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ABSTRACT 
This review reports recent advances in the field of polymer–layered silicate nano composites. These 
materials have attracted both academic and industrial attention because they exhibit dramatic 
improvement in properties at very low filler contents. Herein, the structure, preparation and 
properties of polymer–layered silicate nanocomposites are discussed in general, and finally the effect 
of clay nanoparticles on optical and Rheological properties of polymeric products were also 
discussed. 
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INTRODUCTION
Polymer 1   nanocomposites have attracted 
great attention worldwide academically 
and industrially due to the exhibition of 
superior properties such as modulus, 
strength, toughness and barrier far from 
those of conventional micro composites 
and comparable with those of metals. 
However polymer nanocomposites have 
added advantage of lower density and ease 
of processability. In polymer 
nanocomposites, the filler has at least one 
dimension in the nanometer scale and its 
nanoscale dispersion within the polymer 
matrix leads to the tremendous interfacial 
contacts between the polymer and 
inorganic filler which causes to the 
superior properties than those of bulk 
polymer phase. When the dimensions of 
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filler particles are decreased to the 
nanoscale, their properties change also 
significantly [1]. Clay is a general word 
used to describe mineral crystalline 
particles consisting mainly of hydrous 
aluminum silicates with substitution of 
aluminum bymagnesium, iron, alkalies, or 
alkaline earthelements. It is a familiar 
name in the different industreis such as 
pertochemistry, oil production,paper 
production, ceramic, plastic, rubber, and 
paint.This natural material has different 
types, but its three kinds are used mostly in 
paint industry namely attapulgite, kaolin 
and smectite [2].  

Attapulgite is a hydrated magnesium 
aluminum silicate with a formula of (Mg, 
Al)5Si8O22.4H2O. The needle-like particles  
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of attapulgite are used in paints to provide 
thixotropy property. These particles form a 
network through hydrogen bonding and 
van der waals forces that can break on 
effect of high shear forces. Figure 1 shows 
acicular particles of attapulgite and 
network formation by its particles in a 
water borne paint [2]. 

 

 
 

Fig. 1. (a) Acicular particles of attapulgite and (b) 
Network formation by particles in a paint. 

 
Kaolin has plate like structure and 

chemical formula of Al2Si2O5(OH)4. It is 
made up of tetrahedral sheets attached to 
octahedral sheets. Tetrahedral sheets are 
composed of silicon-oxygen units that are 
linked to form hexagonal rings. These 
rings repeat in two dimensions to form a 
sheet. Octahedral sheets consist of 
aluminum and oxygen units. The 
schematic of a layer of kaolin is presented 
in figure 2. These layers are held together 
through hydrogen bonding between 
hydroxyl groups in the octahedral sheets 
and oxygen in the tetrahedral sheets of the 
adjacent layers [2, 3]. 

 

 
 

Fig. 2. The schematic structure of Kaolin [4]. 
 

Kaolin is often treated with various 
surface active agents, such as silanes, 
stearates or polyacrylates to provide 

hydrophobicity and ease of dispersion in 
paints. Kaolin is used in paint as extender, 
anti-settling and gloss control agent. It may 
also improve opacity, stain resistance and 
brush-ability [2]. The crystal structure of 
smectite is very similar to kaolin. It is 
formed of two tetrahedral sheets fused to 
an edge-shared octahedral sheet. Smectite 
mostly consist of sodium and calcium 
montmorillonites. In montmorillonite 
(MMT), some aluminum or silicon ions of 
octahedral and tetrahedral were substituted 
isomorphically by ions having lower 
valency such as magnesium. These 
substitutions give an overall negative 
charge to each three sheets layer. This 
negative charge can be counterbalanced by 
cations such as Na+ and Ca2+ existing in 
the interlayer space. The schematic 
structure of MMT is shown in figure 3. 
MMT is a hydrophilic material, but it can 
be an organophilic one by ion exchanging 
the inter-layered cations with organic alkyl 
amines. The resultant clays are called 
organoclays. Organoclays are used mostly 
in paints to provide sag resistance and 
increase viscosity [2, 5]. 

