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ABSTRACT 

Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting 

thermodynamic properties such as the enthalpy of vaporization at standard condition (∆H˚vap 

kJ mol-1) and normal temperature of boiling points (T˚bp K) of 57 mono and Polycyclic 

Aromatic Hydrocarbons (PAHs) have been investigated. The PAHs were randomly separated 

into 2 groups: training and test sets. A set of molecular descriptors was calculated for selected 

compounds using the Dragon software. The Genetic Algorithm (GA) method and backward 

stepwise regression were used to select the suitable descriptors. Multiple Linear Regression 

(MLR) technique was used to obtain a linear relationship between descriptors and chemical 

properties. The predictive ability of the GA-MLR models was implemented using squared 

cross-validation and external validation methods. The aforementioned results and discussion 

lead us to conclude that the training set models established by GA-MLR method have good 

correlation of thermodynamic properties, which means QSPR models could be efficiently 

used for estimating and predicting of the above mentioned properties of the mono and PAHs. 

 
Keywords: polycyclic aromatic hydrocarbons (PAHs); quantitative structure-property 

relationships (QSPR); normal temperature of boiling points; first Zagreb index 

 

INTRODUCTION

Polycyclic
1
 aromatics hydrocarbons 

(PAHs) are a class of chemicals that occur 

naturally in coal, crude oil, and gasoline. 

They also are produced when coal, oil, gas, 

wood, garbage, and tobacco are burned. 

Cigarette smoke contains many PAHs. The 

major source of PAHs is the incomplete 

combustion of organic material such as 

coal, oil and wood [1, 2]. 

                                                 
*
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Some PAHs are well known as 

carcinogens, mutagens, and teratogens and 

therefore pose a serious threat to the health 

and the well-being of humans. The most 

significant health effect to be expected 

from inhalation exposure to PAHs is an 

excess risk of lung cancer [3-5]. 

Quantitative structure‐property 

relationships (QSPR) models are  
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mathematical equations that relate 

properties such as the various physical and 

physicochemical properties of compounds 

to a wide range of molecular descriptors 

[6-8]. 

Molecular descriptors are of 

outstanding importance in the research 

fields of QSPR/QSAR, where they are the 

independent chemical information used to 

predict the properties/activities of 

compounds [9]. 

It is well known that a single molecular 

descriptor is unable to carry all the 

information of the molecular structure and 

thus sets of suitable and relevant 

descriptors for a particular response must 

be selected [10,11]. 

Relationship between vapor pressure 

and molecular descriptor of PAHs has been 

investigated [12]. 

QSPR model has been investigation for 

predicting the vapor pressure of typical 

PAHs such as benzo(a)pyrene with the 

lowest vapor pressure and naphthalene 

with the highest vapor pressure using 

molecular weight descriptor [13,14]. 

The multiple linear regression (MLR), 

artificial neural network (ANN), and 

support vector machine (SVM) were 

applied to study the relationship between 

adsorption coefficients and physico-

chemical properties of 39 aromatic 

compounds [15]. 

Quantitative structure-activity 

relationship (QSAR) models have been 

used to determine activity of PAHs using 

information indices [16]. 

QSAR method has been applied to 

predict mutagenicity of 48 nitrated 

polycyclic aromatic hydrocarbons (nitro-

PAHs) [17]. 

Several activities of PAHs, such as 

carcinogenesis, mutagenicity, 

phototoxicity, and biocatalytic oxidation, 

have been studied using QSAR analyses 

and molecular descriptors [18]. 

2D and 3D QSAR models have been 

used to study relationship between 

biological activities (antidepressants and 

antipsychotics) and chemical structures of 

PAHs [19]. 

A QSPR study to predict polarizability 

of 40 PAHs and fullerenes using molecular 

descriptor has been researched [20]. 

QSAR model to correlate the photolysis 

half-lives of PAHs with their quantum 

chemical descriptors by partial least 

squares (PLS) method has been developed 

[21]. 

MLR method has been used to construct 

QSPR model for the prediction of boiling 

point of 61 PAHs [22]. 

