C_3),$ 0.012Å (C₃-C₇), 0.009Å (C₁₆-C₁₇), 0Å (C₇- C_9). As seen in Table 1, the bond length of N₁₅-C₄ in X-ray and optimized structure of compound II is 1.402Å and 1.410Å respectively, whereas experimental and theoretical value for the bond length of $N_{15}-C_{16}$ is 1.350Å and 1.368Å, respectively. It shown the bond length of N_{15} - C_{16} is shorter than N_{15} - C_3 that it is due to the fact that lone pair of N_{15} conjugated with the C_{16} (carbonyl group).

Table 1. Selected bond lengths (Å) of the
compounds I and II (atom labeling
according to Fig. 1)

		Exp. ^a	Cal. ^b	
Ι	O_{17} - C_{16}	1.204(3)	1.214	
	O_8-C_7	1.227(2)	1.228	
	$N_{15}-C_3$	1.399(2)	1.402	
	N_{15} - C_{16}	1.346(2)	1.366	
	C_3-C_2	1.416(3)	1.425	
	C_2-C_7	1.486(2)	1.492	
	$C_{16}-C_{18}$	1.538(3)	1.550	
	C_7-C_9	1.496(2)	1.500	
II	O_{34} - C_{17}	1.211(4)	1.217	
	O_8-C_7	1.223(5)	1.227	
	$N_{15}-C_4$	1.402(4)	1.410	
	N_{15} - C_{16}	1.350(4)	1.368	
	C_4-C_3	1.407(4)	1.417	
	$C_{3}-C_{7}$	1.483(5)	1.495	
	C_{16} - C_{17}	1.548(5)	1.539	
	C_{7}	1.495(5)	1 495	

^a Taken from Ref. [15].

^b Calculated using DFT method (B3LYP/6-311+G*)

In addition, the hydrogen bonds length values of experimental [15] and theoretical

compounds I and II summarized in Table 3. X-ray diffraction analysis of compound reveals that the structure is stabilized by intramolecular hydrogen bonding. According to experimental results is obtained by Carlos Z. Gómez-Castro, it compound Ι has revealed three intramolecular hydrogen bonding (see Figure 1) [15]. By knowing the bond length, the strength of the hydrogen bond can be determined as very strong (below 2.5Å), strong (2.5-2.7Å), normal (2.7-2.9Å) and weak (above 2.9Å). The first intramolecular hydrogen bonding of $[N_{15}-H_{32}...O_{19}],$ compound Ι the experimental and theoretical values of bond length H_{32} ... O_{19} are 2.25Å and 2.23Å respectively, that suggesting the existence of very strong intramolecular hydrogen bond. In second intramolecular hydrogen bonding of compound I $[N_{15}-H_{32}...O_8]$, the experimental bond length $H_{32}...O_8$ is 1.97Å and calculated value is 1.90Å. This suggesting the intramolecular hydrogen bond N_{15} - H_{32} ... O_8 is very strong. In intramolecular three-centered hydrogen bond of $O_{19}...H_{32}...O_8$, the $O_{19}...H_{32}$ is weaker rather than $H_{25...O_8}$. The experimental and theoretical values of bond $H_{24}...O_{17}$ [C₄-H₂₄...O₁₇] is good evident for existence third intramolecular hydrogen bonding in structure I. According to Figure 1, there are two intramolecular three-centered hydrogen bonds $[O_8...H_{44}...O_{34} and O_{18}...H_{45}...O_{27}]$ in the theoretical geometric structure of **II**. The experimental and theoretical values for bond length of H_{44} ... O_{34} are 2.23Å and 3.84Å, respectively. As shown, the theoretical bond length of $H_{44}...O_{34}$ has which suggesting the existence of intramolecular hydrogen bond. The difference of the theoretical value from the experimental for intramolecular hydrogen bond length of $H_{44}...O_{34}$ [N₁₅-H₄₄...O₃₄] in compound **II** was found to be about 1.61Å. While the experimental and calculated M. Sheikhi et al. /J. Phys. Theor. Chem. IAU Iran, 13 (2) 155-169: Summer 2016

D-HA		D-H	D-H (Å)		HA(Å)		DA(Å)	
		Exp.	Cal.	Exp.	Cal.	Exp.	Cal.	-
								-
II	N15-H32O19	0.86	1.02	2.25	2.23	2.666(2)	2.702	
	N15-H3208	0.86	1.02	1.97	1.90	2.662(2)	2.703	
	C4-H24017	0.93	1.08	2.29	2.18	2.908(3)	2.889	
III	N15-H44O34	0.86	1.02	2.23	3.84	2.665(4)	3.37	
	N15-H4408	0.86	1.02	1.98	2.01	2.673(4)	2.742	

Table 2. Hydrogen-Bond Geometry (Å) (Exp.^a and Cal.^b) of compound I and II

a Taken from Ref. [15].

b Calculated using DFT method (B3LYP/6-311+G*)

values of intramolecular hydrogen bond length $H_{25}...O_8$ [N₁₅-H₄₄...O₈] are 1.98Å and 2.01Å respectively, that the difference of the theoretical value from the experimental is very low (about 0.03Å) and suggesting the intramolecular hydrogen bond N₁₅-H₄₄...O₈ is very strong.

