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ABSTRACT 
The relative stability of hydrogen-bonded of Molybdate-Phosphonic Acid (MPA) complex (1:2) in 

gas phase has been carried out using Density Functional Theory (DFT) methods. The methods are used 
for calculations are B3LYP, BP86 and B3PW91 that have been studied in two series of basis sets: D95** 
and 6-31+G(d,p) for hydrogen and oxygen atoms; LANL2DZ for Mo and Phosphorus. Predicted 
hydrogen-bond geometry and relative stability are discussed. Equilibrium geometry in the ground 
electronic state energy has been calculated for 1:2 complex. The best results for energetics and geometry 
of the ground state was obtained with BP86 calculations. 

 
           Keywords: Hyrogen bonding; Basis sets; Equilibrium structure. 
 
 
INTRODUCTION
 Among noncovalent interactions [1], hydrogen 
bonding [2] is of paramount significance.A vast vary 
supermolecular assemblies owe their well-defined 
structure to the existence of adjacent hydrogen-bond-
donor and –acceptor units at complementary constituent 
parts [2,3]. The investigation of hydrogen bonding is  
also important for many practical applications, such as 
the design of antibiotics [4,5] and the development of 
new materials with programmed properties, e.g., ordered 
nanocomposites [5], photoresponsive sensors [5,6], and 
hydrogen-bonded networks resulting in thin films [7] or 
liquid crystals [8]. Recent investigations in polymer 
science have shown that π-conjugated oligomers 
functionalized with units capable of hydrogen bonding 
can form reversible polymers [3,9] and stacked 
hierarchic structures [10]. These aggregates can be used 
in electrooptical devices such as solar cell [11] and light-
emitting diodes [12] with tunable macroscopic 
properties. The ability to understand and predict the 
stability of hydrogen-bonded systems is of importance 
for the rational development of these chemical 
technologies. A number of experimental and theoretical 
methods have been applied for analysis of the  
hydrogen-bonded systems [2] to obtain simple reliable 
models for interpreting their stabilities. Bader’s “atoms 
in molecules” theory that describes any chemical bond 
by partitioning its electron density [13] has been very 
seminal in formulating several models allowing the 

linear [14,15] and nonlinear [16-20]       
                 
 Correlations between electron density at the bond 
critical point and bond distance and thus the bond 
strength. The groups of Elguero [19,20] and Mó [21-23] 
as well as other authors [24] have shown the usefulness 
of the latter models in interpreting the strength of some 
simple hydrogen-bonded systems such as methanol-
water, phosphonic acid, and phosphinoxides and 
aminoxides. Another model that distinguishes 
electrostatic interactions as a tool to predict hydrogen-
bonding energies of complexes having more than one 
hydrogen bond in solution has been evolved on the basis 
on the Monte Carlo solution simulations by Jorgensen 
[25] and experimental studies by Schneider [26]. This 
concept has been widely applied and recommended as a 
useful guideline for interpreting stabilities and for 
designing new hydrogen-bonded associates [3,27-31]. 
Despite the lack of precise definition of a hydrogen 
bond, the statement that it is essentially of electrostatic 
nature [32] has been questioned by recent studies of  
low-barrier hydrogen bonds in enzyme catalysis [33,34] 
and theoretical remarks on the somewhat covalent nature 
of hydrogen bonding [35].  

In this paper we investigate the hypothesis of 
rationalizations of stabilities of hydrogen-bonded 
species and hydrogen-bonded building blocks by means 
of DFT methods. DFT calculations of hydrogen-bonded 
at the B3LYP, BP86 and B3PW91 methods with two *Corresponding author: 
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series of basis sets: D95** and 6-31+G (d,p) for 
hydrogen and oxygen atoms; LANL2DZ for Mo and 
Phosphorus have been carried out. The question of the 
nature of a hydrogen bond is not addressed in the 
present work. Hydrogen bonding will be discussed in 
terms of observable properties such as geometry and 
interaction energy. Earlier ab initio studies of the 
structures and stabilities of hydrogen-bonded assemblies 
of nucleic acid basis carried out [36-43] and show that 
quantum chemical techniques could now be used to 
perform calculations on molecular systems of practical 
significance. 
 
METHODS 

All DFT calculations were carried out with the 
Gaussian 98 program [45]. Geometry optimizations in 
the gas phase for all components and complex were 
performed at the DFT level with B3LYP, BP86 and 
B3PW91 functionals and with two series of basis sets: 
A.    Dunning basis set plus polarized functions 

(D95**) for hydrogen and oxygen atoms; 
LANL2DZ for Molybdenum and Phosphor. The 
effective core potential of Wadt and Hay is also 
included for Mo and P. 

B.  Double-zeta valance basis set plus polarized and 
diffuse functions  
(6-31+G(d,p)) for hydrogen and oxygen atoms; 
LANL2DZ for Molybdenum and Phosphor. The 
effective core potential of Wadt and Hay is also 
included for Mo and P. 

 
This level that makes use of Becke-Style density 

functional theory [45] with the various correlation 
functionals (LYP, P86 and PW91) [46]. The double-ζ 
basis set adds two sizes of orbitals functions on heavy 
atoms and hydrogens, respectively, as well as diffuse 
functions on both. 

The standard A and B basis sets were used in all 
calculations. Pople et al. have shown that the absolute 
deviations for the bond lengths and angles are smaller 
than corresponding values obtained at such levels of 
theory as MP2/6-31G(d) and  
QCISD/6-31G(d) [47]. The earlier studies of hydrogen 
binding in nucleic acid bases indicate that the Becke-
Style density functional theory yields reliable 
interaction energies that correspond to the MP2/6-
31G(d,p) level data [37]. Therefore, the B3LYP, BP86 
and B3PW91 methods were applied in the all of 
calculations reported in this paper. The interaction 
energies of the counterparts estimated as the energy 
difference between the complex and the isolated 
components and were corrected for the basis set 

superposition error (BSSE). 
DFT level optimizations of three methods with A 

and B basis sets resulted in very close geometries in 
each series of basis sets and also values of interaction 
energies as those obtained are closed.  
 
RESULTS  

Theoretical data of the calculated hydrogen-bond 
geometries for structure of  
MPA complex (1:2) results is given in Table 1 and the 
equilibrium structure obtained in the 
BP86/(H,O):D95**+(Mo,P):LANL2DZ that has 
minimum energy is shown in Figure 1. 