Physicochemical and thermodynamic 

properties of organic pollutant play an 

important key role to understand their 

behavior in environment. However, the 

information behind the property-behavior 

phenomena of chemical compounds is less 

found in the literature. Therefore, 

computational methods had to be applied 

for process optimization. In the present 

study the applicability of the QSPR models 

based on molecular descriptors derived 

from molecular structures have been 

developed for the prediction of 

thermodynamic properties of 57 mono and 

PAHs such as the enthalpy of vaporization 

at standard condition (∆H˚vap kJ mol
-1

) and 

normal temperature of boiling points (T
˚
bp 

K). For this purpose genetic algorithm - 

multiple linear regressions (GA-MLR) 

were used to select the suitable descriptors 

for construct QSPR models. 

 

MATERIALS AND MATHEMATICAL 

METHODS 

Mono and PAHs are used in the 

manufacture of cellulose esters, fibers, 

plastics, lacquers, drugs, disinfectants, 

cosmetics, dyestuffs, anti-icers, corrosion 

inhibitors, etc [23]. The name and 

chemical structure of the mono and PAHs  
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discussed in this study are shown in Table 

1. Thermodynamic properties such as the 

enthalpy of vaporization at standard 

condition (∆H˚vap kJ mol
-1

) and normal 

temperature of boiling points (T
˚
bp K) of 57 

mono and Polycyclic Aromatic 

Hydrocarbons (PAHs) are taken from 

national institute of standards and 

technology (NIST) chemistry and 

chemspider web book, respectively. These 

properties are listed in Table 2. The 57 

datasets were randomly divided into 2 

groups: training and test sets consisting of 

47, 10 data point, respectively.  

The chemical structures of molecules 

were drawn by Gauss View 05 program 

and then they were optimized with 

Gaussian09 using Hartree–Fock (HF) level 

of theory and 6-311G* basis set method.  

A set of descriptors was calculated for 

selected compound using the Talete srl, 

Dragon for Windows Version 5.4- 2006 

package. A lot of descriptors include 

different categories like topological, 

Getaway, 3D-MoRSE, constitutional, and 

molecular properties which have been used 

[24]. 

The genetic algorithm (GA) is written 

in MATLAB (version 2010a) environment 

and backward stepwise regressions have 

been used to decrease the number of 

descriptors. The software package SPSS 

21.0 for Windows is used to implement 

multilinear regression [25]. 

 

Table 1. Iupac Name and chemical structure of 57 mono and PAHs used in present study 
 

NO Iupac Name Structure NO Iupac Name Structure 

1 Acenaphthylene 

 

30 6-Ethylchrysene 

 

2 Anthanthrene 

 

31 9-Ethylfluorene 

 

3 Benzo(C)picene 

 

32 2-Ethyl-9H-fluorene 

 

4 
5H-

Benzo[b]carbazole 

 

33 Fluorene 

 

5 Benzo[k]fluoranthene 

 

34 9H-carbazole 
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6 Benzene 

 

35 2-Methylanthracene 



 

7 
5-Methyl-1,3-

benzodioxole 

 

36 
2,4-Dimethylbenzoic 

acid 

  

8 
Benzo[b] 

triphenylene 

 

37 
7-Metylbenzo[A] 

pyrene 

 

9 Benzo[e] pyrene 

 

38 
4-[(Dimethylamino) 

methyl]aniline 

 

10 
Benzo[c] 

phenanthrene 

 

39 
11-Methylbenzo(a) 

fluorene 

 

11 Benzo[a] pyrene 

 

40 3-Methylbenzylamine 

 

12 Benzo[G] chrysene 

 

41 3-Methylcholanthrene 

 

13 Benzo[ghi] perylene 

 

42 3-Methylchrysene 

 

14 Benzo[h] pentaphene 

 

43 1- Methylfluorene 
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15 
1-(2-Bromoethyl)-4-

methylbenzene 

 

45 
(4-Methylphenyl) 

methyl chloride 

 

16 1-Butylpyrene 

 

46 
4-(2-Methoxyethyl) 

phenol 

 

17 Alphabromomxylene 

 

 2-Methylphenanthrene 

 

18 Chlorobenzene 

 

47 m-Tolunitrile 

 

19 Chrysene 

 

48 Naphthalene 

 

20 Coronene 

 

