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ABSTRACT 

In this paper we have focused on the dielectric constant effect between various solvents with theoretical model 
in the biochemical process. Thereby, AAA, UUU, AAG and UUC triplex sequences have been optimized in 
water, methanol, ethanol and DMSO with proposed SCRF Model of theory. The solvation of biomolecules is 
important in molecular biology since numerous processes involve to interacting a protein with changing of 
solvent-molecule. 
The hydrogen bond is one of the important predictions of structural and functional in biochemical and 
biophysical of biological complexes such as proteins. mRNA-tRNA pairing as a fundamental step in protein 
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synthesis is a complexes process controlled by hydrogen bonding between two anti-parallel trinucleotides, 
namely the mRNA codon and the tRNA anticodon. 
In order to determine the optimized structural biology including of bond lengths, bond angles and dihedral 
angles energies, dipole moments and other properties of codons and anticodon, we have performed ab initio 
calculations of Quantum Mechanics (QM) at HF/sto-3G, 3-21G, 6-31G levels in gas phase and a few solvents 
with different dielectric constans via the SCF method using the GAUSSIAN 98 software package. Optimization 
at the HF/6-3 1G level has yielded results in better agreement with the experimental data. 

INTRODUCTION 
The Watson-Crick type base pair 

formation is fundamental for molecular 
recognition in the duplex formation of nucleic 
acids [1, 2]. The processes of transcription 
from DNA to mRNA [3], and of translation 
from mRNA to protein via tRNA [4] are also 
based on the formation of the Watson —Crick 
type base pairs. 

Each amino acid in a protein is specified 
by a group of the three adjacent nucleotide 
bases, denoted a codon, on the messenger 
RNA (mRNA) strand. Three special 
nucleotide bases in the tRNA molecule, the 
anticodon, interact with the three 
complementary codon bases in the mRNA 
molecule through hydrogen bonds and joining 
of the amino acid into a chain is realized inside 
the ribosome. In a process called translation, 
the mRNA molecule directs the collection of 
amino acids into the specific linear sequence 
characteristic of a given protein [5]. 

Theoretical nucleic acid conformational 
investigations have, thus far, mainly been 
concerned with the elucidation of the factors 
that 	govern 	sequence-dependent 
conformational properties. 

Codon-anticodon pairing is not merely a 
simple process controlled by hydrogen 
bonding 	between 	two 	anti-parallel 
trinucleotides, namely the mRNA codon and 
the tRNA anticodon. For example, 
peculiarities of the codon-anticodon 
interaction such as the absence of non-
canonical base pairing at the first two positions 
of the codon cannot be explained just by the 
internal stability of the codon-anticodon mini 
helix and the influence of the tRNA anticodon 
loop. It is known that a wide variety of non-
canonical base pairs is observed in different 
regions of the double helices of RNA 

molecules [6-9], and even in different 
positions of the anti-codon-anticodon mini 
helices [8,10]. There is also a series of 
indications that the translation of the codon 
can depend on adjacent codons (codon context 
effects [11-13]). 

Although we know which anticodon-
codon complexes are recognized as "correct," 
we have never understood why only they are 
acceptable. Crick (1966), based on the 
emerging structure of the genetic code and 
base pair stereochetnistry, and proposed his 
famous wobble rules for identifying correct 
duplexes. He proposed that only canonical 
base pairing should occur at the first and 
second codon positions, and that certain 
wobble pairing would be possible at the third 
codon position. In succeeding years these 
general rules have been amply confirmed, 
although the range of acceptable wobble pairs 
has been expanded (Osawa et al., 1992; Boren 
et al., 1993; Inagaki et al., 1995). There has 
also been progress towards an understanding 
of how nucleoside modifications affect 
wobbling (e.g., Agris, 1991; Bjork, 1992, 
1998; Osawa et al., 1992; Yokoyama & 
Nishimura, 1995; Curran, 1998). 

In fact, some of these mispaired 
complexes are just as stable as duplexes that 
contain only correct base pairs. Clearly, both 
correct and wrong codon-anticodon duplexes 
can be stable in solution. Notice that ribosomal 
proofreading, which can in principle amplify 
small energetic differences (Hopfield, 1974; 
Ninio, 1975; Kurland et al, 1990; Yams, 
1992), cannot distinguish duplexes that have 
essentially the same stabilities. Therefore, in 
addition to using a proofreading mechanism, 
ribosomes must rely on features other than 
duplex stability as predicted from solution and 
structural studies. 
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In the solution and while interacting with 
other materials, nucleic acids have also shown 
to adopt conformations not at all similar to the 
original Watson and Crick model (Srinivasan 
and Olson, 1987; Jaworski et al., 1987; Wu et 
al., 2002). Rigid body docking and static 
models have been used to examine the codon—
anticodon—ribosome interactions, and ternary 
complex initial selection. Smaller scale 
molecular dynamics simulation studies of 
cognate codon—anticodon interactions in the 
absence of the ribosome have also been 
performed. (Sanbonmatsu and Joseph, 2003) 
And mean free energy generated from the 
secondary structure of RNA sequences of 
varying length and composition has been 
studied to show that some nucleotide 
sequences found in biologically active 
organisms do relate to the free energy of their 
structures. Recently, a theoretical model based 
on similarity for studying RNA base pairings 
has been built up to analysis both Waston—
Crik and non-Waston—Crick pairings. And 
some theoretical considerations concerning the 
capability of the genetic code to repair 
dangerous mutations contribute to the ongoing 
debate (Patrizia et al,.1996). The impact of 
base-pair interactions to the RNA folding and 
biological functions is quite prevalent. Codon—
anticodon interactions are involved in the 
discrimination between the correct and 
incorrect aminoacyl-tRNAs. Hydrogen 
bonding, steric fit, and base-pair stability may 
be the main aspects that influence the whole 
process [14]. 

