Journal of Physical and Theoretieal Chemistry
af Islamic Azad University of Itan, 6 (3) 183-190: Fall 2009
(J.Phys.Theor:Chem. LAU Iran)
ISSN: 1735-2126

Kinetic and thermodynamie study af substituent effect on thc Claisen rearraagement of para-substituted allyl aryl ether: a Hammett study via DFT

S. R. Emamian ${ }^{1}$, M. R. Zardoost ${ }^{\prime}$.K.Zare ${ }^{2}$, E. Zahedi ${ }^{3}$ and H. Aghaie ${ }^{2, *}$
${ }^{1}$ Ph.D.Studeat,Department af Chertistry,Scieace and Research Branch, Islamic Azad Universily, Tebran, Iran
${ }^{2}$ Department of Chemistry. Scieace and Research Branch, Islamic Azad Untversily, Tehran, Iran
3 Department of Chemistry, Stahrood Branch, Islamic Azsd University, Shahrood, Iran

Abstract

In urder to find the Susceptibility of the Claisen rearrangement and aext pmon shift reactioa of allyl aryl ether to the substitueat effects in para position, the kinetic and thermodymamic paramclers are calculated at the B3LYP level using 6-311G" basis set. The calculated activation energes for the rearrangemeats and proton sbift reactions are around $33.33 \mathrm{kcal} /$ mol and $52.16 \mathrm{kcal} / \mathrm{mal}$, respectively. Negative values for the activatioa entropy confirm the coacerted mechanism for the Claisea rearrangemicn arrd proton shift reaction. The Hammett ρ value of -1.3433 obtamed in Clasen rearrangenneat. Negative Hammett ρ value indicates that the electron donating grnups slightly increase the rate of Claisen rearrangemeat. Positive Haramett ρ value (2.5132) for proton shif reactinn indicates that electroa withdrawing groups increase the rate of reactioa.

Keywnrds: Hammett; Density functiaaal theory; Substutuent effect, Claisen rearrangement; Allyl aryl ether

INTRODUCTION

A typical organie reaction proceeds in a special mechanism. There maybe several proposed mechanısms far a typical organic reactinn. Experimental methods have many instrumental limitations, such as trapping the intermediates or transilion states (TSs) in confirming the mechanism that reactions pmoeed from it. Computational methods can make confirming the mechanism eascr, cheaper, and exacter. Fnr example, the gas phase kinetics and the mechanism nf two retro-cbcictropic ene reactinns were studied by computational methods, therefore, the stepwise mechanism was rejected and the concerted mochanism was fully investigated [1]. Among the most efficicnt reactions in terms of atom economy are the [3, 3] sigmatropic shifts. that allow the formation of a $\mathrm{C}-\mathrm{C}$ band through the rearrangement of the molecule [2]. Tbe [3,3] sigmatrnpic rearrangement of allyl vinyl ethers.
which allows the preparation of $\gamma_{s} \delta$ unsaturated carbonyl compounds, is worthy nf study due to its special synthetic relevance as well as the large number of theoretical studies generated. This reaction, first reported by Ludwig Claisea in 1912, [3] was originally described as "the thermal isomerization of an allyl vinyl ether or of its nitrogen or sulfur containing analogue derivativessto afford a bifunctionalized molecule in a $\left[\pi^{2} s+\sigma^{2} s+\pi^{2} s\right]$ process.

The development nf the aliphatic Claisen rearrangement was simultancnus with the study of the aromatic version of the reaction $[4,5,6]$. Thus, in the Claisen rearrangement of an allyl aryl ether, the first $[3,3]$ step affords an ortho denone whicb usually enolizcs into an o-allylphenol. It is the reaction known as the orthn Claisen rearrangement (Scheme 1).

[^0]

Scheme 1. Chaise rearrangement of allyl aryl ether and 1,3 -proton shit it of intermediate. $\mathrm{X}=\mathrm{H}, \mathrm{NO}, \mathrm{CN}, \mathrm{CHO}$, $\mathrm{F}, \mathrm{Cl}, \mathrm{NH}_{2}, \mathrm{NHCH}_{3}, \mathrm{OH}, \mathrm{OCH}_{3}, \mathrm{CH} 3$.