49 9-Phenylanthracene 

 

21 Coumarin 

 

50 Phenanthrene 

 

22 
Cyclopentabenzo(E) 

Pyrene 

 

51 Phenol 
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23 
Cyclopenta[cd] 

pyrene 

 

52 1-Phenylnaphthalene 

 

24 

4H-

Cyclopenta[def]phen

anthrene 
 

53 Picene 

 

25 
Dibenzo[a,c] 

naphthacene 

 

54 2-(Propan-2- yl) aniline 

 

26 
Dibenzo[b,g] 

phenanthrene 

 

55 Pyrene 

 

27 1,2-Dihydrochrysene 

 

56 Triphenylene 

 

28 
1,11-

Dimethylchrysene 

 

57 9-Vinylanthracene 

  

29 2-Ethylanthracene 

 

   

 

Table 2. The observed, predicted and residuals values for training and test sets of mono and PAHs 

using Equations 8,9 )*Compounds selected for test set in external validation procedure  (  
 

NO 
Observed 

(T˚bp K) 
Predicted Residual 

Observed 

(∆H˚vap kJ mol
-1

) 
Predicted Residual 

1 572.05 566.574 5.476 51.70 51.99 -0.29 

2 770.25 774.249 -3.999 73.60 76.61 -3.01 

3 *877.25 *869.383 *7.867 86.50 90.71 -4.21 

4 729.15 721.283 4.523 *68.90 *65.07 * 3.83 

5 753.15 748.627 8.792 71.60 73.31489 -1.71 

6 *351.95 *359.916 *-7.966 *30.70 *29.63 * 1.07 

7 *745.85 *753.816 *-1.8 54.90 49.62 5.28 

8 791.15 792.95 1.479 76.10 72.70 3.39 
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NO 
Observed 