 

 
 
Fig. 3. The schematic structure of montmorillonite 

[4]. 
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randomly distributed in the continuous 
polymer matrix with a d spacing of more 
than 50 A. The intercalation and 
exfoliation of the clay layers in the 
polymer matrix can be identified through 
wide angle X-ray diffraction (WAXD) and 
Transmission Electron Microscopy (TEM). 
The characteristic WAXD of unmodified 
clay (Cloisite Na), organically modified 
clay (Cloisite 30B and clay 3) and 
organically modified clays swelled by 
epoxy resin is shown in Fig. 6 [11]. Here 
it is clear that the d spacing increases with 
the organic modification of clay and it 
further increases when it swelled in epoxy 
resin. After curing, the epoxy clay 

nanocomposites can give either 
intercalated or exfoliated structure, where 
the d spacing will be increased further for 
intercalated structure or the peak 
corresponding to the d spacing in the 
WAXD will be disappeared in exfoliated 
structures as shown in the case of epoxy-5 
wt.% Cloisite 30B (clay 1) mixtures cured 
atdifferent temperatures (Fig. 7) [11]. 
Lingaiah et al. suggested that air plasma 
etching followed by scanning electron 
microscopy (SEM) imaging is a promising 
technique for visualizing the exfoliation 
and dispersion of inorganic nanofillers like 
clay and CNT in polymer nanocomposites 
[12]. 

 

 
 

Fig. 5. Types of polymer clay nanocomposites. 
 

 
 

Fig. 6. The characteristic WAXD of (a) unmodified clay (Cloisite Na), (b and c) organically modified clay 
(Cloisite 30B (b) and clay 3 (c)) and (d) organically modified clays swelled by epoxy resin (Epon 828). 
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Fig. 7. WAXD patterns showing (a) intercalated and (b) exfoliated clay structures obtained by curing Epon 828–
5 wt.% clay 1(Cloisite 30B) mixtures using Jeffamine D230 respectively at 50 _C for 5 h and at 100 _C for 2 h. 
 
PREPARATION OF 
NANOCOMPOSITES 
There are several methods to prepare clay 
based polymer nanocomposites. These 
include in situ polymerization, melt 
intercalation and solution casting. 
 
In situ polymerization 
In this method, the liquid monomers or 
prepolymers (epoxy resin) are intercalated 
into clay layers and polymerizes within the 
clay layers resulting the expansion of the 
interlayer distance (d spacing). 
Polymerization can be initiated by heat or 
a suitable initiator. Most of the exfoliated 
nanocomposites are produced by this 
method because it provides to select 
suitable reagents and polymerization routes 
resulting a good affinity between clay and 
polymer. In situ polymersiation technique 
has been used for the preparation of 
nanocomposites based on polyamide (PA) 
[13], poly (e-caprolactone) [14], 
polystyrene (PS) [15], polyolefien (PPand 
PE) [16] polyethylene terephthalate (PET) 
[17], epoxy [9]. 
 
Melt intercalation 
The melt intercalation involves the 
blending of clay with the polymer matrix 

in molten state. If the layer surfaces have 
sufficient affinity with the polymer, the 
polymer can diffuse between the clay 
layers and form either an intercalated or an 
exfoliated nanocomposite. Melt 
intercalation technique is used for the 
preparation of nanocomposites based on 
polyamide such as nylon 6 [18] and nylon 
66 (PA66) [19], and polyethylene 
terephthalate (PET) [20]. This method is 
more economical and simpler than other 
methods. 

The melt intercalation process has 
become increasingly popular because of its 
great potential for application with rapid 
processing methods such as injection 
molding [21] and twin screw extrusion 
[22]. Melt blending technique is more 
efficient and produces nanocomposites 
with improved mechanical properties when 
it is processed under the aid of super 
critical carbon dioxide [23]. 
 