Atomic charge and NMR parameters

We calculated the charge distributions for equilibrium geometry of molecules I and **II** by NBO method (natural charge) [25,26] using B3LYP/6-311+G* level. (Atoms labeling is according to Figure 1). The total charge of the investigated molecules is equalto zero. According to Table 3, the calculated results reveal the natural charges for H₂₄, H₃₂, H₃₃ and H₃₄ atoms in structure I are positive value (0.249e, 0.454e, 0.186e and 0.187e, respectively). Therefore highest the positive charge is observed for H_{32} atom due to participate in forming threecentered intramolecular hydrogen bonding $(O_{19}...H_{32}...O_8).$ Also H_{24} atom participates in intramolecular hydrogen bonding $[C_4-H_{24}...O_{17}].$ with **O**₁₇ Therefore the charge value of H_{24} atom is the most positive rather than H_{33} and H_{34} atoms. The highest values of negative charge is observed for N_{15} atom (-0.607e). Also O_8 , O_{17} , O_{19} and O_{20} atoms have high

negative charge (-0.580e, -0.577e, -0.588e and -0.524e, respectively). The C_{18} atom has the most positive charge (0.734) that is due to link to electronegative O_{19} and O_{20} atoms. From calculated natural charge (NBO) is obtained for structure II, we found the highest values of negative charges are observed for N_{15} and N_{19} atoms, -0.617e and 0.622e, respectively. Also O_8 , O_{18} , O_{27} and O_{34} atoms in structure II have high negative charge (-0.580e, -0.593e, -0.580e and -0.574e, respectively). The calculated natural charges for H₄₄ and H₄₅ atoms in structure II are high positive values (0.437e and 0.438e, respectively) that due to participate in forming three-centered intramolecular hydrogen bonding such as O₈...H₄₄...O₃₄ and $O_{18}...H_{45}...O_{27}$.

The NMR parameters such as chemical shift isotropic (CS^{I}) and chemical shift anisotropic (CS^{A}) for the molecules **I** and **II** are summarized in Table 3. In structure **I**, the CS^I values for H₂₄, H₃₂, H₃₃ and H₃₄ atoms is 23.031, 20.416, 28.102 and 28.072 ppm, respectively. As seen, H₃₂ atom has the lowest CS^I value (20.416 ppm) and highest CS^A value (10.774 ppm), therefore H₃₂ atom is the deshielder than other hydrogen atoms that it is as a result of forming three-centered intramolecular hydrogen bond $[O_{19}...H_{32}...O_{8}]$. Also

according to Table 1, in structure **II**, the CS^{I} values for H₃₇, H₄₄, H₄₅ and H₄₆ atoms is 25.354, 22.659, 22.298 and 23.620 ppm, respectively. As seen, H₄₄ and H₄₅ atoms have the lowest CS^{I} value (22.659 and 22.298 ppm, respectively) and highest CS^{A} value (13.276 and 11.868 ppm, respectively), therefore H₄₄ and H₄₅ atoms are the deshielder than other H₃₇ and H₄₆ atoms that it is as a result of forming three-

centered intramolecular hydrogen bond $[O_8...H_{44}...O_{34}$ and $O_{18}...H_{45}...O_{27}]$.

Electronic properties

Quantum chemical methods are important to obtain information about molecular structure and electrochemical behavior. The Frontier Molecular Orbitals (FMO) analysis calculated for compounds using B3LYP/6-311+G* level [26]. The results

Table 3. The Natural Charge (NBO charges, e) and NMR parameters (ppm) such as chemical shift isotropic (CS^I) and chemical shift anisotropic (CS^A) for compounds **I** and **II** using B3LYP/6-311+G*level

	Natural Charge	CS ^I (ppm)	CS ^A (ppm)
Compound I			
$\overline{\mathrm{C}_2}$	-0.169	54.297	185.975
C ₃	0.204	34.439	155.239
O_8	-0.580	-276.578	921.097
N ₁₅	-0.607	110.860	152.232
C ₁₆	0.591	24.480	78.626
O ₁₇	-0.577	-93.434	669.744
C ₁₈	0.734	16.450	75.482
O ₁₉	-0.588	-72.104	586.068
O_{20}	-0.524	106.128	145.793
H_{24}	0.249	23.031	10.072
H ₃₂	0.454	20.416	10.774
H ₃₃	0.186	28.102	5.122
H ₃₄	0.187	28.072	5.220
Compound II			
$\overline{C_4}$	0.224	36.200	154.519
C ₇	0.555	-21.591	156.889
O_8	-0.580	-279.263	925.461
N ₁₅	-0.617	106.531	111.484
C ₁₆	0.618	12.503	109.486
C ₁₇	0.614	13.730	101.805
O ₁₈	-0.593	-114.191	622.729
N ₁₉	-0.622	105.804	122.701
O ₂₇	-0.580	-277.384	930.478
O ₃₄	-0.574	-113.389	599.195
H_{37}	0.212	25.354	5.377
H_{44}	0.437	22.659	13.276
H_{45}	0.438	22.298	11.868
H ₄₆	0.249	23.620	8.357

