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INTRODUCTION 
Carbon nanotubes (CNTs) were first discovered in 1991 by Iijima [1]. CNTs are peri- 
condensed benzenoids composed of sp2 carbon atoms, which in turn are ordered in a graphite-
like hexagonal pattern. CNTs may be derived from graphite by rolling up the rectangular 
sheets along certain vectors, Figure a. Rectangular sheets may be rolled up along a vertical 
axis, yielding zig-zag CNTs, or along the horizontal axis, yielding armchair CNTs,  Figure b. 

 

 
Figure a. Graphite to armchair CNT from [2]. 

 
 
 

Journal of Physical and Theoretical Chemistry 
of Islamic Azad University of Iran, 4 (4) 217-222: Winter 2008 

(J.Phys.Theor.Chem.IAU Iran: Winter 2008) 
ISSN: 1735-2126 

 
Topological relationship between electric quadrupole, hexadecapole 

moments, energy and Padmakar–Ivan index in armchair polyhex 
nanotubes TUVC6[2p,q] 

 
Majid Monajjemi1* , Esmat Mohammadinasab1, Fatemeh Shafiei2 

 

1. Chemistry Department, Science & Research Campus, Islamic Azad University,P.O. Box 14155-775, 
Tehran, Iran 

2. Chemistry Department, Graduate Faculty, Arak Branch, Islamic Azad University , P.O. Box 38135-
567, Arak, Iran 

 
 

ABSTRACT 
 

The electric quadrupole, hexadecapole moments, energy (kJmol -1) for some armchair polyhex 
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set using the standard procedure indices GAUSSIAN 98, then the Padmakar-Ivan (PI) index of 
TUVC6[2p,q] nanotubes in the terms of their circumference (2p) and lengh (q) is calculated and 
the relationships between the Padmakar-Ivan index of TUVC6[2p,q] nanotubes with the above 
mentioned molecular properties is studied. 
 

Keywords: Padmakar-Ivan index; Armchair polyhex nanotubes; Graph theory; QSPR; Electric 
hexadecapole moment; Electric quadrupole moment 
 
 

                                                 
* . Corresponding author:m_monajjemi@yahoo.com 



M. Monajjemi et al. / J.Phys. Theor. Chem. IAU Iran,4(4): 217-222, Winter 2008 

 218

 
Figure b. Armchair and zig-zag CNT from [2]. 

 
     Single wall carbon nanotubes (SWNT’s) can 
display metallic or semiconducting character 
depending on their chiralities and diameters [3-5] 
similar to the aforementioned idea exploited 
extensively in crystals [6], quantum structures 
can also be produced in SWNT’s [7-14].  
 Molecular descriptors play a decisive role for 
evaluating large virtual libraries and to predict 
biological or physicochemical properties of 
compounds. Topological indices are an important 
class of molecular descriptors, based on the 
graph of a molecule.  
Chemical graph theory has been extensively 
applied to predict the physical properties of small 
molecules through quantitative structure-
property relationships (QSPR). This has been 
accomplished by demonstrating strong 
correlation between physical properties and one 
or more topological indices. Extending the 
application of topological indices to single wall 
nanotubes can lead to potential problems for 
such models. The oldest topological indices is 
the Wiener index [15,16,18]. 
Recently, a new topological index, namely, 
Padmakar–Ivan index, abbreviated as PI has 
been mentioned. In ref [19], the PI index of a 
zig-zag polyhex nanotube has been computed. 
Deng [20,21] computed the PI index of the 
catacondensed hexagonal systems and some 
other nanotubes. The present authors in ref [22] 
computed the PI index of the armchair polyhex 
nanotube.  

Throughout this paper T= TUVC6[2p,q] denotes 
an arbitrary armchair nanotube, in the term of 
their circumference (2p) and their length (q), 
Figure c. 

 
Figure c. A Armchair Polyhex  Lattice with p=3 and 
q=5. 
 