Clearly, all of structural parameters have been 
undertaken many variations but we considered those that 
importance in hydrogen-bonded complex. Table 1 
indicates the hydrogen-bond parameters in the species 
calculated by the DFT methods for B3LYP/A & B and 
B3PW91/A & B are closer than the values obtained by 
the BP86/A & B and Figures 2 and 3 show these trends. 
Particularly, these differences for energetics of 
equilibrium geometry are very highlight for Methods/A. 
According to previous studies, HF-optimized structures 
show essentially bigger deviations in hydrogen-bond 
lengths [48]. Both various groups of basis sets of DFT 
techniques showed similar trends in reproducing the 
hydrogen-bond angles. The source of the different of 
hydrogen-bond geometries from experimental may be 
attributed to a combination of two factors. First, the 
calculated structures are somewhat simplified analogues 
of the real systems. Second, as shown by Bickelhaupt et 
al., [49] the molecular environment in the crystal cell 
may cause significant disagreement between theory and 
experiment regarding hydrogen-bond lengths. 
Also, Leszczynski et al. have shown that the better 
agreement with experimental data and their literature 
reports cited [48], the discussion relies mostly on the 
DFT results. The longest hydrogen bonds correspond to 
O…H bonds present in MPA complex (1:2), while small 
deviations of hydrogen-bond angles from 180° manifest 
themselves in this complex. Interestingly, MPA complex 
(1:2), which according to the calculations are strongly 
bound species among the hydrogen-bonded systems 
have also the shortest hydrogen bonds and almost 
straight hydrogen-bond angles. The shorter hydrogen 
bonds and the straight hydrogen-bond angles do not 
necessarily reflect stronger binding. On contrary, with 
significantly high calculated interaction energies, 
display two O...H hydrogen bonds and deviation from 
180° in the corresponding O-H…O angles. 
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Table 1. Theoretical Data on Hydrogen-Bond Geometries (Å, Deg) in MPA Complex (1:2) 

Angle Bond Length Angle Bond Length Angle Bond Length Angle Bond Length 

O5-
H18-
O17 

H18-
O17 

H18…O
5 

O4-
H12-
O10 

H12-
O10 

H12…O
4 

O3-H19-
O15 

H19-
O15 

H19…
O3 

O2-H11-
O8 

H11-
O8 

H11
…O

2 

Basis 
Set Method 

176.3 1.040 1.490 176.2 1.020 1.500 176.4 1.040 1.490 176.5 1.039 1.49
0 Aa B3LYP 

176.1 1.030 1.510 176.1 1.030 1.510 176.3 1.040 1.500 176.3 1.030 1.50
6 Bb B3LYP 

176.3 1.050 1.470 176.2 1.050 1.470 176.3 1.060 1.460 176.4 1.060 1.46
3 A BP86 

177.0 1.060 1.470 176.0 1.060 1.470 176.2 1.060 1.470 176.1 1.060 1.46
9 B BP86 

176.4 1.030 1.480 176.2 1.030 1.480 176.4 1.040 1.470 176.5 1.040 1.47
0 A B3PW91 

176.2 1.030 1.490 176.2 1.030 1.490 176.4 1.040 1.480 176.3 1.040 1.48
3 B B3PW91 

aA :    (H,O):D95**+ (Mo,P):LANL2DZ     bB :    (H,O):6-31+G**+(Mo,P):LANL2DZ 
 

 
Fig.1. Equilibrium structure of MPA complex (1:2) in the  P86/(H,O):D95**+(Mo,P):LANL2DZ. 
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Fig. 2. Bond Lengths for MPA complex (1:2) for the indicated basis sets. 
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Fig.3. Bond Angles for MPA complex (1:2) for the indicated basis sets. 

 
 

As mentioned in the Introduction section, there are 
several models evolved on the basis of Bader’s theory 
showing linear or nonlinear relation between a bond 
length and electron density at the bond critical point. 
The latter value in turn reflects the strength of the bond. 
Therefore, the hydrogen-bond lengths can be used to 
some extent as indexes of the stabilization energy per 
hydrogen bond. Thus, the geometry analysis of 
hydrogen bonds in the calculated assemblies gives 
useful insights into internal cooperative effects 
regarding the complex stabilities but at the same time 
provides no general rules for any qualitative or 
semiquantitative conclusions concerning the relative 
stabilities of the complex (1:2). On the other hand the 
hydrogen-bond geometry data could be profitable for 
the critical evaluation of particular level of theory by the 
calculated molecular parameters [49]. Table 2 reports 
the calculated binding energies. The reported binding 
energies are with respect to computations at the three 

methods of density functional theory as mentioned in 
the Methods section, with A and B basis sets. Figure 4 
shows these energies.   

According to results that are shown in Table 2, the 
MPA complex (1:2) has minimum energy configuration 
with similar binding energies, differences between these 
energies that obtained by methods of DFT level as 
mentioned ratio to BP86/A  
are 2.8 (B3LYP/A) and 3.923 (B3PW91/A) kcal/mol 
and for BP86/B these  
differences are 2.041 (B3LYP /B) and 1.372 
(B3PW91/B) kcal/mol, respectively.  

Analogues of results that have been shown in Table 
1, Table 2 indicates that the interaction energies that 
calculated by three methods for B3LYP/A & B and 
B3PW91/A & B are closer than the values obtained by 
the BP86/A & B. Also, in this investigation the 
configuration calculated of these DFT methods, with A 
basis set has shown more stability than the B basis set.

  
 
 

Table 2. Calculated Interaction Energies (kcal/mol) of  The MPA Complex (1:2) 

Method Basis Set Binding Energy 

B3LYP Aa -126.4 

B3LYP Bb -115.6 

BP86 A -129.2 

BP86 B -117.6 

B3PW91 A -125.3 

B3PW91 B -116.3 
aA :    (H,O):D95**+ (Mo,P):LANL2DZ 
bB :    (H,O):6-31+G**+(Mo,P):LANL2DZ 

 
 



J.Phys. & Theo.Chem.I.A.U.Iran       M.H. Ghorbani and H. Aghaie           Vol. 1, No. 1, Spring 2004               

 

39 

-126.4

-115.6
-129.2

-117.6

-125.3

-116.3

-130 -125 -120 -115 -110 -105

Energy/(kcal/mol)

B3LYP/A

B3LYP/B

BP86/A

BP86/B

B3PW91/A

B3PW91/B

M
et

ho
d/

B
as

is
 se

t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Binding energies for MPA complex (1:2) for the indicated basis sets. 
 
CONCLUSION 

The results of our calculations indicate that the 
stability information of a complex (1:2) could not be 
directly used to obtain stability data for hydrogen-
bonded assemblies in general. It is noteworthy that the 
geometry analysis of the hydrogen bonds can give 
useful insights into their cooperative effects affecting in 
this group of complex stabilities. Two conclusions are 
clear from this study: (1) the major difficulty with ab 
initio calculations of hydrogen-bonded interactions at 
the theory levels explored herein lies with inadequate 
basis set; and (2) systems with more than 3 or 4 heavy 
atoms (Mo, P, O, ...) are, at present, too expensive to 
treat accurately for both hardware and software reasons. 
The present study shows that the MPA  
complex (1:2) has minimum energy configuration with 

similar binding energies and the results obtained by the 
DFT methods for B3LYP/A & B and B3PW91/A & B 
are closer than the BP86/A & B. According to results of 
this paper, using DFT level for optimization of the 
geometry, the best results for energetics and geometry 
for this group of complex obtained by 
BP86/(H,O):D95**+(Mo,P):LANL2DZ calculations. 
Finally, we believe that the growing performance of ab 
initio methods may offer certain advantages in the 
rational design of new materials in the future.  