Table I. Hammett substituent constant values [9]

$\overline{\mathrm{X}}$	σ_{p}
H	0
NO_{2}	0.780
CN	0.650
CHO	0.450
F	0.060
CI	0.220
NH_{2}	-0.630
NHCH_{3}	-0840
OH^{2}	-0.380
OCH_{3}	-0280
CH_{3}	-0.170

In the present work we extended our studies to discover the effect of substituent in the rearrangement and 1,3 -proton shift reaction of allyl aryl ether by applying the Hammett equation. Eq. (1) shows the basic form of the Hammett equation [7]:
$\log \frac{\mathbf{k}_{\mathrm{X}}}{\mathrm{k}_{\mathrm{H}}}=\rho \sigma$
in which k_{X} is the rate constant for a side chain reaction of a benzene derivative where a substituent is in para or meta position with respect to the side chain and k_{11} is the corresponding quantity for the unsubstrtuted compound; σ is a Hammett substituent constant which in principle is characteristic of the substituent, and ρ is a reaction constant, which depends on the oature of the
reaction. The Hammett equation is an of the important example of linear free energy relationships (LEERs), which widely used in studies of the chemical reactivity of substituted henzenes [8]. It Several compilations of the Hammett $\sigma_{p}^{\dot{\prime}}$ and enhanced $\sigma_{P}(\sigma)$ values [9] are tabulated in Table 1.

COMPUTATIONAL DETAIL

The structures corresponding, to the reactants, ISs, intermediates, and products (Scheme 1) were optimized, using the Gaussian 03 computational package [10] with DFT method. The optimized geometries of the stationary points on the potential energy surfaces (PES) were performed using the Becke's three-parameter hybrid exchange functional with the correlation functional nf Lee, Yang, and Parr (B3LYP) [11,12] with the $6-31 \mathrm{IG}^{* *}$ basis set. To confirm the nature of the stationary species and' evaluate the activation energy barriers, : frequency calculations are carried out. For minimum state structures, only real frequency values and for the transition states, moly a single imaginary frequency value is accepted. The synchronous transit guided quasi-Newton (STQN) method [13] was used to locate the TBs. The activation energies, E_{a} ' and the Arrhenius factors were computed using Eqs. (2) and (3). respectively, which were derived from the transition state theory [14.15]:
$\mathrm{E}_{4}=\Delta \mathrm{H}^{ \pm}(\mathrm{T})+\mathrm{RT}$
$A=\left(\mathrm{ek}_{B} T / h\right) \exp \left(\Delta S^{=}(T) / R\right)$
Thermodynamic parameters
calculated at 298.15 K and 1.0 atm .
were

RESULTS AND DISCUSSION
Thermodynamic data are presented for allyl aryl ether to their conesponding intermediates (sigmatropic reaction), and for intermediates to corresponding orthoallyiphenols (1,3 -proton shift), with different substituent (Scheme 1, Table 2). These are calculated at the B3LYP/6-311G" level, which include: sum of electronic and thernal enthalpies (H), sum of electronic and thermal Gibbs free energies (G), and entropies (S) for the grnund state of reactants, products, intermediates, and their corresponding transition states (TS). Using the above data,
the equilbrium constants ($\mathrm{K}_{\text {eq }}$), Gibbs free energies $\left(\Delta G^{*}\right.$, enthalpies $\left(\Delta H^{*}\right)$, and entropies (ΔS°) of reactions fir both rearrangement and 1,3 -proton shift reaction are calculated and collected in Table 3. The activation energies (E_{i}), rale constants (k), pre exponential factors (A). enthalpies of activation $\left(\Delta H^{*}\right)$, Gibbs activation free energies ($\Delta \mathrm{G}^{\star}$), activation entropies ($\Delta \mathrm{S}^{\star}$), n_{T} (the position of the transition structure along the reaetion coordinate), and $\log \left(\mathbf{k}_{\mathbf{k}} / \mathbf{k}_{11}\right)$ for sigmatropic rearraagements and 1,3 -proton shift reactions, are presented in Tables 4 and 5 .

