Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran, 7 (1) 23-26; Spring 2010 (J. Phys. Theor. Chem. IAU Iran) ISSN: 1735-2126

Electrooic effects on singlet-triplet energy splittings in aryl-cyclopentadienylidenes

M. Mahmodi Hashemi^{1,*} and M.Mirzaei²

¹Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran ² Ph.D. Student, Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran Received January 2010, Accepted June 2010

ABSTRACT

Energy gaps, ΔX_{S-1} (X=E, H aad G) ($\Delta X_{s-1}=X_{(singlet)}-X_{(triplet)}$) between singlet (s) and triplet (t) states were calculated at B3LYP/6-311+++G** level af theory. Our results showed that electron donating substitueots (G = -NH₂, -OH, -CH₃, -F, -Cl and -Br) at pbenyl graup cause in accesse and electrna withdrawing substituents (G = -CF₃ and -ND₂) lead in decrease the singlet-triplet energy gaps of Ar - C₄H₃ \bar{C} .

Keywords: Carbeae; Cyclopentadieaylidenes; Singlet-Triplet gap; Electronic effects

INTRODUCTION

Divalent carbones and their analogues are strongly reactive [1]. The cyclic conjugated species are important in the chemistry of divalent carhene intermediates [2]. These divalent structures were formerly described in terms of the Huckel 4n + 2 rule [3]. However, non-planar isomers are found to have energy minima for most of these singlet cyclic ennjugated carbones through semi-empirical studies [4]. The isolation of the stable five membered cyclic conjugated carbone was first reported by Arduengn [5], As a cantinuation of our studies [2,6], the effects af electroo donating substituents (G = -NH₂, -OH, -CH₃, -F, -Cl and -Br) and electron withdrawing substituents $(G = -CF_3 \text{ and } -NO_2)$ of aryl groups on the singlet-triplet energy gaps in cyclopentadionylidenes Ar – $C_4H_3\ddot{C}$ were investigated.

COMPUTATIONAL METHODS

Full geometry optimizations of $Ar - C_4H_3\ddot{C}$ (G = -NH₂, -OH, -CH₃, -F, -CI, -Br, -H, -CF₃ and -NO₂) were carried out by DFT method using 6-311+++G** basis set of the GAUSSIAN 98 system of programs [7-9] (Scheme 1).

G=-NH₂, -OH, -CH₃, -F, -CL, -Br, -H, CF₃ and -NO₂

Scheme 1. Electron doaating substituents (G = -NH₂, -OH, -CH₃, -F, -Cl and -Br) and electron withdrawing substituents (G = -CF₃ aad -NO₂) of cyclopentadienybdenes.

Corresponding author. mhashemi@shanf ed

M. Mahmodi Hashemi et al. /J. Phys. Theor. Chem. IAU Iran, 7(1): 23-26, Spring 2010

To find a global minimum on a specific surface, all possible conformations of the given species were examined through scanning the specific dihedral angles at B3LYP/6-311++ G^{**} level. This was to obtain mare accurate values of thermal energies (E) enthalpies (H) and Gibbs free energies (G). "Freq" keyword was used for obtaining zero-point energies (ZPE), thermal energies (E), enthalpies (H) and Gibbs free energies (G).

(G = -NH₂, -OH, -CH₃, -F, -Cl, -Br, -H, -CF₃ and -NO₂) at B3LYP/6-311++G** level of theory (Scheme 1 and Table 1). Thtal energy gaps, $\Delta E_{T(s+t)}$, zero-point energy gaps, ΔZPE_{s+t} ; thermal energy gaps, ΔE_{s+t} ; enthalpy gaps, ΔH_{s+t} ; Gibbs free energy gaps, ΔG_{s+t} , between singlet (s) and triplet (t) states of Ar - C₄H₃ Č were calculated at B3LYP/6-311++G** (Table 2). For facility, Gibbs free energy gaps, ΔG_{s+t} , was selected to discuss the data.

I

RESULTS AND DISCUSSION

The total energy, E_T ; zcro-point energy, thermal energies (E), enthalpies (H) and Gibbs free energies (G) were calculated for aryl substituted divalent five membered cyclic compounds $Ar - C_4H_3\dot{C}$

The DFT calculations indicate that all singlet states of $Ar - C_4H_3C$ are ground states with non-planar conformer while all triplet states of $Ar - C_4H_3C$ are ground state with planar conformer (Tables 1).