MATHEMATICAL METHODS 
To compute the PI index of the graph T= 
TUVC6[2p,q], we [22], assume that E= E(T)  is 
the set of all edges and    

( ) ( )( )GenGen eveu +−= E  N(e) . 
 Then                                     
PI( T) = ( ) ( ) ( )∑ −=− ∈ 23.2 qpTEButeNE Ee

 

 and so                                   
PI (T) = ( )( )∑ ∈−− .)23 22 eNqp Ee  

Therefore, to compute the PI index of T, it is 
enough to calculate N(e), for every Ee∈ . To 
calculate N(e), we consider two cases that e is 
horizontal or non- horizontal:  
1) If e is an horizontal edge then  
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⎪
⎩

⎪
⎨

⎧

⎩
⎨
⎧

∈+
∈−

otherwise
Te1
Te1

1-2k

2k

q
q
q
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the set of all horizontal edges of the ith  row of 
the armchair polyhex lattice. 
 
2) If e is a non- horizontal edge in the kth row, 

pk ≤≤1 , of the armchair polyhex lattice of 
T=TUVC6[2p,q], then  
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is the greatest integer less than or equal to 2/q , 
and ( ) ].2/[]2/1[ qqb −+=  
 
4) If q > 2p then: 
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. 
On this basis, the final equation for calculating 
the PI index of armchair polyhex 
 nanotube is:  
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where: 

pppqpqqpqpX 4485129 22222 −++−−=
                

ppppqpqqpqpY 4844209 232222 −+++−−=  
 
The value of the determinants of electric 
moments discussed in this report solved by using   
MAPLE-9.5 package implemented to a Personal 
computer. 
 
Graphs 
 The graphs are produced drawing the Microsoft 
Office Excel-2003 program. 
 
Discussion and designing QSPR models 
Topological indices have proven to be very 
useful in QSPR models, especially when a 
physical property such as electrical moments is 
modeled for a specific family of molecular 
graphs. Therefore, QSPR modeling the reduces 
topological correlation between the two sets of 
numbers via an algebraic expression. (one set of 
numbers represents the properties, and the other 
set represents the structures of molecules under 
study). 

There are several ways of topological design 
of QSPR models. Here we outline one possible 
strategy which contains five steps: 

Step 1. Get a reliable source of experimental 
data for a given set of  molecules. This initial set 
of molecules is called the training set [23,24]. 
The data in  this set must be reliable and 
accurate. The quality of the selected data is 
important because it will affect all the following 
steps. 

Step 2. The topological index is selected and 
computed. This is also an important step because 
selecting the appropriate topological index (or 
indices) can facilitate finding the most accurate 
model. 

Step 3. The two sets of numbers are then 
statistically analyzed using a suitable algebraic 
expression. 

The QSPR model is thus a regression model, 
and one must be careful about its statistical 
stability. Chance factors could yield spuriously 
accurate correlations. The quality of the QSPR 
models can be conveniently measured by the 
correlation coefficient r and standard deviations. 
A good  QSPR model must have r > 0.99, while s 
depends on the property. For example, for 
boiling point, s < 5 0C. Therefore, step 3 is a 
central step in the design of the structure-
property models.  

Step 4. Predictions are modeled for the 
values of the molecular property for species that 
are not part of the training set via the obtained 
initial QSPR model. The unkown molecules are 
structurally related to the initial set of 
compounds.  

Step 5. The predictions are tested with 
unknown molecules by experimental 
determination of the predicted properties. This 
step is rather involved because it requires 
acquiring or preparing the test molecules. 

 The following structure-property models are 
the most successful for logarithmic values of  
Padmakar-Ivan  (PI) considered: 

(1): Log E= -0.0019(LogPI)3   + 
0.0421(LogPI)2+ 0.2089(LogPI) +5.4926            
  R2= 1 

(2): Log Q= 0.0009 (LogPI)3 + 0.0595 
(LogPI)2+ 0.8606(LogPI) + 3.4546            R2=1 

otherwise 
1-q2 &2 p  
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(3): Log H= 0.0220(LogPI)3 – 0.1646 
(LogPI)2+ 2.5249 (LogPI)+3.6344            R2= 1 

 
RESULTS AND DISCUSSION 
The value of Padmakar–Ivan index, energy 
(kJmol-1), electric quadrupole, hexadecapole 
moments of armchair polyhex nanotubes 
TUVC6[2p,q] with p:4, q: (3 to 14) were shown 
in table 1 . 