Table 2. Calculated B3LYP/6-311G* therrnodynamic data for Claisen reartangement and next prown sthift reaction inciuding: sum of electronc and themai Gibbs free energies (G), sum of etectronic and thermal enthalpies (H), and entropies (S) for the ground state of reactants (R), produc $\mathbf{u}(\mathrm{P}$). intermediates (M). and their corresponding transition states (TS1 and TS2)

Substituent	State	$\begin{gathered} \mathrm{G} \\ \text { (Hatree) } \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (Hartre) } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{cal} / \mathrm{mol} \mathrm{~K}) \end{gathered}$
H	R	-424.144449	-424.099781	94.012
	TS1	-424.088993	-424.046494	89.446
	IM	-424.t27028	-424.081623	95.562
	TS2	-424.045102	-424,000720	93.410
	P	-424.161432	-424.117279	92.927
NO_{2}	R	-628.704962	-628.653486	108.341
	TSi	-628.648739	-628.599225	104.211
	IM	-628.683430	-628.630914	110.529
	TS2	-628.604420	-628.553326	107.536
	P	-628.722172	-628.671414	106.830
CN	R	-516.414913	-516.365942	103.069
	TSI	-516359004	-516311848	99.249
	IM	-516.393469	-516.343615	104.926
	TS2	-516.314180	-516.265267	102.945
	P	-516.432037	-516.383637	101.867
CHO	R	-537.494920	-537.445442	104.135
	TS1	-537.439466	-537.391952	100.002
	1 M	-537.475974	-537.425604	106.011
	TS2	. 537.396362	-537.347134	103.609
	P	-537.511842	-537.462994	102.810
F	R	-523.416821	-523.369989	98.565
	ISI	-523.362086	-523.317417	94.015
	IM	-523.399361	-523 351769	100.166
	TS2	-523.315284	-523.268783	97.869
	P	-523,433706	-523.387443	97.369

H. Aghaie et al. /J.Phys. Theor.Chem.LAU Iran, 6(3): 183-190, Fall 2009

Table 2. Continued...

Kinetic and thermodynamic study
Calculations show that the sigmatropic rearrangements with various substituents are endothermic ($\Delta H \times 0$) and the globai rearrangement process is aot spontaneous ($\Delta \mathrm{G}>0$), on the other hand the proton shift reactions with all studied substituents are exothermic ($\Delta H^{\circ}<0$) and the global proton shift reactions are spontaneous ($\Delta \mathrm{G}^{\circ}<0$). Our calculated $\Delta \mathrm{G}^{\circ}$ for the sigmatropic rearrangements and proton shift reactions are very similar to their numerically calculated values of ΔH° (Table 3). As we can see from Table 3, the calculated enitropy values are gencratly small (absolute values of ΔS° are less than $2.2 \mathrm{cal} / \mathrm{mol}$. K for the rearrangements and $3.7 \mathrm{cil} / \mathrm{mol} . \mathrm{K}$ for the proton shift reactions). These results indicate that the entropy effect on
the Gibbs free energy is very small and the entropy term and $T \Delta S$ value can be neglected for the equilibria constant. Thus, the enthalpic term is dominant in the determinatioa of the equilibrium constant. From Tables 4 and 5 we can see that the calculated Gibbs free energy barriers for the sigmatropic rearrangements and proton shift reactions with various substituents are on average $34.08 \mathrm{kca} / \mathrm{mol}$ and $52.22 \mathrm{kcal} / \mathrm{mol}$, respectivcly, which are very similar to the calculated enthalpy barriers. Activation energies for the rearrangements and proton shift reactions are around 33.33 $\mathrm{kcal} / \mathrm{mol}$ and $52.16 \mathrm{kcal} / \mathrm{mol}$, respectively. The nomal range for the experimental activation encrgies of Claisen rearrangemeot with mcthyl substituent in para position is' about 36.08 $\mathrm{kcal} / \mathrm{mol}[1]$.