Solution casting 
In the solution method, polymer clay 
nanocomposites are prepared by using a 
suitable solvent such as water, acetone, and 
chloroform, in which the polymer is 
soluble and the clay is dispersible. 

When the polymer solution and the 
clay-dispersed solution are mixed, the 
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polymer chains will be intercalated 
between the clay layers by replacing the 
solvent molecules. Intercalated polymers 
will remain in the clay layers upon the 
removal of solvent. It is reported that the 
increase in entropy by desorption of 
solvent molecules is the driving force for 
the intercalation of polymer from solution 
[24]. Water soluble polymers such as poly 
(ethylene oxide) [25], and poly (ethylene 
vinyl alcohol) [26] have been intercalated 
between the clay layers by this method. 
Nanocomposites based on cellulose [28], 
high-density polyethylene [27], etc. have 
been synthesized by this method using 
non-aqueous solvents. The major 
advantage of this method is that it offers 
the possibility to synthesize intercalated 
nanocomposites based on polymers with 
low or even without polarity. 
 
PROPERTIES OF POLYMER/ 
CLAY NANOCOMPOSITES 
The aim for the addition of clay minerals 
to the polymers is to improve the polymer 
properties and to produce the polymer/clay 
nanocomposites with demand 
characteristics for desired applications. 
Almost it is wanted to obtain a 
nanocomposite with demand properties 
and characters or overcome the drawbacks 
of polymers while remaining the intrinsic 
advantages of primary polymer matrix. 
Because of the low price, availability, high 
aspect ratio as well as desirable 
nanostructure and interfacial interactions, 
clays can provide dramatic and adjustable 
improved properties at very lower loadings 
which help to the more remaining of 
polymer original useful properties. The 
nature and properties of components as 
well as preparation methodology and 
conditions affects on the final properties of 
polymer/clay nanocomposite [29]. In this 
section the various improved properties of 
polymer/clay nanocomposites as well as 

the mechanism and effective parameters 
are discussed. 
 
Rheological properties 
The measurement of the rheological 
properties of any polymeric material is 
crucial to gain fundamental understanding 
of the processibility of that material and is 
usually conducted by either dynamic 
oscillatory shear or steady shear 
measurements [30]. In the case of 
polymer–layered silicate nanocomposites, 
the study of rheological properties is 
instructive for two reasons: First, these 
properties are indicative of melt processing 
behavior in unit operations, such as 
injection molding. Second, since the 
rheological properties of particle-filled 
materials are sensitive to the structure, 
particle size, shape and surface 
characteristics of the dispersed phase, 
rheology potentially offers ameans to 
assess the state of dispersion in 
nanocomposites, directly in the melt state. 
Thus, rheology can be envisaged as a tool 
that is complementary to traditional 
methods of materials characterization [30]. 

It is generally established that when 
nanocomposites are formed, the viscosity 
at low shear rates increases with filler 
concentration [31]. Very often, solid-like 
behavior is observed, which is attributed to 
the physical jamming or percolation of the 
randomly distributed silicate layers, at 
surprisingly low volume fraction, due to 
their anisotropy [32]. On the other hand, at 
high shear rates, shear thinning behavior is 
usually observed [31]. It has been 
suggested that this is the result of the 
alignment of silicate layers towards the 
direction of flow at high shear rates. Such 
observations support the percolation 
argument used in the case of 
nanocomposite rheological behavior under 
low shear [32].Typical shear viscosity 
curves as a function of shear are presented 
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whether a nanocomposite will form or not, 
and whether this will be intercalated or 
exfoliated, depends on a variety of factors. 
These include the type of polymer, layered 
silicate and organic modifier, the 
preparation technique and processing 
conditions. Researches in this filed showed 
that surface modifier agents used play an 
important role in improvement of optical 
resistance of clay nanocoposites. 
Rheological stability was significantly 
improved by the incorporation of clay 
particles to polymeric systems. 
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