Water is the natural medium of all 
biological reactions, participating in different 
processes involving the living cell. 
Particularly, several structural features that 
are necessary for the biological functions of 
nucleic acids, such as DNA double helix 
formation or RNA folding and nucleic acids 
base pairing, are dependent on their 
interactions with surrounding water .The 
hydration of nucleic acids is controlled by the 
interaction of water molecules with various 
hydrophilic sites such as phosphates, bases and 
sugars. 

Water is a highly polar molecule which 
can be simultaneously an acceptor and a donor  

of H-bond via the interactions occurring 
through its oxygen or hydrogen atoms, 
respectively, with the nucleic acid 
constituents. 

Computational methods allow for the 
visualization of large amounts of structural 
data and the generation of related 
conformations for statistical and dynamic 
analyses. The application of these methods to 
systems of biological interest has advanced 
tremendously in recent years to encompass 
models that describe local 	conformational 
effects with 

great precision: such as quantum 
mechanical (QM) studies of the effect of 
substituent modifications, methods that 
perform 	statistical 	energy-guided 
conformational searches 

such as energy minimization, Monte Carlo 
(MC) 	and molecular dynamics 	(MD) 
simulations, and algorithms that aim to 
describe the collective structural 	constraints 

that influence macromolecular tertiary 
structure, folding pathways and the energetics 
of supercoiling. 

Theoretical backgrounds 
The most common type of ab-initio 

calculation is called Hartree-Fock calculation 
(abbreviated HF), in which the primary 
approximation is called the mean field 
approximation. This means that the coulombic 
electron-electron repulsion is not explicitly 
taken into account, however, its average effect 
is included in the calculation [15]. 

In the density functional theory (DFT), 
electron correlation is introduced through the 
Kohn and Sham method [16, 17], based on the 
combinations of some density functional 
(exchange, correlation),In the present work, 
the hybrid functional Beck's three parameters 
(B3) [18] combined with the gradient 
corrected correlation functional of Lee-Yang-
Parr [19] also denoted B3LYP is used. 

Computational methods 
The studies of Hydrations of nucleobases 

were a subject of numerous theoretical studies 
using Monte-Carlo, molecular dynamics, and 
quantum-chemical approaches within the 
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continuum model. Such information may by 
obtain only within the super molecules 
approach using high level ab initio methods. 
Also so far, no theoretical study has been done 
on pairing behaviors of these bases. Thus by 
this study we intend to propose the first 
detailed mechanism and investigate the effects 
of solvent surrounding them on changing of 
succession of amino acids. 

A quantum mechanical (QM) calculation 
was performed to verify the nature of the 
minimum state of the stationary points reached 
after geometry optimization. The geometries 
of the AAA, UUU, AAG and UUC have been 
optimized by ab initio and DFT calculations 
using the standard STO-3G, 3 -21 G, 6-
31Gand 6-31G* basis sets, in Hartree-Fock 
(HF) and B3LYP levels. The calculations have 
been performed by using the Gaussian 03 suite 
of program. 

RESULTS AND DISCUSSION 
Nucleic acid bases contain a row of N and 

N-H groups, which provide a range of possible 
hydrogen-bonded with water molecules. In all 
of these the water molecule is bonded to AAA, 
UUU, AAG and UUC triplex sequences 
hydrogen bond (OH.. .N or NH.. .0). Firstly, 
the complexes were fully optimized with HF 
and DFT (BLYP and B3LYP) methods at 3-
21G, 6-31 G and 6-31 G* basis sets and we 
have located the minima on the nucleobases 
potential energy surface. 

Optimization parameters such as: dipole 
moments and energies yields molecular 
geometries in good agreemer t with 
experimental values and those previously 
obtained theoretically. 

The results in Table! show that, with 
increase of dielectric constant from vacuum to 
cyclohexane, ethanol, methanol, DMSO and 
water, the dipole moment of each model 
increases by different quantum mechanic 
levels. 