 
ACKNOWLEDGEMENTS 

We thank SGS Company for its helpful support of 
this research. 

 
 
REFERENCES AND NOTES 

1. Müller-Dethlefs, K.; Hobza, P. Chem. Rev. 2000, 100, 143.  
2. (a) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997. (b)  

Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, 1997. (c) 
Desiraju, G. R.; Steiner, T. To Weak Hydrogen Bond; Oxford University Press: Oxford, 1999.   

3. A recent review on multiply hydrogen-bonded synthetic systems: Sherrington, D. C.; Taskinen, K. A. Chem. 
Soc. Rev. 2001, 30, 83. 

4. Bohler, C.; Nielsen, P. E.; Orgel, L. E. Nature 1995, 376, 578. 
5. Bong, D. T.; Clark, T. D.; Gronja, J. R.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001, 40, 988. 
6. (a) Sessler, J. L.; Wang, B.; Springs, S. L.; Brown, C. T. In Comprehensive Supermolecular Chemistry; 

Murakami, Y.; Ed.; Pergamon: New York 1996; Vol 4; pp 311-366.  
(b) Sessler, J. L.; Sathiosatham, M.; Brown, C. T.; Rhodes, T. A.; Wiederrecht, G. J. 
 J. Am. Chem. Soc. In Press. 

7. Suarez, M.; Lehn, J. M.; Zimmerman, S. C.; Skoulios, A.; Heinrich, B. J. Am. Chem. Soc. 1998, 120, 9526 
and reference therein.  

8. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. G. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; 
Lowe, J. K. L.; Meijer, E. W. Science 1997, 278, 1601.  

9. Schenning, A. P. H. J.; Jokheijm, P.; Peeters, E.; Meijer, E. W. J. Am. Chem. Soc. 2001, 123, 409. 
10. See for example (a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. (b)  

Halls, J. J. M.; Walsch, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H. Nature 1995, 376, 498.  
(c) Ouali, L.; Krasnikov, V. V.; Stalmach, U.; Hdziioannou, G. Adv. Mater. 1999, 11, 1515. 

11. For recent example see: (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 
402. (b) Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471. 



J.Phys. & Theo.Chem.I.A.U.Iran       M.H. Ghorbani and H. Aghaie           Vol. 1, No. 1, Spring 2004               

 

40 

12. Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9. 
13. Boyd, R. J.; Choi, S. C. Chem. Phys. Lett. 1985, 120, 80. 
14. Boyd, R. J.; Choi, S. C. Chem. Phys. Lett. 1986, 129, 62. 
15. Knop, O.; Boyd, R. J.; Choi, S. C. J. Am. Chem. Soc. 1988, 110, 7299. 
16. Roversi, P.; Barzaghi, M.; Merati, F.; Destro, R. Can. J. Chem. 1996, 74, 1145. 
17. Alkorta, I.; Rozas, I.; Elguero, J. Struct. Chem. 1998, 9, 243.   
18. Alkorta, I.; Elguero, J. J. Phys. Chem. A 1999, 103, 272.   
19. Alkorta, I.; Barrios, L.; Rozas, I.; Elguero, J. J. Mol. Struct. (THEOCHEM) 2000, 496, 131. 
20. González, L.; Mó, O.; Yáñez, M.;  Elguero, J. J. Chem. Phys. 1998, 109, 2685.   
21. González, L.; Mó, O.; Yáñez, M. J. Chem. Phys. 1998, 109, 139.   
22. González, L.; Mó, O.; Yáñez, M. J. Org. Chem. 1999, 64, 2314.   
23. Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873.   
24. (a) Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112, 2008. (b) Pranata, J.; Wierschke, S. G.; 

Jorgensen, W. L. J. Am. Chem. Soc. 1991, 113, 2810. (c) Jorgensen, W. L.; Severance, D. L. J. Am. Chem. 
Soc. 1991, 113, 209. 

25. Sartorius, J.; Schneider, H. J. Chem. Eur. J. 1996, 2, 1446. 
26. Murray, T. J.; Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010. 
27. Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120, 6761. 
28. Sontjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 

7487. 
29. Yang, J.; Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 9090. 
30. Lan, T.; McLaughlin, L. W. J. Am. Chem. Soc. 2001, 123, 2064. 
31. Morokuma, K.; Kitaura, K. Molecular Interactions; Ratajczak, H., Orville-Thomas, W. J.; Eds.; Wiley: 

New York, 1980; 1, pp 21-87. 
32. For a review see: Cleland, W. W.; Frey, P. A.; Gerlt, J. A. J. Biol. Chem. 1998, 273, 25529. 
33. Dannenberg, J. J.; Tomasz, M. J. Am. Chem. Soc. 2000, 122, 2062. 
34. Dannenberg, J. J.; Haskamp, L.; Masunov. A. J. Phys. Chem. A 1 
35. 999, 103, 7083. 
36. Florián, J.; Leszczynski, J. J. Am. Chem. Soc. 1996, 118, 3010. 
37. Šponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965. 
38. Šponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. A 1997, 101, 9489. 
39. Zhanpeisov, N.; Šponer, J.; Leszczynski, J. J. Phys. Chem. A 1998, 102, 10373. 
40. Padolyan, Y.; Rubin, Y.; Leszcynski, J. J. Phys. Chem. A 2000, 104, 9964. 
41. Gu, J.; Leszczynski, J. J. Phys. Chem. A 2000, 104, 7353. 
42. Gu, J.; Leszczynski, J. J. Phys. Chem. A 2000, 104, 1898. 
43. Gu, J.; Leszczynski, J. J. Phys. Chem. A 2000, 104, 6308. 
44. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;  

Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E; Burant, J. C.; Dapprich, S.; 
Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; 
Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. 
Y.; Cui, Q.; Morokuma, K.; 
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;  
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;  
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; 
Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; 
Head-Gordon, M.; Replogle, E. S. and Pople, J. A.Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, 
PA, 1998. 

45. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. 
46. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785. 
47. Johnson, B. G.; Gill, P. M. W.; Pople, J. A. J. Chem. Phys. 1995, 98, 5612.  
48. Oleg, L.; Leszczynski, J. J. Phys. Chem. A 2002, 106, 6775. 
49. Guerra, C. F.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. J. Am. Chem. Soc. 2000, 122, 4117. 



