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ABSTRACT 

Quantitative structure–property relationship (QSPR) models establish relationships between 

different types of structural information to their properties. In the present study the 

relationship between the molecular descriptors and quantum properties consist of the heat 

capacity (Cv/J mol
-1

K
-1

) entropy (S/J mol
-1

K
-1

) and thermal energy (Eth/kJ mol
-1

) of 100 

alkenes is represented. Genetic algorithm (GA) and backward-multiple linear regressions 

(BW-MLR) were successfully developed to predict quantum properties of alkenes. Molecular 

descriptors were calculated with Dragon software and the genetic algorithm (GA) method was 

used to selected important molecular descriptors. The quantum properties were obtained from 

quantum-chemistry technique at the Hartree-Fock (HF) level using the ab initio 6-31G
*
 basis 

sets. The predictive powers of the BW-MLR models were discussed by using leave-one-out 

(LOO) cross-validation and external test set. Results showed that the predictive ability of the 

models was satisfactory, and the 2D matrix-based descriptors, topological, edge adjacency 

and Connectivity indices could be used to predict the mentioned properties of 100 alkenes. 

 

Keywords: Backward-Multiple linear regression; Molecular descriptors, Genetic algorithm; 

validation; QSPR; alkenes 

 

INTRODUCTION

Quantitative1 structure–property 

relationships (QSPR) and quantitative 

structure–activity (QSAR) models are 

mathematical equations that relate 

properties or activities of compounds to a 

wide range of molecular descriptors [1] 

QSAR and QSPR studies are 

unquestionably of great importance in 

Biochemistry, analytical chemistry, 

physical chemistry, pharmaceutical, 
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environmental chemistry and toxicology [2, 

3]. The aim of these studies is to search for 

new compounds with the required 

properties and activities by mathematical 

and computer methods [4, 5].  

Molecular descriptors are closely related 

to the concept of molecular structure and 

they are developed for the purpose of 

obtaining correlations with physicochemical 

properties and biological activities of 

chemical substances have been applied for a 

very extensive range [3, 6, 7]. 
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The experimental properties namely the 

octanol-water partition coefficient (logP), 

melting point, boiling point, aqueous 

solubility (Sw) and polarizability (α) of 

linear alkanes and alkenes  have been 

investigated using a novel index based on 

connectivity and distances in the graph of a 

molecular structure [8]. 

A QSPR analysis has been applied to 

derive a quantitative relationship between 

the chemical structures of 91 alkenes and 

their physicochemical properties such as 

enthalpy of vaporization at standard 

condition (∆H
°
vap/kJ.mol

-1
) and normal 

temperature of boiling points (T˚bp /K)[9]. 

Artificial neural networks (ANNs) have 

been used to construct QSPR models for 

predicting the normal boiling point, density, 

and refractive index of 66 alkenes [10]. 

General regression neural network 

(GRNN) and stepwise multiple linear 

regression (MLR) techniques were applied 

to develop QSAR models for the prediction 

reaction rate constants of ozone of 95 

alkenes [11]. 

The novel information theoretic 

topological index, Ik, is derived from the 

edge signed graphs has been applied to 

predict three properties of 24 unsaturated 

hydrocarbons (Alkenes) using multiple 

regression analysis (MRA)[12]. 

A PCR analysis was applied to find a 

multiparametric QSPR model between 15 

different properties of 149 alkanes and 

eleven topological indices (Sh indices)[13]. 

A QSPR model has been used to 

estimate critical volume of unsaturated 

hydrocarbon alkenes and alkynes using 

simple connectivity indices [14].  

QSPR study has been devoted to predict 

physical and chemical properties such as 

density (D), boiling point (BP) and melting 

point (MP) of 162 mono alkenes using ad 

hoc descriptors and molecular connectivity 

indices [15]. 

In the present study, QSPR mathematical 

models have been developed to predict the 

thermal energy (Eth/kJ mol
-1

) heat capacity 

(Cv/J mol
-1

 K
-1

) and entropy(S/J mol
-1

 K
-1

) 

of 100 alkenes using BW-MLR method 

based on molecular descriptors calculated 

from the molecular structure by using 

Dragon software, and also several methods 

have been used for testing the predictive 

ability of the models. 
 