Table 3.Cbanges of thermal Gibbs free energies (ΔG^{*}), thermal entbalpies (ΔH^{*}), entropies (ΔS^{\prime}), and equilibrium constants ($\mathrm{K}_{\text {eq }}$) Calculated at B3LYP/6-311G* level of theory for Claisen rearratgernent and next prolon shift reaction

Substuruent	Rearangement				Protor shift			
	$\frac{\Delta G^{+}}{\left(\mathrm{kca} / \mathrm{m}_{\mathrm{m}} \mathrm{~d}\right)}$	$\begin{gathered} A \mathcal{H}^{\prime} \\ (\mathrm{k} \text { kal'mal) } \end{gathered}$	$\begin{gathered} \Delta S^{+} \\ (\mathrm{cal} / \mathrm{mol} \mathrm{~K}) \end{gathered}$	$\mathrm{K}_{\text {+ }}$	$\begin{gathered} \Delta G^{+} \\ \left(\mathrm{kcal}{ }^{\prime} \mathrm{mol}\right) \end{gathered}$		$\begin{gathered} \Delta S^{*} \\ \text { (cal'mol.K) } \end{gathered}$	$\mathrm{K}_{\text {¢q }}$
H	10.931	11.394	1.550	$9677 * 1 a^{-4}$	-21.588	-22.374	.2.635	$6.714^{*} 10^{15}$
NO_{2}	13511	14,104	2.188	$\left.12 \underset{\mid *}{23^{*}}\right] a^{-}$	-24.278	-25.414	-3.699	$6.29 a^{4} 18^{17}$
CN	13.456	14.310	1.857	$1.364_{30}^{*} 18^{\circ}$	-24.2al	-25.114	-3.959	$5.528 * 10^{17}$
CHO	11.888	12.448	1.876	1923*10 ${ }^{\circ}$	-22.5a7	-23.462	-3.281	3.165818^{66}
F	12956	11.437	1601	$9.285^{*} 10^{\prime}$	-21 55:	-22385	-2.797	$6307 * 10^{\text {L5 }}$
Cl	11.463	11.963	1.668	$3.941 * 10^{-9}$	-22058	-22.944	-2.972	$1.482{ }^{*} 10^{16}$
NH_{3}	9.959	10306	1.164	$4.998 * 10^{+}$	-20.366	-21069	-2.359	8 $5288^{*} 10^{14}$
NHCH_{1}	8781	9.202	1.477	$3.649^{*} 10^{7}$	-19,130	-19825	-2.331	$1.057 * 10^{14}$
OH	9.611	9.941	1.306	$8.987^{*} 18^{-4}$	-19.994	20.656	-2 218	$4.555 * 10^{14}$
OCH_{3}	8.574	8913	1.138	5171*10 ${ }^{-7}$	-18.839	-19589	-2320	$7.046{ }^{*} 1 a^{15}$
CH_{5}	10.744	10.352	-1323	$1.326^{*} 10^{\prime \prime}$	-2t.146	21.206	-1, 199	$3.181 * 10^{15}$

Table 4.Activatinn parameters, position of the transition structures and $\log \left(\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{H}}\right)$, calculated at the B3LYP/631 G * ${ }^{*}$ level nf theory for Claisen rearangement

Substituent	$\begin{gathered} \Delta S^{x} \\ \{\mathrm{fec}=\mathrm{al} / \mathrm{mol}\} \end{gathered}$	$\begin{gathered} \Delta \mathrm{H}^{F} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta S^{+} \\ (\mathrm{cal} / \mathrm{mol}, \mathrm{~K}) \end{gathered}$	n^{1}	E_{a} (kealfol)	$\log A$	$\begin{gathered} k \\ \left(S^{-1}\right) \end{gathered}$	$\log \left(k_{X} \times \mathbf{K}_{H}\right)$
H	34.799	33.438	4566	8.593	34.030	12.229	1910*18 ${ }^{19}$	0.000
NO_{2}	35.280	34049	4.138	0618	34,641	12324	$8.484 * 10^{24}$	-0.352
CN	35.083	33.944	-3820	8.618	34.536	12.392	: $183 * 10^{-17}$	-0 208
CHa	34.797	33565	-4.133	0603	34.157	12323	$1.914^{*} 10^{35}$	0.0009
F	74.346	32.989	-4550	8.594	33.581	12231	$4.0999^{*} 13^{-12}$	8.331
Cl	34532	33.268	-4.232	0599	33 BCO	12.299	$2.996 \cdot 10^{-11}$	0195
NH_{2}	33.013	31.685	4.454	6588	32.277	12.253	$3.893 * 10^{-12}$	1.309
NHCH_{3}	32.072	38.867	4.84!	0.579	31460	12.344	$1.907 * 10^{-16}$	1.999
OH	33.426	31979	4854	0.583	32.571	12.166	1939×10^{42}	1.006
OCH_{3}	32 B 76	31.483	4672	0.574	32.875	12.205	$4965 * 20^{-12}$	1409
CH_{3}	34898	32841	-6,902	0590	33.433	11717	$1.614^{*} 10^{33}$	-0.073