 

41 

    
Journal of Physical & Theoretical Chemistry 

Islamic Azad University of Iran 1(1) 
Science and Research Campus 

 
 
 
 

Path Integral Methods: Paths and Measurements 
 

Karim Zare1, 2, and Mohammad Hassan Zargazi1,3,* 
 
1 Department of Chemistry, Science and Research Campus, Islamic Azad University 
2 Department of Chemistry, Shahid Beheshty University 
3 Department of Chemistry, Karaj Branch, Islamic Azad University 
 
 

ABSTRACT 
In this paper, we explore the feasibility of a realistic interpretation of the quantum mechanical 

path integral that is, an interpretation according to which the particle actually follows the path that 
contribute to the integral. In this paper we have shown where all physical systems are in fact 
quantum, but in certain circumstances some of them may approximately be described as classical. 
This depends on the error with which the action of the system is known . 
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INTRODUCTION
  The application of the Path Integral formalism to 
quantum continuous measurement and since has been 
analyzed in many different aspects. We now look at the 
problem from a wider point of view and formulate some 
perspectives in this direction. The aim of this paper is to 
show the peculiar role played by path in quantum 
physics . We shall see that, besides being an efficient 
mathematical formalism, paths form a powerful 
conceptual tool of quantum theory. As a result some 
paradoxical features of quantum mechanics become 
clearer or more consistent when formulated in terms of 
paths. [1, 2] 

There questions will be considered in this 
connection: (1) the relation between quantum and 
classical, (2) the paradox of the two – slit experiment 
and (3) wave – particle dualism . 
It –turns out that restricted path integrals provide a 
description of quantum processes which possesses both 
quantum and classical feature and allows a natural 
transition to its paradoxical features if it is analyzed in 
terms of “extended points”, i.e. point together with 
paths leading to them. Finally , the description of 
elementary particles in terms of paths allows one to take 
into account equally naturally both wave (global) and 
corpuscular (local) properties .  

The latter point can be developed significantly in the 
framework of the relativistic theory on the basis of the 
group of paths. This provides an elegant and powerful 
group – theoretical basis for the most important areas of 
modern quantum field theory: gravity and gauge theory . 

However, we conclude the phenomenon of wave 

function collapse (or state reduction) accompanying 
measurement will be discussed in the framework of the 
path – integral approach [3, 4] 
The complex conceptual problems of quantum 
measurement theory will be mentioned in this 
connection . 
 
QUANTUM AND CLASSICAL FEATURES IN 
CONTINUOUS MEASURMENT  
 In analyzing different situations time development 
of a quantum system with continuous measurement 
taken into account can be described by the measurement 
amplitude, or conditional (restricted) propagator   
 

)( [ ] [ ] [ ] (1)     exp, qwqs
h
ieqd

q
q

qqu αα ⎟
⎠
⎞

⎜
⎝
⎛

′
′′

=′′′ ∫
 

 
 Here  α   is the output of the measurement and    is a 
functional describing the restriction of path integration 
corresponding to information contained in this output 
[4, 5, and 6] 

This equation is valid if a continuous measurement 
is performed in the time interval [ tt ′′′, ] then some 
information about this path is available, at least in 
principle. 
 This above information can be expressed by the 
(positive- valued)     functional wα; Where  

 
(2)             10 ≤≤ αw  
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For the analysis one may understand α  as the 
output of the coordinate monitoring (measurement of 
paths) of a particle or of some other system. Then can 
be identified with some path [a] (emerging as a result of 
measurement) and the functional w [q] is nonzero for 
path [q] close to [a]. Integration in equation (1) is then 
effectively limited by some corridor of paths around [a]. 
The width of the corridor    a is nothing but an error of 
the coordinate monitoring. [7, 8]  

  
 
Fig.1. A corridor α =I[a] describing the monitoring of 
coordinate (measurement of Position a path( 
 

This verbal description of measurement can be made 
mathematically precise with the help of the inequality .  

 
(3)           )()( atatq ∆≤−  

 
Then the result of the measurement 

[ ] { }ttttaa ′′≤≤′= )(  
Defines the set of path I[a] which can be described 

as a corridor of with 2∆a  with the path [a] lying in the 
middle (fig 1 ) . the measurement amplitude U[a]in this 
case can be evaluated as a path integral [esq.(1)] over 
the corridor a = I[a] . this procedure has been performed 
by Mensky (197 9 ) .[1, 2] 
From the latter know that the evolution of the measured 
system can be described by the formula . 
 

(4)        >Ψ>=Ψ′ αα U  
 

Let us now analyze these formulas from the point of 
view if the relation between quantum and classical 
features of the system . The measurement output α is 
essentially classical because it arises as a result of the 
action of a classical measuring device. For example in 
the case if coordinate monitoring the output [a] is a 
trajectory of a particle (or a trajectory of a quantum 
system in its configuration space). In fact we have not 
just a single path [a] but a corridor of path around [a] 
However, This is not because a real particle is quantum 
but because real measurement has a finite precision (and 
there for finite error ∆a ). The restricted (conditional) 
propagator U[α]   is a typical quantum object, and 
operator acting on the wave function of a particle (or of 
some other system). Thus we have here both quantum 

and classical features of motion , and the description 
include both quantum and classical elements. The result 
of the evolution of the system may be described as its 
classical trajectory [a]. 

However, we know also that the wave function of 
the system, being originally  Ψ   >, Becomes 

α
Ψ′ > 

after the measurement.  
It was shown that in typical cases there are two radically 
different regime of measurement. Classical and 
quantum. 

The classical regime arises if the measurement is 
rough enough ( optαα ∆<<∆ ) and the quantum 
regime is characteristic of fine measurement 
( optαα ∆<<∆  ). Between these two regime of 

measurement ( optαα ∆≈∆ ) giving maximum 
information. Consider these regime from the point of 
view of the relation between the quantum and classical 
elements of the system’s motion. The measurement 
output  α  can not be predicted unambiguously. There 
is always some variance in these outputs, δα  in the 
classical regime of measurement ( optαα ∆>>∆  ) this 
variance coincides with the error of measurement. [9]  

 
(5)         αδα ∆=  

 
For example, the trajectory of a particle [a] obtained 

as a result of measurement in the classical regime 
coincides with the classical trajectory [q class] within 
the limits of the measurement error.∆α Thus the 
properties of the measurement results α  are essentially 
classical in the classical in the classical regime of 
measurement [10] . 

What can be said about the evolution of the wave 
function in the classical regime? it was emphasized 
latter that the restricted propagator U coincides in the 
classical regime of measurement with the unrestricted 
Feynman propagator U, i, e with the ordinary quantum 
– mechanical evolution operator thus in the classical 
regime the measurement result (for example the 
trajectory of a particle) is of a purely classical character, 
while the system wave function obeys a purely quantum 
evolution law (the Schrödinger equation). In the 
quantum regime of measurement ( optαα ∆<<∆ ) the 
results of the measurement display of much wider 
variance than the error of measurement  
 

 (6)         
2

α
α

αδ ∆>>
∆

∆
= opta  

Thus purely classical characteristic of the motion 
(for example the trajectory of a particle) is strongly 
influenced by the quantum properties of the system. 
This may be called quantum measurement noise. In the 
case of position monitoring the measured trajectory [a] 
may deviate from the classical trajectory [q class] by 
much more than the measurement error, 

 

q 

q`` 

a  ∆2 
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(7)          
2

a
a

a opt ∆>>
∆

∆
=δα  

 
In the limit 0→∆a all path [a] have the some 
probability . 