A dipole in the molecule will induce a 
dipole in the medium, and the electric filed 
applied by the solvent dipole will in turn 
interact with the molecular dipole, leading to 
net stabilization. These parameters represent 
the subtle structural changes of the triplets are  

not statistically correlated because the 
distributions of subtle structural changes of 
different triplets are very different, and the 
contributions of dedicated structure changes 
should be analysed individually (Fig.2).The 
values of calculations in table.1 show that the 
interactions between water molecules and 
triplets reduce the energy of the integer 
system. The only exception is non-bond 
dispersion energy; it may imply that in aquatic 
solution, import of polarized water molecules 
reduces the polarization rates of triplets. The 
significance levels of parameters reveal the 
changes of solvent groups are significant. 

The effect of solvent on stabilization of 
triplex bases indicates interesting results and 
play major roles in their activities. The 
standard approach of the PCM (by SCRF 
method) for nucleobases with different basis 
sets, as is used here appears to be a good first 
step in the theoretical investigation on the 
effect of solvent. In this paper, we have 
presented the solvation of the complexes. The 
influence of dielectric constant on the standard 
geometry optimization of AAA,UUU,AAG 
and UUC triplex sequences in 1120, C2H5OH, 
CH3OH and DMSO solvents have 
investigated. We have shown that relative 
energies (AE) of triplex bases in solution are 
smaller than gas phase, which is due to 
interactions in solution is larger than gas phase 
and it seems for all different sequences that the 
influence of aquatic solution to mRNA—tRNA 
triplets is almost the same(Table.1). 

The interaction energies of the complexes 
with increasing dielectric constant of solvent 
decrease at HF, BLYP and B3LYP methods. 
The charts of AAA and UUU triplex bases 
almost are linear but we have not seen this 
form for AAG and UUC triplex sequences. 
Also, the non-linear chart in the antisenses 
sequences(AAG and UUC) at heavy basis set 
of 6-31 G* turnouts linear(Fig.3).The results 
obtained from density functional theory are 
larger than those obtained from Hartree—Fock 
calculations because correlation energies are 
considered in DFT method. However, the 
accuracy of BLYP and B3LYP calculations 
has been considered as insufficient for base 
triplets interactions. 
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Because the increase of dielectric constant 
in water molecules that are arranged around 
the hydrophilic part of chain of amino acid, we 
have found the optimized parameters better 
than other solvents. 

Also, from these calculations we result 
that the effect of dielectric constant of solvents 
is important to displacing of amino acids 
sequences on codon-anticodon residues 
pairing in proteins and it will be causes some 
mutations in human body. 

Conclusion 
1. For the compound studied, the most 

important intermolecular interaction between 
nucleobases and solvent molecules employ 
different geometrical models in the crystalline 
structures. These interactions have been 
approximated by explicitly adding the nearest 
neighbors into the calculations. Interaction 
with solvent molecules has caused 
deformation of the intermolecular geometry of 
the nucleobases which can be described by 
assuming the resonance form into the total 
structure of the bases. 

2. The comparison between optimized 
structures investigates stability of chain amino 
acids in theoretical levels. We have performed 
HF and DFT quantum mechanic methods of 
good quality on the AAA, UUU, AAG and 
UUC triplex sequences in Water, Ethanol, 
Methanol, and DMSO solvents with different 
basis sets. 

Based on the obtained results and 
stabilized structures, we conclude that it may 
be dielectric constant effect of solvents have 
been caused to displacing of amino acids 
sequences on codon-anticodon residues 
pairing in proteins and it will be indicates 
some changes in biological ambient. 

3. Based on the analysis of the physico-
chemical properties of mRNA and tRNA, Jean 
Lehmann (2000) pointed out that nature of the 
codon—anticodon interaction can explain the 
volume of the corresponding amino acids. 
Peptide bond formation may exist between 
two successive amino acids during translation. 
And the nature of codon—anticodon may be 
sufficient to explain the origin of comparison 
the energies of mRNA and tRNA triplets in 
vacuum, and those in aquatic solution show 
significant differences. 

4.Presence of active centers in base triplex 
may be important in the recognition code 
mechanism involving tRNA .we are now 
working towards an ab initio confirmation. 
The calculated group-group bond indices and 
molecular valences agree with these features. 
The change of nucleotide in codon-anticodon 
shows complexity which may lead to different 
biological functions. As a matter of fact, the 
energies can provide some valuable 
information for binding stabilities of pairing in 
proteins and it will be causes some mutations 
in human body. 
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Fig.!. geometry optimization of (a)AAA, (b)UULI,(c) AAG and (d)LTUC triplex sequences by showing of 
active centers. 
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Table 1. Values of dipole moment and relative energy in AAA, UUU, UUC and AAG triplex 
sequences in HF and DFT (BLYP and B3LYP) methods at various ambient. 
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Fig.2. Comparison of the dipole moment (debye) (a)AAA, (b)Lltitl,(c) AAC, and (d)LJUC triplex 
sequences versus dielectric constant obtained from HF and MT (BLYP and B3LYP) methods at different 
basis sets. 
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Fig.3. Variation of relative energy(kcalimol) (a)AAA. (b)UIRMe) AAG and (d)1113C triplex sequences versus dielectric 
constant obtained from HF and Drr (131.YP and B3LYP) methods at different basis sets. 
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