of FMO such as E_{HOMO}, E_{HOMO-1}, E_{LUMO}, E_{LUMO+1} and HOMO-LUMO energy gap (Eg) of molecules I and II are summarized in Table 7. The values of energy of the unoccupied molecular orbital lowest highest (LUMO) and the occupied molecular orbital (HOMO) [27]. The HOMO can act as an electron donor and the LUMO can act as the electron acceptor. A higher E_{HOMO} for the molecule indicates a higher electron-donating ability to an appropriate acceptor molecule with a lowenergy empty molecular orbital [28]. As seen in Figure 6(a) charge transfer is taking place within molecules I and II. The graphic pictures of HOMO and LUMO orbitals show HOMO orbital of structure I is localized mainly on one of the phenyl rings and amid functional group, while LUMO orbital is focused mainly on phenyl rings, amid functional group and carbonyl group. The HOMO→LUMO transition implies an electron density transfer from one phenyl ring to another phenyl ring. The HOMO orbital of structure II is localized mainly on the two middle rings and two amid functional groups, whereas LUMO orbital is focused mainly on the two outer phenyl rings and two carbonyl groups.

Also in this work, electronic structure of compounds I and II was studied using total densities of states (DOSs) [29,30]. DOS plot shows population analysis per orbital and demonstrates a simple view of the character of the molecular orbitals in a certain energy range [31]. According to Figure 6(b), DOS analysis indicates calculated energy gaps (Eg) for molecules I and II. A large energy gap implies high stability for the molecule. According to Table 1, HOMO–LUMO energy gap (Eg) value of structure I (4.24 eV) is higher than of structure II (4.20 eV). Therefore structure **I** is less reactive rather than structures II.

A detail of quantum molecular

descriptors of structures I and II are summarized in Table 7. The I is Ionization potential $(I = -E_{HOMO})$ and A is Ionization potential and Electron affinity (A = - E_{LUMO}) [26]. The Chemical hardness ($\eta =$ (I - A)/2) is important property to measure the molecular stability and reactivity [32]. A hard molecule has a large energy gap (Eg) and a soft molecule has a small energy gap (Eg) [33]. The Chemical hardness (n) values of structures I and II are 2.12 and 2.1 eV respectively, therefore structure I is a hard molecule and less reactive with high energy gap (Eg = 4.24eV) rather than structure II (Eg = 4.19 eV). The electronic chemical potential ($\mu = -(I + I)$ A/2) is a form of the potential energy [The absorbed or released energy during a chemical reaction or change during a phase transition] [34]. The μ value of structure **II** is the most negative value (-4.59 eV) rather structure I (-4.52 than eV). The electrophilicity parameter (ω) show the stabilization in energy when the system acquires an additional electronic charge from the environment. The electrophilicity index ($\omega = \mu^2/2\eta$) contains information about both electron transfer (chemical potential) and stability (hardness) and is a better descriptor of global chemical reactivity [35]. The higher the value of electrophilicity index displays the high capacity of the molecule to accept electrons. The electrophilicity index for structures I and II is 4.82 and 5.02 eV, respectively. The structure **II** has the highest electrophilicity index, therefore it has high capacity for acceptance electrons. Dipole moment (μ_D) is a good measure for the asymmetric nature of a structure [26]. The size of the dipole moment depends onthe composition and dimensionality of the 3D structures. As shown in Table 7, the dipole moment of structures I and II is 2.541 and 7.069 Debye. Therefore structure **II** has the highest value of dipole moment (7.069 Debye) which refers high

asymmetry in the structure and irregularly arranged which gives rise to the increased dipole moment.

Table 4. Molecular properties of compounds I and II calculated using DFT (B3LYP/6-

	311+G*)											
	E _{HOMO}	E _{LUMO}	E _{HOMO-1}	E_{LUMO+1}	Eg	Ι	A	μ	η	ω	μ_D	Point Group
I II	-6.64 -6.69	-2.4 -2.49	-7.15 -6.79	-1.72 -2.36	4.24 4.20	6.64 6.69	2.4 2.49	-4.52 -4.59	2.12 2.1	4.82 5.02	2.541 7.069	C1 C1

Fig. 2. Calculated Frontier molecular orbitals of structures **I** and **II** (ΔE:energy gap between LUMO and HOMO), (b): Calculated DOS plots of structures **I** and **II** (usingB3LYP/6-311+G*).

Molecular electrostatic potential (MEP)

The molecular electrostatic potential (MEP) was checked out by theoretical calculations using B3LYP/6-311+G* level. Molecular electrostatic potential shows the electronic density and is useful in recognition sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions [36,37]. The negative areas (red color) of MEP were related to electrophilic reactivity and the positive areas (blue color) ones to nucleophilic reactivity shown in Figure 7. Molecular electrostatic potential V(r) [38] values are $-7.664e^{-2}$ for **I** and $-8.370e^{2}$ for **II**. According to the MEP maps in Figure 7, negative region of compound **I** is mainly focused on O_8 , O_{17} and O_{19} atoms with more color intensity (carbonyl groups). Therefore there are three positions on compound I for electrophilic attack. As shown in MEP map of the molecule II, the negative site is mainly focused on the O_{18} and O₃₄ atoms (carbonyl groups). In structures I and II, hydrogen atoms of N-H groups are not suitable site for nucleophilic

activity (not blue color) that it is due to the fact that hydrogen atoms of N-H groups participate in the formation of intramolecular hydrogen bonding.