What can be said a bout the quantum element of 
description, the propagator u, in the quantum regime of 
measurement? The most interesting point is that instead 
of single unitary evolution operator u (as in the classical 
regime) we now have the set of partial evolution 
operator, Uα where α can be any measurement output 
from the set of probable outputs. [10, 11]  

Instead of the conventional unitarily condition, the 
partial evolution operator must satisfy the generalized 
unitarily condition of the form  

1=∑ +
α

α α
uu     (8) 

Nothing concrete can be said about each of the 
operator uα in the general case of the quantum regime of 
measurement. Generally their behavior is rather 
complicated. It is easy, however, to consider the limit 

0→∆a  of the coordinate monitoring. In this case a 
very narrow corridor around some path [a] is obtained 
as a result of the measurement. One may say that in 
practice on path is found as a result of the 
measurements instead of a set of paths. According to 
this, just one path [a] (more precisely, a very narrow 
corridor around it) contributes to the path integral 
[eq.(1)]. The only action of the resulting propagator on 
the wave function (except for changing its norm) is then 
to change is phase by the value  
 

  
h

][as   )9(
][

][ >Ψ>=Ψ
asi

a eَ h  

 
THE TWO SLIT EXPERIMENT  

This experiment is a classic illustration of the 
peculiarities of quantum mechanics; there is some 
paradoxical feature in this experiment. They are that the 
picture p12 appearing on the scintillation screen when 
both slits are open is not a simple sum of the picture, p1 
and p2 seen when the first or second slit is open. This 
contradicts the classical view that the particle can reach 
some point x of the screen only through on of the slit (1 
or 2), and thus the corresponding probabilities p1, p2 
must be added to give the probability p12 of reaching 
the screen with both slit open. Of course this paradox 
arises only because the situation has been considered 
classically. We know the quantum procedure leading to 
the correct results, which consist in applying amplitudes 
instead of probabilities . 

Form a certain point of view the main object in 
quantum mechanics is probability amplitude because it 
expresses the principle difference amplitude because it 
expresses the principle difference between quantum and 
classical theory. The probability amplitude of some 

event is a complex number A such that p= 
2A is the 

probability of this event. Quantum mechanics differs in 
that not probabilities but probability amplitudes should 
be summed up for a quantum system suppose that some 
event can occur through on of two alternative channels 
and that the probability amplitudes for these channels 
are A1 and A2. Then the complete probability amplitude 
for the event under consideration 

  
A=A1+A2                           (10) 
 
And its probability is  
 

2
21

2 AAAp +==     (11) 
 

A typically example is a particle passing through 
one of two slits in an opaque screen (fig (2), with A1 
being the amplitude for the particle to pass through on 
of the slits and A2 that for it to pass through the other. It 
is because of the law of amplitude summation (10) that 
passing through on of the slits can not be considered 
independently from passing through the other slit. The 
consequence of this law is an interference pattern at the 
scintillation screen when a series of particles passes 
through two slits the eq (10) is valid, however, only if 
there is no means of knowing which of two possible 
alternatives has actually occurred. In this case the 
alternatives are called, according to Feynman, 
interfering; they may also be called quantum 
alternatives. If an additional observation (measurement) 
is performed giving information about which route has 
been followed, then the amplitude summation rule 
change into the probability summation rule  

 

)12(2
2

2
121 AAppp +=+=   

 
As a consequence, no interference pattern will arise 

in the two- slit experiment if, for example, the flow of 
photon falls on the opaque screen so that scattering of 
the photons shows which of two slits the particle has 
passed through. In such a situation Feynman called the 
alternative incompatible . 
It also seems convenient to use the term classical 
alternatives. The amplitude summation rule is also valid 
for many alternative channels .  
 

A=A1+A2+…….+An                (13) 
 
Provided that there is no possibility of discovering 
which channel has been actually followed? If some 
observation (measurement) is performed giving 
information about the channel followed, then the 
amplitude summation rule must be corrected.  
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(a)                (b) 
 

Fig.2. the two-slit experiment lead to an interference pattern if it is not known which slit the particle has passes through. 
 

The method of correction depends upon the 
information provided by the measurement. The 
information may be complete so that the channel 
followed is known precisely. Then the probabilities of 
separate channel should be summed instead of their 
amplitudes: 

 

P=P1+P2+…… Pn   Pi = )14(2
iA  

 
For another type of observation information may be 

only partial this means that the measurement is rougher. 
For example, let the measurement permit one to know 
whether the number of the channel followed belongs to 
one of the following pairs: 
 

(1, 2) ;( 3, 4) ;…….( n-1, n)    (15) 
 
(We suppose that the total number of channel is even.) 
 
(a) But it gives no interference if an additional 
observation shows which slit was used. (b) Then the 
probabilities corresponding to separate pairs are to be 
summed but amplitudes should summed inside the pairs  

P=P1+P2+…… 
2
np     

2

12 2 i
AAp ii += −    

In this case the alternatives inside each pair are 
interfering (quantum), while those in different pairs are 
incompatible (classical) alternatives channels may be 
divided in to triplets: 

2
313223/21 _..... iiiin AAAppppp −− +=++=

 
Here Pi are probabilities for different results (out 

put) of measurement. For example, the value  
2

212 iii AAp += −   
In equation (14) is the probability for the ith pair to 

emerge as the output of the measurement. The value. 
 

Aith pair =A2i-1+A2i   (16) 
 

Is nothing but the probability amplitude for the 
measurement to give the result expressed by the ith 
pair? More precisely this is the amplitude for the event 

under consideration to occur and the measurement of 
pairs of channels to show the ith pair the situation 
described by formulae (14) and (15) can be modeled in 
a many- slit experiment. The photon flow should then 
be directed at the opaque screen in such a way that pairs 
or triplets of slits could be distinguished by the photon 
scattering rather than individual slits . 

However, we shall try to avoid the paradox in 
another way. Look for the origin of the paradox. It is 
that we have just one point x but different paths for 
reaching it [12, 13]  

Evidently there would be no reason to try to add the 
probabilities if we were to consider different points in 
the situations denoted as 1, 2 and 12. The paradox could 
not arise in this case let us therefore try a new approach. 
Let us talk not about points on the screen but about 
extended points. Each extended point consists of point 
itself and all possible paths leading to it. Then in three 
versions of the two-slit experiment we have one 
ordinary point x but three different extended points x1, 
x2 and x12. The extended point x1 consists of the point x 
with the paths leading to this point through the first slit . 