(T˚bp K) 
Predicted Residual 

Observed 

(∆H˚vap kJ mol
-1

) 
Predicted Residual 

9 740.65 744.357 -3.707 70.20 69.62 0.57 

10 709.85 707.612 2.238 66.70 63.64 3.05 

11 768.15 765.912 2.379 73.40 69.90 3.50 

12 *797.85 *795.471 *-2.776 76.90 76.24 0.66 

13 774.15 776.926 -2.709 74.10 73.39 0.71 

14 877.25 880.026 1.199 86.50 81.94 4.56 

15 499.15 495.416 3.734 *44.40 *44.81 * -0.41 

16 693.65 691.023 2.627 64.80 63.59 1.21 

17 484.65 481.654 2.996 43.00 41.43 1.56 

18 *405.15 *400.163 * 4.987 *35.20 *37.05 * -1.85 

19 721.15 717.782 3.368 67.90 69.27 -1.37 

20 798.15 804.149 -5.999 77.00 80.76 -3.76 

21 570.15 576.548 -6.398 *53.80 *53.69 * 0.11 

22 800.15 801.248 -1.098 77.2 73.49 3.71 

23 711.45 712.356 -0.906 66.8 68.93 -2.13 

24 626.15 630.576 -4.42599 57.4 55.78 1.62 

25 877.25 876.051 1.199 *86.5 *84.83 * 1.67 

26 797.85 795.701 2.149 76.90 80.87 -3.97 

27 692.95 690.624 2.326 64.70 64.51 0.19 

28 733.35 731.607 1.743 69.30 67.56 1.74 

29 637.15 635.426 1.724 58.60 60.92 -2.32 

30 730.35 728.196 2.154 69.00 64.63 4.37 

31 594.85 591.464 3.386 54.10 52.20 1.90 

32 *598.15 *595.881 *2.269 54.20 55.02 -0.82 

33 568.15 573.685 -5.535 51.20 49.89 1.31 

34 628.15 624.837 3.313 57.60 53.26 4.33 

35 626.65 625.265 1.385 *57.50 *56.60 * 0.90 

36 541.95 536.233 5.717 53.60 47.90 5.69 

37 752.55 758.58 -6.03 71.50 69.15 2.35 

38 504.95 506.134 -1.184 46.80 48.27 -1.47 

39 673.45 673.245 0.205 *62.60 *65.96 * -3.36 

40 473.35 470.571 2.779 43.60 48.47 -4.87 

41 779.55 775.676 3.874 74.70 68.52 6.18 

42 722.55 724.375 -1.825 68.10 68.52 -0.42 

43 471.75 472.911 -1.161 41.70 50.40 -8.70 

44 471.75 470.14 1.61 41.70 46.87 -5.17 

45 513.05 518.757 -5.707 *49.6 *47.90 * 1.70 

46 611.95 612.797 -0.847 55.90 60.48 -4.58 

47 486.95 490.29 -3.34 45.00 43.53 1.47 

48 494.65 496.153 -1.503 43.90 50.34 -6.44 

49 690.15 693.082 -2.932 64.60 60.77 3.83 

50 610.55 609.353 1.197 55.80 57.14 -1.34 

51 *454.95 *458.479 *-3.529 43.50 45.35 -1.854 

52 609.55 611.652 -2.102 55.70 59.40 -3.70 

53 792.15 790.571 1.579 76.20 78.50 -2.30 

54 498.75 500.859 -2.109 46.20 44.84 1.36 

55 677.15 674.982 2.168 63.00 61.53 1.47 

56 *698.15 *696.869 *1.281 *65.30 *68.96 * -3.66 

57 *650.15 649.164 *0.986 60.00 59.61 0.38 
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RESULTS  

Statistical coefficients 

In order to build and test models, a data 

set of 57 compounds was randomly 

separated into a training set of 47 

compounds, which was used to build the 

model and a test set of 10 compounds, 

which was used to evaluate the built 

model. The obtained models were 

evaluated by statistical parameters, such as 

squared multiple correlation coefficient 

(R
2
) adjusted correlation coefficient 

(R
2
adj), Fisher ratio (F), Root Mean 

Square Error (RMSE), Durbin-Watson 

statistic (D) and significance (Sig). 

The squared multiple correlation 

coefficient (R
2
) [26] is defined by the 

following equation: 

 

     
∑      

 
     ̂  

 

∑     
 
   ̅  

    
   

   
            (1) 

 

where TSS is Total Sum of Squares; RSS: 

Residual Sum of Squares;    is the 

observed property,  ̂   is the property 

predicted by the model, and  ̅  is the 

average property. 

The R
2
 value increases when the 

number of variables in the model 

increases, while the adjusted R
2
 value 

increases only if the new variables improve 

the model more than expected by chance. 

Therefore, the adjusted R
2
, which is 

defined below, was also used [27]: 

    
     

       

       
                            

 

where   is the total number of regressors in 

the model,   is the sample size, and R
2
 is 

the correlation coefficient. 

The RMSE [28] for the training or 

prediction sets was calculated as follows: 

 

     √
∑             

 
                        (3) 

 

In Equation (3),       and      indicate 

predicted and observed property values 

respectively.  

A linear regression equation 

significancy is drawn from Fisher’s 

coefficient (F) [27]. It obtains by the 

following equation: 

 

  
     

 
 

   

   
                                     (4) 

 

In Equation (4), n is number of 

molecules; p is number of explanatory 

variables. 

 

QSPR models  

The GA–MLR analysis led to the 

derivation of 4 models for the enthalpy of 

vaporization at standard condition (∆H˚vap 

kJ mol
-1

), with 7-10 descriptors (Table 3). 

The statistical parameters of the models are 

almost the same; so, the model 4, which 

has the lowest number of descriptors, has 

been chosen. This model includes the 

seven descriptors namely: R7v, RDF080u, 

EEig13r, SP20, IC0, GGI5 and Mor08p. 