Thermodynamic Analysis

The relative energy (ΔE), standard enthalpies (Δ H), entropies (Δ S), Gibbs free energy (ΔG) and constant volume molar heat capacity (Cv) values of structures I and **II** were obtained by theoretical calculated using the B3LYP/6-311+G* Thermodynamic level. calculations indicates that the relative energies (ΔE), enthalpies (Δ H) and Gibbs free energy (ΔG) for compounds I and II are negative values while the calculated entropies (ΔS) are positive that indicate three molecules are stable in the gas phase (see Table 5). Also we found that the structure II has greater stability rather than structure I that due to existence six intramolecular hydrogen bondings in structure **II**, whereas structure I has three intramolecular hydrogen bonding.

Fig. 3. Molecular electrostatic potential (MEP) maps of structures **I** and **II** calculated using B3LYP/6-311+G* level.

Compound	ΔE(Kcal/mol)	ΔG(Kcal/mol)	ΔH(Kcal/mol)	ΔS(cal/molK)	Cv(cal/molK)
I	-635333.3424	-635377.7607	-635332.7500	150.967	73.249

 Table 5. Relative thermochemical parameters of structures I and II calculated using B3LYP/6-311+G* level

NBO analysis

Natural bond orbital (NBO) analysis is important method for studying intra- and inter-molecular bonding and interaction between bonds [39,40]. The results of NBO analysis such as the occupation numbers with their energies for the interacting NBOs and the polarization coefficient amounts of atoms for structures I and II are presented using B3LYP/6-311+G* level is summarized in Table 6. The size of polarization coefficients shows the importance of the two hybrids in the formation of the bond. According to Table 6, in structure I, the bonding orbital of the BD(1) $C_{3}-N_{15}$ is $0.6201 \text{sp}^{2.67} + 0.7845 \text{sp}^{1.75}$ and the N₁₅-C₁₆ is $BD(1) = 0.7915 \text{sp}^{1.84} + 0.6112 \text{sp}^2$. The polarization coefficients of two bonds C3-N₁₅ and N₁₅-C₁₆ is shown importance of N₁₅ atom in forming these two bonds. Also the natural charge (NBO) of N_{15} atom is more negative value (-0.607e) while C₃ and C_{16} atoms are positive values (0.204e and 0.591e, respectively). Therefore more charge density resides on N15 and is electron-rich. According to the calculated bonding orbitals for the C_7-O_8 , $C_{16}-O_{17}$, C_{18} - O_{19} and C_{18} - O_{20} , the polarization coefficients of oxygen atoms are greater than carbon atoms that it is shown importance of O₈, O₁₇, O₁₉ and O₂₀ in forming C₇-O₈, C₁₆-O₁₇, C₁₈-O₁₉ and C₁₈- O_{20} bonds rather than C_7 , C_{16} and C_{18} atoms. The calculated bonding orbital for the C_2-C_7 is BD(1) = $0.7200 \text{sp}^{2.24} + 0.6940 \text{sp}^{1.83}$ with occupancy 1.97626a.u. and energy -0.67235a.u.. The polarization coefficient of C_2 (0.7200) is greater than C_7 (0.6940) that it shown

importance of C₂ atom in forming bond C_2 - C_7 rather than C_7 atom. Also natural charge of C₂ atom is negative value (-0.169e) and C_7 atom positive value (0.548e). Therefore more charge density is focused on C₂ and is electron-rich. In structure II, the calculated bonding orbital for the C_7-O_8 bond is the BD(1)= $0.5895 \text{sp}^{2.35} \text{d}^{0.01} + 0.8078 \text{sp}^{1.40}$ with high occupancy 1.99230a.u. and low energy -1.07618a.u.. The polarization coefficients of $C_7 = 0.5895$ and $O_8 = 0.8078$ are shown importance of O₈ atom in forming these bond and suggest that O_8 atom is more electron rich than the C_7 atom. The calculated natural charge (NBO) of O_8 atom is more negative (-0.580e) rather than C_7 atom (0.555e). Thus more the charge density resides on the O₈ atom. Also the polarization coefficients of other C-O bonds are shown importance of oxygen atom in forming these bonds. Also in the bonding orbital of the C_4-N_{15} [BD(1)= $0.6204 \text{sp}^{2.80} \text{d}^{0.01} + 0.7843 \text{sp}^{1.73}$ with high occupancy 1.98387a.u. and low energy -0.81031a.u., the polarization coefficient of $C_4(0.6204)$ is greater than $N_{15}(0.7843)$ that this suggest N₁₅ is more electron-rich (-0.617e) rather than $C_4(0.224e)$. The bonding orbital of the C_{16} - C_{17} is BD(1)= $0.7071 \, \text{sp}^{1.97}$ + $0.7072 \text{sp}^{1.97}$. These polarization coefficients $C_{16}(0.7071)$ and $C_{17}(0.7072)$ shows importance both hybrids almost the same in the formation of the bond of C_{16} - C_{17} bond. The calculated natural charges (NBO) of C_{16} and C_{17} atoms are positive values (0.618e and 0.614e, respectively).