The extended point x2 consists of the same point x 
but with the paths that lead to it through the same point 
x but with the paths that lead to it through the second 
slit. Finally the extended point x12 consists of the point 
x with the paths leading to it through both slit. Then 
there is no reason why the probabilities corresponding 
to the first two extended points should be added to give 
that corresponding to the third. This solution of the 
paradox seems at first glance to be unnatural because its 
essence is almost tautological: it boils down to a 
different way of saying the same thing; however, this 
renaming corresponds in our opinion to the spirit of 
quantum mechanics. The main idea in this renaming is 
that the target of the quantum process can not be 
considered separately from the process itself. The target 
(the point on the screen) has to be considered together 
with the process leading to it (the paths leading to this 
point). Only this combination (summarized in the image 
of an extended point), forms an adequate language for 
analyzing the phenomena is question. The same idea 
can be formulated in another way: it is more natural in 
quantum mechanics to deal with processes instead of 
state. Of course, normal practice is to consider states. 
However, there to be a tendency to more to the 

× 
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language of processes instead of the language of states. 
One argument in support of this is that any state is 
formed as a result of some process or other. It seems 
that the concept of an extended point accepted above is 
not a transition to processes instead of states but to 
considering processes (paths) together with states 
(Points). However, in accordance with the proceeding 
paragraph, the target point x can of course be 
represented adequately by paths leading to it. Therefore 
we way understand the extended point x1,x2,x12 as the 
corresponding sets of paths(leading to the point x 
through respectively slit 1, slit2 or both slits). The 
reader may see already that this final image is close to 
the sets of paths an introduced in this paper for 
analyzing continuous measurements. the advantage of 
the language of paths as a tool for solving the two-slit 
paradox is more evident if one take . In to consideration 
a possibility such as the delayed choice considered by 
miller and wheeler (1984). The point is that the two-slit 
experiment can be modified in a special way in this 
modification two different arrangement of the 
experiment are possible. In one the slit used by the 
particle is know after the experiment is over. In the 
other it is impossible to know this. It is only much later 
than the instant at which a particle enters a slit that the 
decision is made about whether the measurement should 
be performed according to one scheme or the other. 
Quantum interference effects arise only in the case 
when the slit used is not known .A delayed choice 
allows one to choose between interfering and none 
interfering schemes at the very last moment. [14, 15, 
and 16] 

It is evident in this case that the whole history of a 
particle on its way to target paint is important for 
analysis of phenomenon. Thus only on extended point, 
the target together with the set of histories, is suitable 
for analysis. The general conclusion that can be drawn 
from this argument is that the language of paths is 
preferable to the language of points in quantum theory. 
There are two different (ways of using paths in quantum 
theory). One, discussed in detail in paper Feynman in 
year 1948 where called Feynman path integral 
approach. The other is the formalism of path- dependent 
wave function (or field) proposed by Mandelstam. 
(1962) 
 
PATH AND CONTINUOUS MEASURMENTS 
 This argument may be applied to Feynman paths 
considered as quantum alternatives. The amplitude A (q ً
,q)َ for a particle to move from the point q tَo the point q ً
is called a propagator . 

It has been expressed by Feynman (1948) in the 
form of sum (or rather integral) of the amplitudes A[q] 
corresponding to all possible paths [q] connecting the 
point q aَnd q  ً

∫=′′′ )17(][][),( qdqAqqA   

Actually this formula is valid a propagator of any 
quantum system if q is understood as a coordinate (or a 
set of coordinates) of the configuration space of this 
system. For most arguments it is sufficient to consider a 
one- dimensional system. Formula (17) is analogous to 
equation (13) but for paths in the role of quantum 

alternatives. And analogously to the above argument 
equation (17) for the propagator is valid only if there is 
no possibility of finding out which path is followed 
when a particle move from q tَo q ً . 

This is usually the case. However, suppose that a 
continuous measurement is performed simultaneously 
with this transition. Let the output α  of this 
measurement give some information about the path of 
transition such information can be expressed by some 
set of paths Iα .If measurement give the result (out put) 
α  then the transition follows on of the paths [q] 
belonging to the set Iα . Then, in analogy with equation 
(17), the amplitude for the transition from q tَo q cًan be 
expressed as an integral over paths belonging to αI : 

 

∫= ][][),( qdqAqَqًA Iαα     (18) 
 

The idea of using restricted path integrals in such a 
way was proposed in a short remark by Feynman 
(1948).A typical example of continuous measurement is 
monitoring of the coordinates of the system under 
consideration. Then the measurement gives the value a 
(t) of coordinate q (t) at each instant t (of some time 
interval) with the error a∆ determined by the precision 
of measurement. α  Then the output of measurement α 
can be identified with the path [a] expressed by the 
curve a (t). Knowing the output ][a=α   of the 
position monitoring, one knows in fact that the actual 
path of the system [q] could differ from [a] by no more 
than the value a∆ . 

Therefore any path [q] lying in the corridor αI  of 

width 2 a∆  around [a] is possible, while no other path 
is impossible as an actual path of the system (taking the 
measurement output into α account). Information 
supplied by the measurement output α   is expressed in 
this case by the corridor αI of paths. Integration in the 
Feynman path integral should therefore be performed 
only over paths in the corridor αI . [8, 9, and 10] 

Moreover, the corridor αI   may be identified with 
the output α of the measurement. In fact this corridor 
represents the output of position monitoring better than 
the path [a] because also contains information about the 
error of measurement .the formula (18) will in fact be 
the basis for all our consideration in this paper.[17,18] 

If α is fixed, the amplitude ),( qَqًAA αα = can 
be considered as the propagator of a particle undergoing 
continuous measurement (with the given output). If q َ
and q aًre fixed, the same amplitude can be thought of as 
probability amplitude for the continuous measurement 
to give the resultα . Taking a square modulus of the 
amplitude, one can obtain the probability density for 
different out puts of the continuous measurement. A 
more general class of quantum continuous measurement 
can be described by the formula . 

 

∫= )19(][][),( dqqAqwqَqًA αα   
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Here integration is performed over all paths 
connecting the point q aَnd q ً, but with the functional 

αw expressing information contained in the output  α   
of the measurement .In the light of this information on 
the system follows a path for which αw is large. The 

smaller is αw  [q], the less probable is it that the path 
[q] is taken by the system . 

Generalization of the formulas (18) and (19) to the 
case of an arbitrary quantum system and arbitrary 
continuous easement is straightforward. Generalization 
is also possible for the easement of the configuration of 
a quantum field. (In the latter case the measurement can 
be continual because it is not only prolonged in time but 
also protracted in space.) 
 
WAVE- PARTICLE-DUALISM 
 The situation with two slits is one illustration of 
wave-particle dualism typical of quantum mechanics. 
The essence of this dualism is that there are two aspects 
of quantum objects, in which they resemble a wave or a 
particle in the classical sense. Neither of these aspects 
can be abandoned; there are situation in which each of 
them becomes important. The analysis of the two- slit 
experiment in section before suggest, that the language 
of sets of paths could clarify some feature of the wave-
particles dualism . 