 The energy and electric quadrupole, 
hexadecapole moments of these nanotubes were 
performed by Beck-Lee-Yang-Parr (B3LYP) on 
3-21G basis set using the standard procedure 
indices GAUSSIAN 98. 

The value of the topological index discussed 
in this report increases with the number of q in 
TUVC6[2p,q] or the  number of carbon in 
nanotubes and increases their length. 

According to the data of table 2. the 
logarithmic values of Padmakar-Ivan increase by 
increasing the values of logarithmic electric 
quadrupole, hexadecapole moments of armchair 
polyhex carbon nanotubes TUVC6[2p,q] with  p: 
4,  q: (3,5,7,9,12,14) . 

In figs. [1-3] it is attempted to show two 
dimensional diagrams of the relationship 
between the logarithmic values of Padmakar-
Ivan index and logarithmic values of energy 
 (kJmol-1), quadrupole, hexadecapole moments of 
TUVC6[2p,q] with p:4, q:(3,5,7,9,12,14). 

 In  those  curves, there is  good correlation 
between the values. 

After the calculation the Padmakar-Ivan index 
previously defined, partial  least   squares  
Regression was performed and the best model 
was taken as the one presenting the optimal value 
of     prediction   coefficient, taking  into  account  
the  number  of   descriptors   used   
 (eques, 1-3). That is, if the election of a major 
number of parameters did not justify the quality 
of the model, it was rejected. furthermore, the 
results of such studies were used to get into the 
quantitative structure-property relationship 
(QSPR) subjects. 
 
 
 
 
 

Electric quadrupole and hexadecapole moments 
of armchair polyhex carbon nanotubes 
TUVC6[2p,q] with p: 4, q: (4 to13) were  
performed by  Beck-Lee-Yang-Parr  (B3LYP) 
 on 3-21G  basis set  using  the standard  
procedure  indices GAUSSIAN 98. 

The results of these calculations are shown 
indices tables (3-5). We use eques (1-3) to 
predict the electric quadrupole and hexadecapole 
moments of TUVC6[2p,q]  with p: 4 q: 
(4,6,8,11,13) . 

We compare the predicted and GAUSSIAN 
values of TUVC6[2p,q] with p: 4, 
 q: (4 to 13 ), [see tables (3-5)]. 

  
CONCLUSIONS 
In the first part of this study, the quantum 
mechanics methodology was used to determine 
the energy, electric quadrupole, hexadecapole 
moments of armchair polyhex carbon nanotubes 
TUVC6[2p,q] with p: 4, q: (4 to 13) 

The relationships between the Padmakar-Ivan 
index with the above mentioned molecular 
properties has been studied. 

Futhermore, the results of such studies were 
used to get into the quantitative structure- 
activity relationship (QSAR) and quantitative 
structure-property relationship (QSPR) subjects. 

The graph-theoretical approach to QSPR is 
based on a well-defined mathematical 
representation of the molecular structure. In this 
report we presented a strategy for designing the 
QSPR based on topological indices. The 
instructive example was directed to the design of 
the structure-property model for predicting the 
electric quadrupole and hexadecapole moment of 
armchair polyhex carbon nanotubes 
TUVC6[2p,q] with p: 4 , 
q: (3 to14). In the most accurate QSPR models 
for nanotubes energy, electric quadrupole, 
hexadecapole moments are based on Log PI. 