Table 5.Actıvatinn parameters, position of the transition structures and $\log \left(k_{X} / k_{H}\right)$, calculated at the B3LYP/6$311 G^{+*}$ level of theory for protinn shifl reaction

Substituent	$\begin{gathered} \Delta G^{7} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\underset{\left(\mathrm{kcal} \mathrm{H}^{\prime} \mathrm{mol}\right)}{\left.\Delta H^{k}\right)}$	$\begin{gathered} \Delta S^{ \pm} \\ \text {(cal'mol.K) } \end{gathered}$	${ }_{T}$	$\underset{(\mathrm{kcal} / \mathrm{mol})}{\mathrm{E}_{\mathrm{B}}}$	$\log A$	$\begin{gathered} k \\ \left(S^{-1}\right) \end{gathered}$	$\log \left(k^{\prime}{ }^{\prime} k_{H}\right)$
H	51.409	50.767	-2 152	8.413	51.359	12.756	$1.270^{*} 10{ }^{27}$	0000
NO_{2}	49.579	48.687	-2.993	0.48 I	49279	12.572	$2789^{*} 10^{-24}$	1.341
CN	49.754	49164	-1.981	0.482	49756	12.794	$2.075 * 10^{-24}$	1.213
CHO	49.957	49240	-2.402	0408	49.833	12.701	$1.474 * 18^{-24}$	1.064
F	52.759	52074	-2.297	0415	52.666	12.724	$1.301 * 18^{-76}$	-(1.989
Cl	51.965	51.346	-2.879	0412	51.938	12.772	$4.965^{*} 10^{* 26}$	-0.407
NH_{2}	53.931	53.357	-1926	8.420	53.949	12.885	$1.797^{*} 10^{27}$	-1849
NHCH_{3}	54.673	57.929	-2.496	8.425	54.521	12.681	$5.139 * 10^{-28}$	-2.392
OHf	53.800	53.232	-1904	0.421	53.824	12818	$2.245^{*} 10^{-27}$	-1.752
OCH_{3}	54.255	53.591	-2.226	(1.425	54184	12740	1.841*10 ${ }^{-27}$	-2.086
CH_{3}	52.412	51.930	-1.617	0.416	52.522	12 a73	$2.375 * 10^{-26}$	-0735

Position of the transition structures

Hammond's postulate can be interpreted in terms of :the position of the transition structure along the reaction coordinate, o_{I}. (Eq.4) as defined by Agmon [16]:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{T}}=\frac{1}{2-\left(\Delta G^{\nu} / \Delta G^{*}\right)} \tag{4}
\end{equation*}
$$

According to this equation, the position of the transition state along the reaction coordinate is determined solely by ΔG^{\prime} (a thermodynamic quantity) and $\Delta \mathrm{G}^{\neq}$(a kinetic quantity). According to Table 4, the values of n_{T} for the Claisen rearrangement with various substutuent are >0.5 but for the proton shift reaction with various substutuents these values are <0.5. The magnitudes of n_{T} that indicate the degree of similarity between the transition structure and the product, for the rearrangement with electron withdraw substituent are greater than with electron donor substituent, but for the proton shift reaction this canclusion is reversed. This sequence implies that among the transition structures, those in the rearrangement have the largest similarity to the product and in the proton shift reaction have the smaller resemblance to the product.