With the selected descriptors, we have 

built the linear model using the training set 

data, and obtained the following equation: 

 

∆H˚vap = -19.244 + 439.881 (R7v)-0.349 

(RDF080u) +6.550 (EEig13r) + 1.293 

(SP20) +13.913 (IC0) +7.185 (GGI5) -6.370 

(Mor08p)                                                 (5) 

 

N=47, R=0.991, R
2
=0.981, R

2
adj =0.975, 

F=147.592, DW=1.688, Sig=0.000, 

RMSE= 1.992 

The linear models for the normal 

temperature of boiling points (T
˚
bp K) 

contain 8 -10 descriptors. Table 4 shows 

the regression parameters and statistical 

parameters models for the thermal energy 

of 47 mono and PAHs. The best linear 

model for T
˚
bp includes eight descriptors 

which is: Jhetp, EEig15x, E2m, EEig13r, 
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nCb, ZM1V, EEig13x andATS2eu. The 

model is presented below: 

 

T
˚
bp = 202.122 + 53.092 (Jhetp) + 0.744 

(ZM1V) + 128.541 (EEig15x) -91.724 

(EEig13x) + 34.289 (EEig13r)+ 217.075 

(ATS2eu) - 456.520 (E2m) - 15.897 (nCb) 

                                                               (6) 

 

N=47, R=0.985, R
2
=0.971, R

2
adj 

=0.964, F=152.577, DW=1.797, 

Sig=0.000, RMSE= 4.781 

 

DISCUSSION 

In this paper, we have carried out a 

QSPR analysis to derive a quantitative 

relationship between chemical structure of 

57 mono and PAHs and their 

thermodynamic properties. In this step, to 

find the best model for predicting the 

mentioned properties, we will use the 

following sections. 

 

Collinearity and Multicollinearity 

It can be seen that the correlation 

coefficient of each of the models near to 1, 

but in regression analysis collinearity and 

multicollinearity should be checked. 

Collinearity and multicollinearity occur 

when two or more than two independent 

variables (molecular descriptors) are inter-

correlated. 
 

Table 3. Statistical parameters of the models calculated with the SPSS software for ∆H˚vap 

(kJ.mol
-1

) 
 

Model Independent Variable R R
2
 R

2
adj RMSE F Sig 

1 
Mor12p, R7v, RDF080u, EEig13r, SP20, IC0, 

Mor14p, GGI5, Mor08p, ITH, 
0.992 0.984 0.977 1.910 128.781 0.000 

2 
Mor12p, R7v, RDF080u, EEig13r, SP20, IC0, 

Mor14p, GGI5, Mor08p 
0.992 0.983 0.976 1.935 134.329 0.000 

3 
Mor12p, R7v, RDF080u, EEig13r, SP20, IC0, 

GGI5, Mor08p, 
0.991 0.982 0.975 1.953 141.875 0.000 

4 

R7v (R autocorrelation of lag 7 / weighted by 

van der Waals volume), RDF080u (Radial 

Distribution Function - 080 / unweighted), 

EEig13r (Edge adjacency indices), SP20 (shape 

profile no. 20), IC0 (Information Content index 

(neighborhood symmetry of 0-order)), GGI5 

(topological charge index of order 5), Mor08p 

(signal 08 / weighted by polarizability) 

0.991 0.981 0.975 1.992 147.592 0.000 

 

Table 4. Statistical parameters of the models calculated with the SPSS software for T
˚
bp (K) 

 

Model Independent Variable R R2 R2
adj RMSE F Sig 

1 
Jhetp, EEig15x, E2m, BELp6, EEig13r, nCar, nCb, ZM1V, 

EEig13x, ATS2es 
0.987 0.974 0.966 4.249 128.641 0.000 

2 
Jhetp, EEig15x, E2m, BELp6, EEig13r, nCb, ZM1V, 

EEig13x, ATS2et 
0.986 0.972 0.964 4.696 136.830 0.000 

3 

Jhetp (2D matrix-based descriptors 

Barysz matrix weighted by polarizability (Dz(p)), EEig15x 

(Edge adjacency indices), E2m (2nd component 

accessibility directional WHIM index / weighted by mass), 

EEig13r (Edge adjacency indices), nCb (number of 

substituted benzene C (sp2), ZM1V (first Zagreb index by 

valence vertex degrees), EEig13x (Edge adjacency indices), 

ATS2eu (Broto-Moreau autocorrelation of lag 2 (log 

function) 

0.985 0.971 0.964 4.781 152.577 0.000 
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Good regression model should not exist 

in a correlation between the independent 

variables or should not have happened 

multicollinearity.  

To study the correlation between the 

molecular descriptors in the models 5, 6, 

we used SPSS program to obtain the 

variance inflation factor (VIF), Pearson 

coefficient correlation (PCC) and 

collinearity statistics in ANOVA table. 