MATERIALS AND METHODS 
The thermal energy, heat capacity and 

entropy of 100 alkenes were taken from the 

quantum mechanics methodology with the 

ab initio Hartree-Fock theory, using 6-31G
*
 

basis sets [16]. 

These compounds and their quantum 

properties are listed in Table 1. In order to 

build and test QSPR models, a data set of 

100 alkenes was randomly separated into 2 

groups: a training set of 80 compounds, 

which was used to build a model and a test 

set of 20 compounds, which was applied to 

evaluate the built model. In order to 

calculate the theoretical descriptors, first, 

the molecular structures were constructed 

using Gauss View 5 software and then, the 

molecular geometries of compounds were 

better optimized with Gaussian 98 programs 

[17]. These optimized structures were 

entered in Dragon package 2.1. A total of 

1896 theoretical descriptor were calculated 

for each compound in the data set using 

Dragon software.  

DRAGON software is a very important 

tool for the calculation of a wide range of 

descriptors including different groups: 

topological, 2D autocorrelations, 

aromaticity indices, geometrical 

GETAWAY, radial distribution function 

(RDF), 3D-MoRSE, Galvez topological 

charge, weighted holistic invariant 

molecular (WHIM), empirical, functional 

groups, atom-centered fragments, and 

constitutional descriptors [18, 19]. 

The Genetic Algorithm (GA) is 

implemented in MATLAB (2010a) 

software and backward stepwise-linear 
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multiple regression method using the 

Statistical Package for the Social Science 

(SPSS) software Version 20 were used to 

reduce the number of molecular descriptors 

and build QSPR models [20]. 

 

RESULTS AND DISCUSSION 

QSPR models and statistical coefficients 

The QSPR models were evaluated with 

regression parameters: correlation 

coefficient (R), coefficient of determination 

(R
2
), adjusted correlation coefficient (R

2
adj), 

Fisher ratio (F), Root Mean Square Error 

(RMSE), Durbin-Watson statistic (DW) and 

significance (Sig) [21-23]. 

 
Table 1. The name of 100 alkenes and their thermal energy(Eth/kJ mol

-1
), heat capacity(Cv/J mol

-1
 K

-1
)and 

entropy(S/J mol
-1

 K
-1

 )used in this study 
 

No. Compound 
Cv 

J mol-1 K-1 

S 

J mol-1 K-1 

Eth 

kJ mol-1 
No. Compound 

Cv 

J mol-1 K-1 

S 

J mol-1 

K-1 

Eth 

kJ 

mol-1 

1 1-Butene 61.14 279.81 317.06 51 2-pentene 78.86 302.56 397.61 

2 1-heptene 120.43 370.43 568.00 52 3,3dimethyl 1-butene* 116.29 325.48 481.05 

3 1-hexene 99.26 339.86 484.33 53 3,3dimethyl 1-heptene 164.62 415.37 732.77 

4 1-nonene* 165.83 431.7 735.35 54 3,3dimethyl  1-hexene 141.24 384.68 649.1 

5 1-octene 145.81 401.06 651.68 55 3,3dimethyl 1-pentene 123.93 354.24 565.37 

6 1-Pentene 80.47 309.63 400.67 56 3,4diethyl 2-Hexene 169.77 468.72 821.44 

7 1-propene 32.77 254.03 233.41 57 3,4dimethyl 1-pentene* 120.13 372.94 568.49 

8 2,3,3trimethyl 1-butene* 132.24 335.19 562.09 58 3,4dimethyl 2-Hexene 133.93 423.14 652.69 

9 2,3dimethyl    1-butene 110.14 351.9 485.42 59 3,4dimethyl 2-pentene 119.62 387.28 568.71 

10 2,3dimethyl   1-heptene 164.23 442.13 736.7 60 3,5dimethyl  1-heptene 164.34 432.73 736.48 

11 2,3dimethyl  1-hexene 139.69 411.48 653.02 61 3,6dimethyl  1-octene* 187.92 473.05 820 

12 2,3dimethyl 1-pentene* 118.68 380.84 569.33 62 3,7dimethyl  1-octene 203.12 468.63 819.66 

13 2,3dimethyl    2-butene 108.53 346.78 478.64 63 3ethyl  1-heptene 160.44 439.86 737.58 