Hammett study

Plnts $n f \log \left(\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{H}}\right)$ (Tables 4 and 5) vs. Hammett substituent constant for the rearrangement and proton shift rcactions are shnwn in Figs. 1-2. The results of a linear regression far $\log \left(k_{\mathrm{X}} / \mathrm{k}_{\mathrm{H}}\right)$ versus Hammett σ constant for the rearrangement and proton shift reaction are given in Eqs. 5 and 6:
$\operatorname{kss}\left(\frac{k_{X}}{k_{H}}\right)_{\text {Rearnagnecoxot }}=-43423 \sigma_{p}+0.4935 R^{2}=0.7728(5$
$\operatorname{cog}\left(\frac{\mathbf{k} \boldsymbol{Y}}{\mathrm{H}}\right) \quad=2.5132 \sigma_{p}-0.567 \mathrm{R}^{2}=0.8911$
$\log \left(\frac{r_{2}}{\mathrm{~K}_{\mathrm{H}}}\right)_{\text {Protex sbitt }}=2.5132 \sigma_{p}-0.567 \mathrm{R} \mathrm{R}^{2}=0.8911$
The Hammett ρ value of 1.3433 (Fig. 1) is obtained for Claisen rearrangement and the correlation caefficient between $\log \left(\mathrm{k}_{\mathrm{K}} / \mathrm{k}_{\mathrm{H}}\right)$ and σ_{p} is 0.7728 (Fig.2). Negative Hammett ρ value indicates that the electron donating groups moderately increase the: rate of Claisen rcarrangement. Positive Hammett ρ value (2.5132) for proton shift : reaction indicates that the electron withdrawing groups increase the rate of reaction.

CONCLUSION

DFT calculations portray a clear picture of electronic effeet on allyl aryl ether rearrangement and its next step (proton shift reaction). The agerement between the numerical values of $\log \left(\mathrm{k}_{\mathrm{X}} / \mathrm{k}_{\mathrm{H}}\right)$ and Hammett substituent canstant were excellent and Eqs. 5 and 6 describe these relationships. Negative Hammett ρ value for Claiseo rearangement indicates that, the electron donating groups moderately increase the rate of the reaction; on the other hand positive value indicates that the electron withdrawing groups increase the proton shift reaction rate. Considerable deviation of the correlation factor from 1 indicates that the sterie parameters could be impnrtant in these reactions.

Fig.1. Regressioa plot between $\log \left(\mathrm{k}_{X} / \mathrm{k}_{H}\right)$ and Harmett substituent constant at the para pisition (σ_{p}) for the Claisen rearrangement.

Fig.2. Regression plot between $\ln g\left(k_{x} / k_{f 1}\right)$ and Hammett substituent cnnstant at the para positinn (σ_{p}) for the proton shift reaction.

REFERENCES

[1] M.R. Gholami, M. Izadyar, J. Mol. Struct. (THEOCHEM) 31,61 (2004).
[2] I. González, I. Bellas, A. Souto, R. Rodriguez, J.Cruces, Tetrahedron Lett. 49, 2002 (2008)
[3] L. Claisen, Chem. Ber. 45, 3157 (1912).
[4] P.A. Bartlett, Tetrahedron, 36, 1 (1980).
[5] F.E. Ziegler, Acc,Chem. Res. I0, 227 (1977).
[6] J.P. Ryan, P.R. O'Connor, J. Am. Chem. Soc. 74, 5866 (1952).
[7] C. Öğretir, E. Açikkalp, T. Güray, J. Mol. Struct. (THEOCHEM) 538, 107 (2001).
[8] M.Segala, Y. Takahata, O.P. Chong, J. Mol. Struct. (THEOCHEM) 758, 61 (2006).
[9] Kenneth A. Connors, Chemical Kineties, "The Stucty of Reaction Rates in Solution" (VCH Publishers, Inc.,New York, 1990).
[10] M.J. Frisch et al., Gaussian 03, Revision B.03, Gaussiañ Inc., Pittsburgh PA. 2003.
[11] A.D. Becke, Phys. Rev. A 38, 3098 (1988).
\#
[12] C. Lee. W. Yang, R.G. Parr, Phys. Rev. B 371, 785 (1988).
[13] H.B. Sehlegel. C. Peng, P.Y. A yala, M.J. Frisch, J. Comput. 'Chem. 17, 49 (1996).
[14] S. Glasstone, K.J. Laidler, H. Eyring, "The Theory of Rate Processes" (MeGraw-Hill, New York. 1941).
[15] K.J. Laidier, "Theories of Chemical Reaction Rates" (MeGraw-Hill, New York, 1941).

[16] C-H. Chuang, M-H. Lieni, Eur. J. Org. Chem. 2004, 1432 (2004).

[^0]: *Cortesponding author:hn_aghajeyythow.com