If the VIF value lies between 1 and 10, 

there is no multicollinearity; if VIF<1 or 

>10, there is multicollinearity and a 

recheck is necessary [29-31]. The VIF is 

calculated as follows:  

    
 

    
                                                  

 

From Table 5, we can infer that, the 

multicollinearity has existed, because the 

Pearson correlation between IC0and 

GGI5descriptors are bigger than0.5, 

therefore there is a linearity between these 

descriptors. After removing GGI5 and then 

in the next step IC0 and RDF080u 

descriptors we corrected Equation (5) as 

follows: 

∆H˚vap= 41.944 + 678.635 (R7v) + 1.784 

(SP20) -10.041 (Mor08p) +9.327(Mor12p)  

                                                                (8) 
 

N = 47, R =0.961, R
2 

= 0.923, R
2

adj = 

0.914, F = 98.618, DW = 1.688, Sig = 

0.000, RMSE = 2.691 

 

The suitable linear model for QSPR 

study of the thermal energy (Equation 6) 

includes eight molecular descriptors. The 

results of the correlation between these 

descriptors are listed in Table 6. Based on 

these results, there are high correlations 

between EEig13x and EEig13r descriptors 

that indicate possible collinearity 

problems. After removing EEig13r 

descriptor, and the next steps ATS2eu, 

nCb, EEig13r and E2m from this model, 

we corrected Equation (6) as follows: 
 

T
˚
bp = 324.787 + 1.778 (ZM1V)             (9) 

 

N = 47, R = 0.966, R
2 

= 0.932, R
2

adj = 

0.929, F = 573.406, DW = 1.839, Sig = 

0.000, RMSE = 3.086 

 

Table 5. Correlation between the molecular descriptors (Eq.(5)) 
Corrected 

model 
Collinearity Statistical Pearson Correlation for ∆H˚vap 

VIF 

(4) 

VIF 

(3) 

VIF 

(2) 

VIF 

(1) 
Mor08p GGI5 IC0 SP20 RDF080u R7v Mor12p Descriptor 

1.177 3.553 4.408 5.546       1.000 Mor12p 

1.459 2.310 2.653 2.920      1.000 0.367 R7v 

----- ----- 3.337 3.935     1.000 -0.265 -0.254 RDF080u 

1.554 1.742 3.015 3.159    1.000 -0.156 0.273 0.377 SP20 

----- 3.076 4.290 5.487   1.000 -0.062 0.079 0.104 0.411 IC0 

----- ----- ----- 7.680  1.000 -0.683 0.197 -0.335 0.064 0.046 GGI5 

1.667 3.553 8.048 9.066 1.000 -0.218 -0.060 -0.405 -0.120 -0.408 -0.453 Mor08p 

 

Table 6. Correlation between the molecular descriptors (Eq.(6)) 
 

Correcte

d model 
Collinearity Statistical Pearson Correlation  for Tᵒ

bp 

VIF VIF VIF VIF ATS2eu EEig13x ZM1V nCb EEig13r E2m EEig15x Jhetp Descriptor 

--- 2.720 3.951 5.134        1.000 Jhetp 

--- --- 5.967 44.555       1.000 -0.075 EEig15x 

--- 2.802 3.447 111.174      1.000 -0.089 -0.321 E2m 

--- --- --- 76.795     1.000 -0.097 -0.266 0.464 EEig13r 

--- --- 23.264 10.328    1.000 -0.235 0.182 -0.321 -0.510 nCb 

1.000 5.080 42.102 73.891   1.000 -0.042 0.018 -0.198 -0.379 0.366 ZM1V 

--- --- 2.123 3.718  1.000 -0.091 0.241 -0.949 0.171 0.065 -0.479 EEig13x 

--- --- 46.971 24.711 1.000 -0.59 -0.448 -0.670 0.596 -0.288 0.325 0.466 ATS2eu 
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Validation 

The success of any QSAR/ QSPR 

models depends on the accuracy of the 

input data, selection of appropriate 

descriptors, statistical tools and validation 

of the developed model. In this section, for 

verification, the validity of the regression 

models and the predictive ability and 

statistical significance of the QSPR 

models, squared cross-validation 

coefficient for leave-one-out (Q
2

LOO) and 

external validation through test set were 

used [32,34]. The Q
2

LOO value (Eq. 10) 

computed from 20 % of randomly chosen 

data was found to be positive and smaller 

than one. 