14 2,3dimethyl    2-heptene 160.22 415.73 730.55 64 3ethyl   1-hexene 134.86 409.25 653.89 

15 2,3dimethyl   2-hexene 136.48 386.96 646.89 65 3ethyl  1-pentene 114.64 378.31 570.24 

16 2,3dimethyl   2-pentene 118.82 358.42 563.28 66 3ethyl   2-heptene 155.63 407.19 732.8 

17 2,4,4trimethyl  2-pentene* 146.78 386.4 647.27 67 3ethyl    2-pentene 111.43 347.74 565.6 

18 2,4dimethyl 1-heptene 166.09 438.02 736.36 68 3-heptene* 108.74 355.68 564.91 

19 2,4dimethyl  1-hexene* 138.60 407.27 652.66 69 3-hexene 96.05 326.09 481.28 

20 2,4dimethyl1-pentene 126.79 376.66 568.68 70 3methyl  1-butene* 86.37 319.57 402.2 

21 2,4dimethyl  2-heptene 162.07 446.9 735.73 71 3methyl   1-heptene 141.42 411.46 653.5 

22 2,4dimethyl   2-hexene* 135.70 416.19 652.02 72 3methyl 1-hexene 119.50 380.85 569.83 

23 2,4dimethyl  2-pentene 124.38 385.18 568.12 73 3methyl 1-octene 169.07 442.02 737.18 

24 2,5,5trimethyl  2-hexene 169.36 399.36 727.75 74 3methyl 1-pentene 101.80 350.16 486.13 

25 2,5dimethyl 1-hexene 147.31 411.22 652.54 75 3methyl 2-heptene 137.41 399.49 647.80 

26 2,5dimethyl     2-heptene 164.48 442.75 735.69 76 3methyl    2-hexene 116.29 368.23 564.13 

27 2,5dimethyl   2-hexene 144.10 412.4 651.71 77 3methyl 2-pentene* 94.99 341.15 480.50 

28 2,6dimethyl  2-octene* 188.23 478.2 819.68 78 3-octene 139.38 385.19 648.57 

29 2-butene 60.34 271.53 313.96 79 4,4dimethyl1-pentene 130.64 352.14 564.57 

30 2ethyl3methyl 1-butene 120.43 372.94 569.46 80 4,4dimethyl   2-hexene 138.83 376.44 645.89 

31 2ethyl 1-butene 100.19 314.14 482.48 81 4,4dimethyl  2-pentene 127.43 347.74 561.58 

32 2ethyl  1-hexene 138.21 373.95 649.68 82 4,5dimethyl  2-heptene* 152.23 434.91 735.61 

33 2ethyl   1-pentene 117.09 343.77 566.02 83 4ethyl 2methyl 1-hexene 160.32 434.07 736.88 

34 2-heptene 117.21 362.55 564.89 84 4methyl   1-octene 168.27 439.74 737.17 

35 2-hexene 96.86 332.41 481.23 85 4methyl  1-pentene 106.20 348.04 485.82 

36 2-methyl   2butene* 84.92 305.23 396.45 86 4methyl  2-heptene 137.41 403.54 650.26 

37 2-methyl  3nonene 201.33 474.03 820.15 87 4methyl 2-hexene 117.09 382.24 569.12 

38 2methyl 4ethyl 1-heptene 187.27 464.36 820.54 88 4methyl   2-octene 163.45 443.48 736.49 

39 2methyl 4ethyl 2-hexene 156.31 443.28 736.1 89 4methyl  2-pentene 103.80 351.67 485.21 

40 2methyl  1-butene* 85.64 294.25 397.62 90 4methyl   1-hexene* 115.22 378.6 569.80 

41 2methyl  1-hexene 122.40 353.55 564.9 91 5,5dimethyl 1-hexene 150.46 386.00 648.45 

42 2methyl   1-pentene 104.60 323.6 481.25 92 5,5dimethyl  2-hexene 146.45 374.53 645.11 

43 2methyl    2-heptene* 135.90 387.19 647.49 93 5ethyl     1-heptene 163.66 438.17 737.86 

44 2methyl   2-hexene 119.99 358.42 563.82 94 5ethyl     2-heptene 158.84 437.00 737.04 