Energy (a.u.)	Bond (A-B) ^a	Occupancy (a.u.)	Α	В
Compound I				
-0.70559	BD (1) C_2 - C_3	1.96909	$0.7072 \text{ sp}^{1.95}$	0.7070 sp ^{1.80}
-0.67235	BD (1) C ₂ -C ₇	1.97626	$0.7200 \text{ sp}^{2.24}$	$0.6940 \text{ sp}^{1.83}$
-0.65820	BD (1) C_{16} - C_{18}	1.97172	$0.7059 \text{ sp}^{2.11}$	$0.7083 \text{ sp}^{1.84}$
-0.64558	BD (1) C_{21} - C_{22}	1.99177	$0.7132 \text{ sp}^{2.19}$	$0.7009 \text{ sp}^{2.45}$
-0.81789	BD (1) $C_3 - N_{15}$	1.98629	$0.6201 \text{ sp}^{2.67}$	$0.7845 \text{ sp}^{1.75}$
-1.07311	BD (1) C ₇ -O ₈	1.99252	$0.5898 \text{ sp}^{2.36} \text{d}^{0.01}$	$0.8076 \text{ sp}^{1.41}$
-1.08506	BD (1) C ₁₆ -O ₁₇	1.99399	$0.5984 \text{ sp}^{1.89}$	$0.8012 \text{ sp}^{1.46}$
-1.10569	BD (1) C ₁₈ -O ₁₉	1.99601	$0.5929 \text{ sp}^{1.84}$	0.8053 sp ^{1.48}
-0.95932	BD (1) C ₁₈ -O ₂₀	1.99225	$0.5634 \text{ sp}^{2.36} \text{d}^{0.01}$	$0.8262 \text{ sp}^{2.03}$
-0.84621	BD (1) N ₁₅ -C ₁₆	1.98839	0.7915 sp ^{1.84}	0.6112 sp^2
Compound II				
-0.81031	BD (1) C_4 -N ₁₅	1.98387	$0.6204 \text{ sp}^{2.80} \text{d}^{0.01}$	0.7843 sp ^{1.73}
-1.07618	$BD(1)C_{7}-O_{8}$	1.99230	$0.5895 \text{ sp}^{2.35} \text{d}^{0.01}$	$0.8078 \text{ sp}^{1.40}$
-0.84725	BD (1) N_{15} - C_{16}	1.98835	$0.7907 \text{ sp}^{1.78}$	$0.6122 \text{ sp}^{2.04}$
-0.66412	BD (1) C_{16} - C_{17}	1.97490	$0.7071 \text{ sp}^{1.97}$	$0.7072 \text{ sp}^{1.97}$
-1.01239	BD (1) C_{16} - O_{18}	1.99167	$0.5943 \text{ sp}^{2.21} \text{d}^{0.01}$	$0.8042 \text{ sp}^{1.76}$
-1.04106	BD (1) C ₁₇ -O ₃₄	1.99094	$0.5955 \text{ sp}^{2.14} \text{d}^{0.01}$	$0.8033 \text{ sp}^{1.62}$
-0.81447	BD (1) N_{19} - C_{20}	1.98595	$0.7839 \text{ sp}^{1.71}$	$0.6209 \text{ sp}^{2.70}$
-1.08020	BD (1) C ₂₆ -O ₂₇	1.99233	$0.5895 \text{ sp}^{2.36} \text{d}^{0.01}$	$0.8077 \text{ sp}^{1.40}$

Table 6. Calculated natural bond orbitals (NBO) and the polarization coefficient for each hybrid in selected bonds of compounds **I** and **II** using B3LYP/6-311+G* level

^a A-B is the bond between atom A and atom B. (A: natural bond orbital and the polarization coefficient of atom; A-B: natural bond orbital and the polarization coefficient of atom B).