     
∑     ̂    

 

∑     ̅  
  

  
     

   
                

 

In Equation (10), the notation i|i 

indicates that the quantity is predicted by a 

model estimated when the i-th sample was 

left out from the training set. 

The Q
2

LOO values of the enthalpy of 

vaporization at standard condition (∆H˚vap  

 

kJ mol
-1

) and the normal temperature of 

boiling points (T
˚
bp K) of the mono and 

PAHs were calculated 0.929 and 0.959 

respectively. Another method for judgment 

of reliability of predictions of models has 

been checked by 10 compounds as external 

validation test set. 

The external prediction accuracy of the 

mentioned models was examined using R
2
, 

R
2

adj, RMSE, DW, F and Sig values. These 

statistical results for training and test sets 

of studied properties are listed in Table 7. 

Figs (1, 2) show the linear correlation 

between the observed values versus 

predicted values of ∆H˚vap and T
˚
bp were 

obtained using Equations (8,9).  
 

Regular Residuals 
The residual is the difference between 

the observed (experimental) value of the 

dependent variable (y) and the predicted 

(calculated) value (ŷ). The residual of the 

GA-MLR calculated values of ∆H˚vap and 

T
˚
bp show a relatively random pattern (see 

Figs. 3, 4). This relatively random pattern 

shows that a linear model provides a 

decent fit to the data. 

Table 7. Statistical parameters of models for training and test sets based on Equations 8,9 
 

Data set property N R R2 R2
adj RMSE DW F sig 

training ∆H˚vap 47 0.961 0.923 0.914 2.691 1.688 98.618 0.000 

test ∆H˚vap 10 0.990 0.980 0.974 2.190 1.802 168.207 0.000 

training T˚
bp 47 0.966 0.932 0.929 3.086 1.839 573.406 0.000 

test T˚
bp 10 0.973 0.947 0.912 2.885 1.791 686.321 0.010 

 

 
Fig. 1. Comparison between predicted and observed values of the enthalpy of vaporization at 

standard condition (∆H˚vap kJ mol
-1

) of the mono and PAHs by the GA-MLR method. 
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Fig. 2. Comparison between predicted and observed values of the normal temperature of 

boiling points (T
˚
bp K) of the mono and PAHs by the GA-MLR method. 

 

 
 

Fig. 3. Plot of residuals against the observed values of the enthalpy of vaporization at standard 

condition (∆H˚vap kJ mol
-1

) of the mono and PAHs for training and test sets. 

 

 
Fig. 4. Plot of residuals against the observed values of the normal temperature of boiling 

points (T
˚
bp K) of the mono and PAHs for training and test sets. 
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Interpretation of the best descriptors 

The obtained results and discussion lead 

us to conclude that the four 

descriptors(Mor08p, Mor12p, SP20 and 

R7v) have been classified into topological 

index, 3D-MoRSE and GETAWAY 

descriptors can be used successfully for 

modeling and predicting the enthalpy of 

vaporization at standard condition of the 

studied compounds (see Table 8).  

Topological indices are designed by 

transforming a molecular graph into a 

number. Topological indices possess the 

remarkable ability of being able to 

correlate and predict a very wide spectrum 

of properties for a vast range of molecular 

species [35]. 
GETAWAY descriptor calculated from 

the leverage matrix obtained by the 

centered atomic coordinates [36].This 

descriptor could be used for satisfactory 

prediction of the thermal energy. 

3D-MoRSE descriptor incorporates the 

information about the whole molecule 

structure, and it is a very flexible 3D 

structure encoding framework for 

chemoinformatics and QSAR/QSPR 

purposes [37, 38]. 

As can be seen, only the one descriptor 

(ZM1V) in topological block is useful to 

predict the normal temperature of boiling 

points (T
˚
bp K) of the mono and PAHs than 

the other descriptors (Table 8). 
The first Zagreb index (ZM1) is the sum 

of the square vertex degrees of all the non-

hydrogen atoms. First Zagreb index by 

valence vertex degrees (ZM1V) is obtained 

in the same way as the ZM1 index by 

substituting the simple vertex degree by 

the valence vertex degree [38]. 