Table 1. Sum of total energy, E_T ; zero point energy, ZPE; thermal energy, (E); thermal enthalpy (H); thermal free energy (G) at B3LYP/6-311++G** for both singlet (s) and tuplet (t) states of Ar – C₄H₃ \ddot{C}

		<u> </u>		<u> </u>	•				
			: 🖬 🕴						
			:1						
Cnmpound 7	Ет —	ZPE	E	Н	; G				
	kcal/mol	kcal/mol	kcal/mol	kcal/mol	kcal/mol				
G=-NH2	-300664.770	-300561.822	-300555.492	-300554.899	-300584.125				
G=-OH	-313140.845	-313045.675	-313039.531	-313038.939	-313067.886				
G=-CH3	-290586.575	-290467.262	-290460.681	-290460.089 _i	-290490.863				
G=F	-328221.282	-328133.808	-328127.919	-328127.327 💚	-328155.915				
G=-Cl	-554344.482	-554257.854	-554251 723	-554251.130	-554280.541				
G=-Br	-1880829.45	-1880743.23	-1880736.93	-1880736.34	-1880766.60				
G=-H	-265925.150	-265832.531	-265827.162	-265826.569	-265853.839				
G=-CF3	-477483.876	-477379.765	-477372.091	-477371.498:	-477405.345				
G=-NO2	-394287.832	-394185,263	-394178.270	-394177.677	-394209.309				
Compound			2 <u>9</u> 1						
	Eτ	ZPE	Е	Н	٠G				
G=-NH2	-300675.569	-300572.565	-300566.270	-300565.677	-300595.460				
G=-OH	-313150.951	-313055.897	-313049.753	-313049.160	-313078.771				
G=-CH3	-290596.375	-290476.962	-290470.381	-290469.789	-290500.462				
G=-F	-328230 926	-328143.661	-328137.763	-328137.171	-328166.433				
G=-Cl	-554353.987	-554267.501	-554261.384	-554260.792	-554290.812				
G=-Br	-1880838.95	-1880752.911	-1880746.614	-1880746.021,	-1880776.929				
С =- Н	-265934.631	-265842.168	-265836.809	-265836.216	-265864.107				
G = CF3	-4 77492.7 28	-477388.518	-477380.844	-477380.251	-477414.098				
<u>G=-NO2</u>	-394296.463	-394193.795	-394186.802	-394186.209	-394217.842				

DFT calculatians specify that all triplet states nf Ar – C₄H₃ \dot{C} (G = -NH₂, -OH, -CH₃, -F, -Cl, -Br, -H, -CF₃ and -NO₂) are more stable than their corresponding singlet states. Calculated $\Delta G_{s,t}$ shows that electroo donating substituents (G = -NH₂, -OH, -CH₃, -F, -Cl and -Br) at phenyl group cause to increase ΔG_{s-t} and electron

withdrawing substituents (G = -CF₃ and -NO₂) lead to decrease the ΔG_{s-t} of Ar - C₄H₃ \ddot{C} . Therefire, changing substituents at phenyl groups from electron dinating toward electron withdrawing groups lead to decrease the ΔG_{s-t} . Relative energy analysis reveal that substitution af electron donating groups at phenyl group

Table 2. Total energy gaps, $\Delta E_{T(s-0)}$; zero point energy gaps, ΔZPE_{s-t} ; thermal energy gaps, ΔE_{s-t} ; thermal energy gaps, ΔE_{s-t} ; thermal free energy gaps ΔG_{s-t} between singlet (s) and triplet (t) states and LUMO-HOMO gaps of Ar – $C_4H_3\ddot{C}$ at B3LYP/6-311++G**

Compound	ΔE _{T(s-t)} kcal/mol	∆ZPE _{s4} kcal/mol	∆E _{st} kcal/mol	ΔH _{s-t} kcal/mol	ΔG _{s-t} keal/mal	HOMO (eV)	LUMO (eV)	$\Delta_{\rm LCMO}$, HOMO (eV)			
G=-NH2	10.799	10.743	10.777	10.778	11.335	-0.194	-0.112	0.082			
G=-OH	10.106	10.222	10.222	10.222	10.885	-0.206	-0.118	0.089			
G=-CH3	9.800	9.700	9.700	9.700	9,599	-0.210	-0.117	0.093			
G=-F	9.644	9.853	9.844	9 844	10.518	-0.219	-0.123	0.095			
G=-C1	9 506	9.647	9.662	9.662	10.271	-0.220	-0.125	0.095			
G=-Br	9 502	9.677	9.680	9.681	10.321	-0.220	-0.126	0.095			
G=-H	9 481	9.637	9.647	9.647	10.268	-0.216	-0.119	0.096			
G=-CF3	8 852	8.753	8.753	8.753	8.753	-0.231	-0.132	0.099			
<u>G=-N</u> O2	8.631	8.532	8.532	8.532	8.533	-0.239	-0.140	0.099			

leads to stability of triplet state (respect to their corresponding singlet state) while substitution of electron withdrawing groups leads to stability of singlet state (respect to their corresponding triplet state).