Here we shall consider question in more detail. Let 
us take for our analysis the typical continuous 
measurement, the monitoring of position of (say) a 
particle. As has been argued in section 1, the result of 
such a measurement is represented by the trajectory [a]. 
Thus the particle obtains the typical corpuscular 
characteristic of position at a definite instant, a (t). 

The precision of the measurement, or its error, 

a∆ determines the precision with which this 
characteristic is known. This type of continuous 
measurement therefore gives us a picture of a particle, 
not a wave. However, we see as a result of the analysis 
(see section 1) that the measurement gives results not 
characteristic of classical theory. The measured 
trajectory [a] may differ from the classical trajectory [q 
class] of a particle by value much greater than the 
measurement error a∆ . Thus our object, though 
described by the same mathematical tools as a particle 
(position, trajectory), is not a classical particle. We can 
judge about this when observing its motion. Moreover, 
to describe this object completely, its wave function, or 
the state vector, ,>Ψ  is necessary. This presents the 
wave aspects of the object. When observing the 
particle-like behavior of the object (its measured 
trajectory[a]), we obtain results that depend on its wave 
characteristics before the observation (its initial 
state ,>Ψ ). But the most complete picture of the 
interrelation between the corpuscular and wave 
properties of a quantum particle is expressed by the 
restricted (conditional or spatial) propagator U[a]. In 
fact the discussion in section (1) of the interrelation 
between the quantum and classical properties of a 
particle is nothing but a representation (in different 

term) of its wave-particle dualism the partial propagator 
U[a] (and therefore the evolution of a quantum particle) 
has both quantum and classical (wave and corpuscular) 
features. As a propagator (evolution operator), it is 
quantum and describes the propagation of a wave. 
However, this quantum evolution only in the framework 
of a definite classical alternatives [a] .Each of these 
alternatives is described by classical (corpuscular) 
term(a trajectory) and their statistics is purely classical 
(probabilities but not amplitude).one may say that the 
path- integral theory of continuous measurements 
presents a corpuscular picture of a particle’s motion 
along a trajectory , but in each actual evolution , for a 
given trajectory , quantum evolution acts: the wave 
propagates in a tube(corridor) corresponding to the 
trajectory . We see thus that the wave- particle dualism 
of quantum objects may be adequately represented with 
the help of the formalism of restricted path integrals. 
However, there is another application of path in 
quantum theory that also has something to do with 
wave-particle dualism-we mean the formalism of wave 
functions depending on paths instead of points. The 
arguments of section 2 show that path-dependent 
functions way are of some help even in no relativistic 
quantum mechanics. Such functions were introduced by 
Mandelstam (1962) in the framework of quantum 
electrodynamics and generalized to the case of non-
Aeolian gauge field by Bialynicki-Birula (1963).the 
goal was the construction of an explicitly gauge- 
invariant formalism. [19, 20, 21] 
 
CONCPTUAL PROBLEMS 

The starting point for the discussion in this paper is 
the Feynman path integral. Restriction of the region of 
integration has been shown to describe the influence of 
the measuring device on the quantum system subject to 
continuous measurement such an influence is usually 
referred to as reduction of the system state or collapse 
of its wave function . In our case we mean continuous 
reduction corresponding to continuous measurement. 
However , the general conceptual problems that usually 
arise in connection with state reduction are shared by 
this type of measurement too. Let us discuss them 
briefly. 
1. Continuous state reduction 

In conventional quantum measurement theory state 
reduction is taken into account by the special procedure 
of von Neumann's projection or some generalization of 
it, instead of this, in the present approach the continuous 
state reduction resulting from continuous measurement 
is taken into account automatically by restriction of the 
path integral. This is one of the most important 
advantages of the path integral approach: the same 
procedure of integral restriction gives both the 
probability distribution of the measurement output and 
the reduction of the state under the influence of this 
measurement of course one should keep in mind that 
this type of continuous reduction (like any other) is an 
idealization. The influence of a real measurement 
device may differ from this idealized influence. The 
restriction of the path integral suggests implicitly that 
the influence of the measurement is in some sense the 
minimal influence necessary to obtained it the given 
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type of information. The same information can be 
obtained from a poorer device that has a stronger 
influence on the system. [21, 22, and 23] 

However, it is impossible to obtain the same 
information with a smaller influence. This is why the 
path- integral results in absolute quantum restriction on 
measurability . No device providing the required 
information (specified by the functional αw  ) can have 
less influence than is described by restriction of the path 
integral. There is a class of measuring devices with just 
this minimum influence on the system supplying the 
required information (the theory says nothing about 
how these devices may by constructed) . All other 
devices work less efficiently ,providing less 
measurability than is found from the path integral 
approach. In fact, even the latter non-ideal case may be 
treated in the framework of the path-integral method . 
Indeed , if the device is non-ideal (for the given type of 
measurement), it is because it gives additional 
information about the system under investigation . 
Therefore this device non-ideal in the sense of the given 
type of measurement , is ideal for measurement of a 
different type, giving more information. Such a 
measuring device and its influence may also be 
described by restriction of the path . Integral, but with 
restriction to narrow sets of paths. Of course, the choice 
of the system of functional αw  restricting the path 
integral for the given system undergoing the given 
measurement is in practice a complicated task              
[4, 8, and 24]. 
2. What is collapse? 
 The remark made in section 1 is a technical one. It 
claims now state reduction (wave function collapse) is 
taken into account in the present approach. There is, 
however, an important and not quite clear conceptual 
question: what is collapse a how does it occur? The 
problem is that a description of collapse (like a 
description of any other aspect of measurement) 
necessarily includes classical elements . If one thinks 
(as many people do) that a quantum-mechanical 
description of any system is completely correct while 
the classical description is approximate , then the 
emergence of classical elements in the formalism of 
quantum measurement should have a purely quantum 
mechanical explanation. For this aim one may (and in 
fact must) include the measuring device in the 
consideration explicitly. This device should be 
described as an ordinary quantum system. Interacting in 
some way or other with the measured system. One may 
hope to obtain , in the framework of an ordinary 
quantum – mechanical analysis of these systems, the 
same result as in the quantum- measurement analysis 
including collapse of the wave function . This approach 
, however, faces major difficulties because different 
states of the measuring device arise in quantum 
superposition instead of a mixture. The difference 
between these two situations in similar to the difference 
between quantum(interfering) and classical 
(incompatible) alternatives . the phenomenon of 
decoherentization consisting in the loss of information 
about phases between alternatives states cannot be 
described in the frame work of unitary quantum- 