 

CONCLUSIONS 

QSPR studies are mathematical 

correlations between molecular property 

and molecular descriptors. In this 

investigation, QSPR models have been 

developed to predict the normal 

temperature of boiling points (T
˚
bp K) and 

the enthalpy of vaporization at standard 

condition (∆H˚vap kJ mol
-1

) of 54 mono and 

PAHs. Multiple linear models were 

connected for modeling and predicting 

properties which are used in present study. 

Molecular descriptors calculated by the 

DRAGON software. The suitable 

descriptors were selected with the aid of 

the genetic algorithm (GA) technique and 

multiple linear regression (MLR) method. 

To assess the vigor and prescient capacity 

of the built models, leave-one-out cross-

validation, internal and external validation 

methods were implemented.  

Our results suggest that combining the 

four descriptors (Mor08p, Mor12p, SP20 

and R7v) can be used for satisfactory 

prediction of ∆H˚vap of mono and PAHs. 

These descriptors are classified as 

Topological, 3D-MoRSE descriptors, and 

GETAWAY descriptors. 

 

Table 8. Molecular descriptors used for ∆H˚vap and T˚bp 
 

Property Symbol Description Block 

T˚bp ZM1V first Zagreb index by valence vertex degrees Topological indices 

∆H˚vap 

Mor08p signal 8 / weighted by polarizability 3D-MoRSE descriptors 

Mor12p signal 12 / weighted by polarizability 3D-MoRSE descriptors 

SP20 shape profile no. 20 Randic molecular profiles 

R7v 
R autocorrelation of lag 7 / weighted by van der Waals 

volume 
GETAWAY descriptors 
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The results and discussion lead us to 

conclude that the models established by 

GA-MLR method have good correlation of 

thermodynamic properties, which means 

QSPR models could be efficiently used for 

predicting of the above mentioned 

properties of the mono and PAHs. 

The QSPR model involving one 

descriptor (ZM1V) provides a useful tool 

in predicting the normal temperature of 

boiling points (T˚bp K) of mono and 

PAHs. This descriptor is classified as 

topological index. 
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 چکیده

در  ریتبخ یمانند آنتالپ یکینامیترمود خواص ینیب شیو پ یساز مدل یبرا (QSPR) خاصیت -ساختارارتباط کمی  یها مدل

 یا و چند حلقه ی مونوکیآرومات دروکربنیه 73 (T˚bp K) نرمال جوش ی نقطهو دما (H˚vap kJ mol-1∆) استاندارد طیشرا

(PAHs)  یدو گروه آموزش به یبه طور تصادف یا و چند حلقه ی مونوکیآرومات های دروکربنیه .استمورد استفاده قرار گرفته 

انتخاب شده  باتیترک یبرا دراگونافزار  با استفاده از نرم یمولکول یها کننده فیاز توص یا . مجموعهتقسیم شدند یشیآزما و

مناسب استفاده  یها کننده فیانتخاب توص یبرا برگشتی ونیو رگرس (GA) کیژنت تمیروش الگور ازه است. محاسبه شد

  (MLR)روش رگرسیون خطی چندگانه از شیمیایی خواصو ها  کننده فبرای بدست آوردن رابطه خطی بین توصی .گردید

 یخارج یو اعتبار سنج تقاطعی یاعتبار سنج یها با استفاده از روش GA-MLR یها مدل ینیب شیپ ییتوانا .ه استاستفاده شد

 شده با روش جادیا یمجموعه آموزش یها رساند که مدل یم گیری جهینت نیو بحث ما را به ا جینتا .شده استانجام 

 GA-MLR ی ها توان از مدل یکه م یمعن نیدارند، به ا یکینامیترمود اتیبا خصوص یخوب یهمبستگQSPR  بدست آمده

 نمود.استفاده  (PAHs) یا و چند حلقه ی مونوکیآرومات های دروکربنیه ذکر شده خواص ینیب شیو پ نیتخم یبرا
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