Electron donor orbital, acceptor orbital and the interacting stabilization energy resulting from the second-order micro disturbance theory [41] are reported in Table 7. The electron delocalization from filled NBOs (donors) to the empty NBOs (acceptors) describes a conjugative electron transfer process between them [42]. For each donor (i) and acceptor (j), the stabilization energy associated with E(2)the delocalization $i \rightarrow j$ is estimated. The resonance energy (E(2)) detected the quantity of participation of electrons in the resonance between atoms.¹⁵ The results of the NBO analysis, such as resonance energy (E(2)), donor NBO (i) and acceptor NBO (j), for compound I and II using B3LYP/6-311+G* level are listed in Table 7. From results of the NBO analysis for compound **I**, the resonance energies (E(2))of for LP(1)O₈ \rightarrow BD*(1)N₁₅-H₃₂ and $LP(2)O_8 \rightarrow BD^*(1)N_{15}-H_{32}$ is 2.58 and 5.83 kcal/mol, respectively. These results suggest existence a intramolecular hydrogen bond of $O_8...H_{32}$ -N₁₅. The calculated natural charge of O_8 (-0.580e) and H_{32} (0.454e) that are taking part in intramolecular charge transfer is indicated in the NBO analysis. Also $LP(2)O_{19}$ participates as donor and the anti-bonding BD*(1)N₁₅-H₃₂ orbital act as acceptor and their resonance energies (E(2)) is 1.41 kcal/mol that indicate charge transfer from the bonding orbital $LP(2)O_{19}$ to the antibonding orbital $BD^*(1)N_{15}-H_{32}$ that is shown existence a intramolecular hydrogen bond of $O_{19}...H_{32}-N_{15}$. These results suggest forming three-centered intramolecular hydrogen bond $O_8...H_{32}...O_{19}$. In compound I, LP(1)N₁₅ orbital participates as donor and the antibonding BD*(2)C₂-C₃ and BD*(2)C₁₆-O₁₇ orbitals act as acceptor and their resonance energies (E(2)) is 37.94 and 62.57 kcal/mol respectively, that shown large charge transfer from the $LP(1)N_{15}$ to the antibonding orbital of $BD^{*}(2)C_{16}-O_{17}$ $[LP(1)N_{15} \rightarrow BD^*(2)C_{16} - O_{17}]$ rather than $BD^{*}(2)C_2$ - C_3 orbital. As shown in Table 7, energies resonance (E(2))of the $LP(1)O_{17} \rightarrow BD^*(1)C_4 - H_{24}$ and $LP(2)O_{17} \rightarrow BD^{*}(1)C_{4}-H_{24}$ is 0.61 and 1.22 respectively, that kcal/mol shown existence interaction of O_{17} ... H_{24} -C₄. The $LP(2)O_{20}$ orbital participates as donor and the anti-bonding $BD^{*}(2)C_{18}-O_{19}$, $BD^{*}(1)C_{21}-H_{33}$ and $BD^{*}(1)C_{21}-H_{34}$ orbitals act as acceptor and their resonance energies (E(2)) is 53.18, 4.31 and 4.25 respectively. These kcal/mol. values indicate large charge transfer from the $LP(2)O_{20}$ to anti-bonding orbital of $BD^{*}(2)C_{18}-O_{19}$ $[LP(1)N_8 \rightarrow BD^*(1)C_7 -$ H₂₅]. According to the results of the NBO analysis for compound II, the resonance energies (E(2)) for LP(1)O₈ \rightarrow BD*(1)N₁₅- H_{44} and $LP(2)O_8 \rightarrow BD^*(1)N_{15}-H_{44}$ is 1.45,

and 3.23 kcal/mol respectively, that suggest existence intramolecular hydrogen bond of $O_8...H_{44}$ -N₁₅. As shown in Table 7, the resonance energies (E(2))of $LP(1)N_{19} \rightarrow BD^*(2)C_{17} - O_{34}$ and $LP(1)N_{19} \rightarrow BD^{*}(2)C_{20}-C_{21}$ is 50.11 and 25.63 kcal/mol, respectively. These values indicate large charge transfer from the $LP(1)N_{19}$ to anti-bonding orbital of $BD^{*}(2)C_{17}-O_{34}$ [N₁₉ $\rightarrow C_{17}-O_{34}$]. Also the resonance energies (E(2))of $LP(1)O_{27} \rightarrow BD^{*}(1)N_{19}-H_{45}$ and $LP(2)O_{27} \rightarrow BD^{*}(1)N_{19}-H_{45}$ is 1.78 and 4.19 kcal/mol respectively, that shown existence intramolecular hydrogen bond of O_{27} ... H_{45} - N_{19} . The calculated natural charge of O_{27} (-0.580e) and H_{45} (0.438e) that are taking part in intramolecular charge transfer is indicated in the NBO analysis.

Table 7. Significant donor–acceptor interactions and second order perturbation energies of compounds I and II calculated using B3LYP/6-311+G* level

Donor NBO(i)	Acceptor NBO(j)	E(2) ^a (kcal/mol)	E(j)-E(i) ^b (a.u.)	F(i , j) ^c (a.u.)
Compound I				
$LP(1)O_8$	$BD*(1) N_{15}-H_{32}$	2.58	1.11	0.048
LP (2) O ₈	BD*(1) N ₁₅ -H ₃₂	5.83	0.69	0.058
LP (1) N ₁₅	BD*(2) C ₂ -C ₃	37.94	0.28	0.093
	BD*(2) C ₁₆ -O ₁₇	62.57	0.27	0.119
LP (1) O ₁₇	BD*(1) C ₄ -H ₂₄	0.61	1.15	0.024
LP (2) O ₁₇	BD*(1) C ₄ -H ₂₄	1.22	0.72	0.027
LP (2) O ₁₉	$BD*(1) N_{15}-H_{32}$	1.41	0.69	0.029
LP (2) O ₂₀	BD*(2) C ₁₈ -O ₁₉	53.18	0.33	0.118
	BD*(1) C ₂₁ -H ₃₃	4.31	0.71	0.052
	BD*(1) C ₂₁ -H ₃₄	4.25	0.71	0.052
Compound II				
$\overline{LP(1)O_8}$	BD*(1) N ₁₅ -H ₄₄	1.45	1.10	0.036
$LP(2)O_8$	BD*(1) N ₁₅ -H ₄₄	3.23	0.68	0.043
LP (1) N ₁₅	$BD^{*}(1) C_{3}-C_{4}$	2.62	0.77	0.044
	$BD^{*}(2) C_{3}-C_{4}$	25.64	0.28	0.77
	$BD^{*}(1) C_{4}-C_{5}$	2.10	0.81	0.040
	BD*(1) C ₁₆ -O ₁₈	1.93	0.82	0.39
	BD*(2) C ₁₆ -O ₁₈	43.32	0.33	0.109
LP (1) O ₁₈	BD*(1) C ₂₁ -H ₄₆	0.80	1.15	0.036
LP (2) O ₁₈	BD*(1) C ₂₁ -H ₄₆	0.73	0.71	0.021
LP (1) N ₁₉	BD*(1) C ₁₇ -O ₃₄	0.71	0.85	0.024
	BD*(2) C ₁₇ -O ₃₄	50.11	0.30	0.113
	$BD^{*}(1) C_{20}-C_{21}$	1.83	0.82	0.038