mechanical evolution and requires something like state 
reduction . One can formulate this difficulty as follows: 
if the measurement device is considered as a quantum 
system , then the question arises of how the state of this 
system can be identified. In other words, the measuring 
device should also be measured , and instead of solving 
the problem we only move it elsewhere . The real 
problem in this context is the investigation of 
decoherentization as a specific process, connecting 
essentially quantum (us observable in principle) and 
essentially classical (observable with negligibly small 
back influence) systems or states. Decoherntization may 
be introduced into the description of the quantum 
system under investigation  or into the description of the 
measuring device but in both cases this stage is typical 
of the quantum theory of measurements but is not part 
of conventional quantum mechanics. There have been 
many attempts to avoid this peculiar stage of 
decoherentization. One of the exotic is the Everett-
wheeler many-worlds interpretation of quantum 
mechanics(see ref(23)) in which the suggestion is 
accepted that different alternatives (different outputs of 
measurement) are all realized but in different worlds, 
and only one of these worlds is available for our 
observation. This explanation, though very interesting, 
does not seem quite satisfactory because instead of 
actually solving the problem it just converts one 
problem in to another. In any case, the existence of 
different world poses at least as many questions as it 
solves. There is a more convincing direction in which to 
search for a solution. Some investigators have tried to 
derive the picture of decoherentization as an 
approximate description of a quantum measuring 
device. The approximation is usually justified by a 
characteristic feature of the device, namely that it has 
vast number of degree of freedom and possesses 
instability of a definite type. Most experts now accept 
the picture of zurek (1981) According to this the 
interaction with the measuring device results in 
correlation between the states of the system and the 
states of the device while the interaction with the 
environment supplied a sort of discussion converting 
the superposition of these correlated states in to a 
mixture of them (the decoherentization process).the 
approach considered in this paper is purely 
phenomenological. It presents effective tools for 
describing collapse arising in the course of complicated 
(continuous and continual) measurement, but it does not 
describe the mechanism of the collapse. More over, no 
explicit model of the measuring device or environment 
is needed for the present approach . The advantage of 
this is a universal (model-independent) character of the 
conclusions drawn from the present approach. One 
possible miss understanding should be avoided in this 
connection. Some people think that no problem of 
collapse exist at all because real measurement can be 
described completely and correctly in the framework of 
ordinary quantum mechanics (without elements 
characteristic of the quantum theory of measurement, 
such as collapse) if one take into account both the 
measured and the measuring systems. One may think 
then that there is no need for a quantum theory of 
measurement. In a sense, there is in deeded no need. 
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Any particular system in any regime of 
measurement can be considered in the framework of 
conventional quantum mechanics without using the 
methods of the quantum theory of measurement. 

However, the quantum theory of measurement 
allows one to consider situations in great generality and 
reach some general conclusions which hardly be 
achieved by analyzing particular situations. Moreover, 
some problem of a general character can not even be 
formulated without the tools of the quantum theory of 
measurement consideration of the motion of photons in 
Heisenberg’s δ  -microscope leads to the same 
conclusions as the uncertainty principle, but the latter is 
very important because of its generality as an effective 
instrument of physical analysis[23,24,25,26]. 

The final conclusion from this analysis is that the 
problem of collapse can be avoided in practical 
calculations but inevitably emerges on the theoretical 
(conceptual) level. however ,even in practical 
investigations the quantum theory of measurement with 
its picture of wave function collapse is useful (in fact 
necessary) firstly for simplifying computations and 
secondly for obtaining general results of the type of the 
uncertainty principle obtaining general conclusion of 
this type is one of the goals of modern quantum 
measurement theory[27]. The hypothesis is sometimes 
put forward that the consciousness of an observer plays 
an important role in the phenomenon of state reduction 
(collapse). This idea began with the founders of 
quantum mechanics of modern paper let us mention an 
interesting one by squire (1988). The motivation for 
investigation in this direction is the apparent 
impossibility of solving the conceptual problem of 
collapse and the resulting conclusion that quantum-
mechanics is not closed in itself . 
3. Quantum-classical Evolution  
 In one way another, measurements lead to the 
emergence of classical elements in the description of a 
quantum system. In the path-integral approach this is 
seen in modification of the evolution law (see section 
1). With the measurement taken into account evolution 
described by the set of (alternative) operators αu   
where α  the measurement output is. The purely 
classical element α arises in this description as a sign 
of influence of the measuring device. This may be 
treated in a wider manner as the influence of some sort 
of measuring medium. In fact a new type of evolution 
law is introduced in the framework of the present 
approach. The question then arises (connected with tae 
discussion of section 2) of what is the status of this 
quantum-classical evaluation law. It is evident that 
some sort of measurement is always performed in a real 
situation. Indeed, measurement in our sense is nothing 
other than obtaining information about the state of the 
system and putting it in classical forms so that it can be 
read without further disturbance of the system. 

However, such information is always present (for 
example a rough estimation of the position of an 
elementary particle). One may say that any quantum 
system moves in a measuring medium of some sort or 
other . On the other hand, the influence of this medium 
in some particular situation may be negligible so that 
the ordinary quantum-mechanical evolution law is 
valid. This situation was analyzed in section (1). It is 
important that the boundary between the quantum 
system and the measuring device (medium) can be 
introduced in different place. Let us imagine for 
simplicity that there is a chain of systems.so,s1,s2,…. 
Each measuring the preceding one. Then one may 
consider just one system so explicitly , taking all the 
other in to account by restricting the path integral of the 
system so. The influence of the measurement (expressed 
by the restriction on the path integral) will then be 
comparatively large. Instead of this one can treat the 
(interacting) systems s0,s1explicitly, and take all the 
others into account by restricting the path integral of 
this compound system. Then the influence of 
measurement may be less. Finally one may consider 
explicitly sufficiently many subsystems so that the 
influence of all other is negligible. Then the purely 
quantum-mechanical description becomes correct. This 
is a specific formulation of a general argument in 
section 2. It may be said therefore that the description of 
a real system in the framework of the path-integral 
theory of continuous measurement is an approximation 
to reality. An opposite and intriguing point of view is 
also possible [14,28], namely that continuous reduction 
is a necessary counter part in the description of quantum 
systems. This means that collapse is supposed to occur 
spontaneously, without any special device or medium to 
cause it. The theory of quantum system in this case 
should differ from conventional quantum mechanics, 
including some features of quantum measurement 
theory as its internal features. For example, one may 
think that the restriction of path integrals is a necessary 
part of the right theory let us note in conclusion that the 
restriction of path integrals allows one to naturally 
overcome purely mathematical difficulties in their 
definitions [29]. Indeed , the restriction of a no 
relativistic path integral to a corridor (even one arbitrary 
wide) in coordinates and velocities make this integral a 
mathematically well defined object, unlike the original 
Feynman path integral. If a restriction in velocity turns 
out to be sufficient, a restriction of this type can be 
readily justified as describing a real physical situation 
when it is known in advance that the coordinates and 
their derivatives can not be arbitrary large[30] 
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