Electron withdrawing groups at phenyl groups enforce a higher percentage of *s*-character on nonbonding electrons at earhonic center of $Ar - C_4H_3C$. The higher *s*-character of nonbonding electrons leads stability of singlet state as well as decrease the singlet-triplet gap ΔG_{s-t} . Furthermore, Electron withdrawing groups at pbenyl groups cause a high polarity of :C-C in the direction :C⁺-C⁻. Strongly polarized bond leads to more stability of singlet state as well as decrease singlet-triplet gap ΔG_{s-t} .

The HOMO-LUMO gaps of Ar $-C_4H_3\ddot{C}$ were calculated at B3LYP/6-311++G** level. The HOMO-LUMO gaps could be explained the energy changes of singlet and triplet states [10,11]. The results of singlet-triplet gap $\Delta G_{s,t}$ calculatian are fully supported by HOMO-LUMO gaps (Table 1). HOMO-LUMO gaps are increased with substitution of electron withdrawing groups at phenyl group. In cantrast, HOMO-LUMO gaps are decreased with substitution of electron donating groups at phenyl group. Higher HOMO-LUMO gaps lead to increase stability of the singlet state as well as decrease of the singlet-triplet gap ΔG_{p-t} .

CONCLUSION

Calculated ΔG_{s-t} show that electron donating substituents (G = -NH₂, -OH, -CH₃, -F, -Cl and -Br) at phenyl group cause to increase ΔG_{s-t} and electron withdrawing substituents (G = -CF₃ and -NO₂) lead to decrease the ΔG_{s-t} of Ar – C₄H₃ \ddot{C} . Relative energy analysis reveals that substitution of electron donating groups at phenyl group lead to stability of triplet state (respect to their corresponding singlet state) while substitution of electron withdrawing groups lead to stability of singlet state (respect to their corresponding triplet state).

ACKNOWLEDGMENT

The financial support of Science and Research Branch of Islamic of Azad University is gratefully acknowledged. M. Mahmodi Hashemi et al. /J. Phys. Theor. Chem. IAU Iran, 7(1): 23-26, Spring 2010

REFERENCES

- [1] P.P. Gaspar and R. West In: Z. Rappoport and Y. Apeloig, Editors, *Chemistry of* organic silicnm compounds vol. 2, Wiley, Chichester (1997).
- [2] M.Z. Kassaee, S. Arshadi, M. Acedy, E. Vessally, J. Organomet. *chem.* 690, 3427, (2005).
- [3] (a) R. Gleiter and R. Hoffmann, J. Am. Chem. Soc. 90, 5457, (1968).
 (h) H. Kollmar, J. Am. Chem. Soc. 100, 2660, (1978).
 (c) L. Radom, H.F. Schaefer III and M.A. Vincent, Nnuv. J. Chim. 4, 411, (1980).
 (d) M. Kausch and H. Durr, J. Chem. Res. 2 (1982).
- [4] M.Z. Kassaee, M.R. Nimlos, K.E. Downie ond E.E. Waali, *Tetrohedron* 41, 1579, (1985).
- [5] (a) M. Su and S. Chu, *Inorg. Chem.* 38, 4819, (1999).
 (h) A.J. Arduengo, R.L. Harlow and M. Kline, *J. Am. Chem. Soc.* 113, 361, (1991).

[6] (a) E. Vessally, et. al. Russian J. Phys. Chem. 81, 1821, (2007). (b) E. Vessally, et. al. J. Chinese Chem. Soc. 54, 1583, (2007).
(c) E. Vessally, et. al. Asian J. Chem. 19, 5000, (2007); d) E. Vessally, et. al. Asian J. Chem. 19, 1709, (2007).

95

ŀ

- [7] C. Lee, W. Yang and R.G. Parr, *Phys. Rev. B* 37, 785, (1988).
- [8] A.D. Becke, J. Chem. Phys. 98, 5648, (1993).
- [9] M.J. Frisch, et. al., gaussian 98, Revision A. 6, Gaussian Inc., Pittshurgh PA, (1998).
- [10] Y. Apeloig, R. Pauncz, M. Karni, R. West, W. Steiner and D. Chapman, Organametallics 22, 3250, (2003).
- [11] P.P. Gaspar, M. Xiao, D.H. Pae, D.J. Berger, T. Haile, T. Cheo, D. Lei, W.R. Winchester and P. Jiang, J. Organomet. Chem. 646, 68, (2002).

ıl

ić,

ŀ

11

<u>.</u>...