Continued Table 7							
	BD*(2) C ₂₀ -C ₂₁	25.63	0.28	0.076			
	BD*(1) C ₂₀ -C ₂₅	2.55	0.79	0.044			
LP (1) O ₂₇	BD*(1) N ₁₉ -H ₄₅	1.78	1.10	0.040			
LP (2) O ₂₇	BD*(1) N ₁₉ -H ₄₅	4.19	0.68	0.049			

^a E(2) means energy of hyperconjucative interactions.

^b Energy difference between donor and acceptor i and j NBO orbitals.

^c F(i, j) is the Fock matrix element between i and j NBO orbitals.

CONCLUSION

quantum In the present study, the calculations theoretical two crystal structures of N-(2-benzoyl-phenyl) oxalyl consists of three-centered intramolecular hydrogen bonding were performed using functional theory method density $(DFT/B3LYP/6-311+G^*)$. In structure I, the highest positive charge is observed for H₃₂ atom due to participate in forming three-centered intramolecular hydrogen bonding $(O_{19}...H_{32}...O_8)$ and in structure II, the H_{44} and H_{45} atoms have high positive natural charges that due to participate in forming three-centered intramolecular hydrogen bondings such as $O_8...H_{44}...O_{34}$ and $O_{18}...H_{45}...O_{27}$. The CS^{1} value of the H₃₂ in structure I and H₄₄ and H_{45} in structure II show these hydrogens are deshielder than other hydrogen atoms as a result of forming three-centered intramolecular hydrogen bond. Thermodynamic analysis indicates that structure II has greater stability rather than structure I that due to existence six intramolecular hydrogen bondings. According to the results of the NBO analysis for structure I, charge transfer $LP(1)O_8 \rightarrow BD^*(1)N_{15}-H_{32}$ and $LP(1)O_{27} \rightarrow BD^*(1)N_{15}-H_{32}$ suggest forming three-centered intramolecular hydrogen bond $O_8...H_{32}...O_{19}$. FMO analysis suggests that charge transfer is taking place within the molecules I and II. The energy gap of structure **I** is higher than structure II, therefore structure I has the lowest reactivity.

ACKNOWLEDGEMENTS

We thank from research council of Young Researchers and Elite Club of Islamic Azad University, Gorgan Branch, Iran, for financial support.

REFERENCES

- F. J. MartInez-MartInez, A. Ariza-Castolo, H. Tlahuext and M. Tlahuextl, R. Contreras, J. Chem. Soc. Perkin Trans 2. 2 (1993)1481.
- [2] Y. A. Ovchinnikov and V. T. Ivanov, *Tetrahedron* 31 (1975) 2177.
- [3] E. S. Stevens, N. Sugawara, G. M. Bonora and C. Tionolo, *J. Am. Chem. Soc.* 102 (1980) 7048.
- [4] G. P. Dado and S. H. Gellman, J. Am. Chem. Soc. 116 (1994) 1054.
- [5] IUPAC, *Compendium of Chemical Terminology*, 2nd ed. (the "Gold Book"), 1997.
- [6] M. Baron, S. Giorgi-Renault, J. Renault, P. Mailliet, D. Carre and J. Etienne, *Can. J. Chem.* 62 (1984) 526.
- [7] C. J. Cramer, in: *Essentials of Computational Chemistry: Theories and Models*, Wiley, Chichester, 2002.
- [8] a) D. Avci and Y. Atalay, Struct. Chem. 20 (2009) 185. b) R. B. Nazarski, J. Phys. Org. Chem. 22 (2009) 834.
- [9] S. M. Shoaei, A. R. Kazemizadeh and A. Ramazani, *Chin. J. Struct. Chem.* 30 (2011) 568.
- [10] H. Hopfl, B. Gomez and R. Martinez-Palou, J. Mex. Chem. Soc. 49 (2005)

307.