The study of QSPR show that energy and 
electric quadrupole and hexadecapole moments 
of  TUVC6[2p,q] with p: 4, q: (4 to 13) could be 
well predicted. 
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Table 1. The values of circumference (2p), length (q), 
energy (kJmol-1), electric  quadrupole, hexadecapole 
moments and Padmakar-Ivan (PI) index of armchair 
polyhex carbon nanotubes TUVC6[2p,q] with  p: 4, q: 
(3,5,7,9,12,14)  

PI Hexadecapole Quadrupole E TUVC6 
[2p,q] 

Indexmoment moment kJmol-1 q P 
680 109 × 2247/9-  2450963.2800 2383806.4670 3 4 
23441011 × 30559/1-11591566.9500 3975381.5180 5 4 
50961011 × 1013/1-  32159802.6600 5566812.0130 7 4 
89681012 × 5142/2-  68728406.4500 7158147.6400 9 4 
1688013100679/1 ×−167764417.8000 9545218.8000 12 4 
235521013 × 3084/2-  26619141.2000 11136631.9200 14 4 

 
Table 2. Logarithm values of energy, electric 
quadrupole, hexadecapole moments, Padmakar-Ivan 
index of armchair polyhex carbon nanotube 
TUVC6[2p,q] with p:4,   q:(3,5,7,9,12,14)  
                                                         

Log PI Log H Log Q Log E TUVC6[2p,q] 

    q p 

2.8325 9.9649 6.3893 6.3773 3 4 
3.3699 11.1158 6.0641 6.5994 5 4 
3.7072 11.8513 6.5073 6.7456 7 4 
3.9527 12.4004 7.8371 6.8548 9 4 
4.2273 13.0286 8.2247 6.9798 12 4 
4.3720 13.3633 8.4252 7.0467 14 4 

 
Table 3. Comparison between predicted (Models 1-3) 
and Gaussian values of elecrtric quadrupole moments 
of armchair polyhex carbon nanotube TUVC6[2p,q] 
with p:4, q: (4,6,8,11,13)                              
 

[Log Q(Gauss) 
-Log Q (Calc)] Log Q(Calc) Log Q(Gauss) TUVC6 

[2p,q] 

Log PI Log PI  q p 

-0.0081 6.7759 6.7678 4 4 
- 0.0030 7.3056 7.3026 6 4 
+0.0007 7.6857 7.6864 8 4 
-0.0011 8.1080 8.1069 11 4 
-0.0061 8.3306 8.3245 13 4 

 
 
 
 
 
 
 
 
 
 

Table 4. Comparison between predicted (Models 1-3) 
and Gaussian values of electric hexadecapole 
moments of armchair polyhex carbon nanotube 
TUVC6[2p,q] with  p: 4,  q: (4,6,8,11,13) 
 

 [Log H(Gauss)
-Log H(Calc)]Log H(Calc) Log H(Gauss)TUVC6

[2p,q] 
Log PI Log PI  q p 

0.0078 10.6285 10.6207 4 4 
0.0032 11.5173 11.5141 6 4 
0.0030 13.1455 12.1425 8 4 
0.0002 12.8386 12.8384 114 
0.0016 13.2032 13.2016 134 

 
Table 5. Comparison between predicted (Models 1-3) 
and Gaussian values of energy of armchair polyhex 
carbon nanotube  TUVC6[2p,q] with  p: 4,  q: 
(4,6,8,11,13) 
 

[Log E(Gauss) 
-Log E(Calc)] 

Log 
E(Calc) 

Log 
E(Gauss) 

TUVC6 
[2p,q] 

Log PI Log PI  q p 

-0.0039 6.5063 6.5024 4 4 
-0.0031 6.6817 6.6786 6 4 
-0/0037 6.8073 6.8036 8 4 
-0.0044 6.9464 6.9420 11 4 
-0.0048 6.0194 7.0146 13 4 

 

Fig.1.The curve of the Log PI versus Log E
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Fig.1. The curve of the Log PI versus Log E 



M. Monajjemi et al. / J.Phys. Theor. Chem. IAU Iran,4(4): 217-222, Winter 2008 

 222

Fig.2. The curve of the Log PI versus Log Q
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