- [11] H. Sahebalzamani, F. Salimi and E. Dornapour, in: *Hindawi Publishing Corporation Journal of Chemistry*. Vol. 2013, Article ID 187974, 5 pages, 2013.
- [12] I. Rozas, I. Alkorta and J. Elguero, J. *Phys. Chem. A* 102 (1998) 9925.
- [13] A. Lakshmipriyaa, S. R. Chaudharia, A. Shahic, E. Arunanc and N. Suryaprakasha, *Phys. Chem. Chem. Phys.* DOI: 10.1039/C4CP05917D, 2012.
- [14] F.J. MartInez-MartInez, I. I. Padilla-Martínez, M. A. Brito, E. D. Geniz, R. C. Rojas, J. B. Saavedra, H. Hopfl, M. Tlahuextl and R. Contreras, *J. Chem. Soc. Perkin Trans 2* 2 (1998) 401.
- [15] C. Z. Gomez-Castro, I. I. Padilla-Martinez, E. V. Garcia-Baez, J. L. Castrejon-Flores, A. L. Peraza-Campos and F.J. Martinez-Martinez, *Molecules 19* (2014) 14446.
- [16] W. Kohn, A. D. Becke and R. G. Parr, J. Phys. Chem. 100 (1996) 12974.
- [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb., J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J.M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, О. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P. Y. Ayala, K. Morokuma, G. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.

Baboul, S. Clifford, J. Cioslowski, B.
B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B.
Johnson, W. Chen, M. W. Wong, C.
Gonzalez and J. A. Pople, *Gaussian*03, revision B03, Gaussian Inc.,
Pittsburgh, PA, 2003.

- [18] M. Monajjemi, M. Sheikhi, M. Mahmodi Hashemi, F. Molaamin and R. Zhiani, *Inter. J. Phys. Sci.* 7 (2012) 2010.
- [19] L. Shiri, D. Sheikh, A. R. Faraji, M. Sheikhi and S. A. Seyed Katouli, *Lett. Org. Chem.* 11 (2014) 18.
- [20] A. R. Soltani, M. T. Baei, M. Mirarab, M. Sheikhi and E. Tazikeh Lemeski, J. Phys. Chem. Solids 75 (2014) 1099.
- [21] A. Frisch, A. B. Nielson and A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc., Pittsburgh, PA, 2000.
- [22] M. Monajjemi, S. Afsharnezhad, M. R. Jaafari, T. Abdolahi, A. Nikosadeand and H. Monajjemi, *Phys. Chem. Liquids* 49 (2011) 318.
- [23] H. Tanak, J. Phys. Chem. A 115 (2011) 13865.
- [24] M. H. Habibi, E. Shojaee, M. Ranjbar, H. R Memarian, A. Kanayama and T. Suzuki, *Spec. Acta. Part A* 105 (2013) 563.
- [25] S. Guidara, H. Feki and Y. Abid, Spectro. Chim. Acta A Mol. Biomol. Spectrosc. 133 (2014) 856.
- [26] M. Sheikhi, D. Sheikh and A. Ramazani, *S. Afr. J. Chem.* 67 (2014) 151.
- [27] K. G. Vipin Das, C. Yohannan Panicker, B. Narayana, P. S. Nayak, B. K. Sarojini and A. A. Al-Saadi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 135 (2015) 162.
- [28] S. Sebastian and N. Sundaraganesan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 75 (2010) 941.

M. Sheikhi et al. /J. Phys. Theor. Chem. IAU Iran, 13 (2) 155-169: Summer 2016

- [29] F. J. Luque, J. M. Lopez and M. Orozco, *Theor. Chem. Acc.* 103 (2001) 343.
- [30] A. Ahmadi Peyghan, M. T. Baei, M. Moghimi and S. Hashemian, *Comput. Theor. Chem.* 997 (2012) 63.
- [31] A. Soltani, F. Ghari, A. Dehno Khalaji, E. Tazikeh Lemeski, K. Fejfarova, M. Dusek and M. Shikhi, *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 139 (2015) 271.
- [32] R. G. Pearson, J. Chem. Sci. 117 (2005) 369.
- [33] F. J. Luque, J. M. Lopez and M. Orozco, *Theor. Chem. Acc.* 103 (2000) 343.
- [34] T. A. Koopmans, *Physica* 1 (1993) 104.
- [35] R. J. Parr, L.V. Szentpaly and S. Liu,

J. Am. Chem. Soc. 121 (1999) 1922.

- [36] N. Okulik and A. H. Jubert, *J. Mol. Des.* 4 (2005) 17-30.
- [37] D. Habibi, A. R. Faraji, D. Sheikh, M. Sheikhi and S. Abedi, *RSC Adv.* 4 (2014) 47625.
- [38] P. Politzer and P. Lane, *Struct. Chem.* 1 (1990) 159.
- [39] F. Weinhold and C. R. Landis, in: Natural Bond Orbitals and Extensions of Localized, 2001.
- [40] M. Sheikhi and D. Sheikh, *Rev. Roum. Chim.* 59 (2014) 761.
- [41] B. D. Joshi and P. Tandon, S. Jain, *The Himalayan Physics* 3 (2012) 44.
- [42] E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold NBO version 3.1, TCI, University of Wisconsin, Madison, 1998.