45 2methyl   2-pentene 102.99 328.83 480.21 95 5methyl      1-heptene 143.03 412.21 653.75 

46 2methyl   3-heptene 140.76 412.83 652.8 96 5methyl    1-hexene 124.81 380.07 569.75 

47 2methyl  3-hexene 119.99 382.34 569.16 97 5methyl    2-heptene 139.01 411.32 652.79 

48 2Methyl 1-propene 80.89 267.61 313.28 98 5methyl    2-hexene 121.60 380.10 568.85 

49 2methyl   1-octene* 165.07 414.81 732.24 99 6methyl   1-heptene* 141.69 411.10 653.43 

50 2-octene 119.99 393.22 648.57 100 6methyl     2-heptene 143.98 412.14 652.78 

 

* Compounds selected for test set in external validation procedure 
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QSPR models for the thermal energy 

The BW–MLR analysis led to the 

derivation of 13 models for thermal energy 

(Eth), with 13- 21descriptors. Table 2, 

shows the regression coefficient and 

statistical parameters of models for thermal 

energy (Eth) of 80 alkenes. 

The results of the models were observed 

to be very satisfactory. The statistical 

coefficients of the 13 models were almost 

similar; so, the model 13, which had the 

lowest number of descriptors, was 

selected. The QSPR model and statistical 

parameters for nine molecular descriptors 

are shown as follows (Equation (1)):   
 

Eth= 172.427-186.025 (HNar) +76.023 

(PCR) -15.264 (X4) +124.588 (X1v) -

16.747 (X3sol) +4.871 (RDSQ) +200.246 

(HDcpx) -4.602 (EEig06d) -5.906 

(ESpm14x)                                              (1)  
 

Ntrain=80, Rtrain=0.998, R
2

train=0.995, 

R
2

adj,train=0.995, RMSE=2.939, Ftrain=1618.649,  
 

DWtrain=2.113, Sigtrain=0.000 

 

QSPR models for the entropy 

Table 3, shows the statistical parameters of 

14 models for the entropy of 80 alkenes. 

The statistical coefficients of the 14 

models were almost similar; so, the model 

14, which had the lowest number of 

descriptors, was selected. The QSPR 

model and statistical parameters for nine 

molecular descriptors are shown as follows 

(Equation (2)):   
 

S= 138.404 - 1663.337 (HNar) + 1419.576 

(GNar) + 173.091 (MSD) -35.406 (Har) + 

26.039 (Jhetv) + 53.335 (MAXDN) + 

16.818 (S2K) + 28.901 (XMOD) - 11.999 

(ESpm10d)                                              (2) 

 
Ntrain=80, Rtrain=0.991, R

2
train=0.981, 

R
2

adj,train=0.979, RMSEtrain=2.639, 

Ftrain=412.221, DWtrain=1.523, Sigtrain=0.000. 

Table 2.Statistical parameters of the models calculated with the SPSS software for the thermal energy (Eth/kJ mol
-1

). 

Model Independent Variable R R2 R2
adj RMSE F 

1 

ESpm10d, HNar, PCR, EEig06d, X4Av, X4, BIC1, X3sol, 

CSI, X0Av, X2A, IDE, ESpm14x, Jhetm, QW, HDcpx, 

RDSQ, WA, X1v, XMOD, GNar 

0.998 0.996 0.994 3.076 628.923 

2 
ESpm10d, HNar, PCR, EEig06d, X4Av, X4, BIC1, X3sol, 
CSI, X0Av, X2A, IDE, ESpm14x, Jhetm, HDcpx, RDSQ, 

WA, X1v, XMOD, GNar 

0.998 0.996 0.994 3.053 671.754 

3 
ESpm10d, HNar, PCR, EEig06d, X4Av, X4, BIC1, X3sol, 
CSI, X0Av, X2A, IDE, ESpm14x, Jhetm, HDcpx, RDSQ, 

WA, X1v, GNar 

0.998 0.996 0.994 3.050 719.094 

4 
HNar, PCR, EEig06d, X4Av, X4, BIC1, X3sol, CSI, 

X0Av, X2A, IDE, ESpm14x, Jhetm, HDcpx, RDSQ, WA, 

X1v, GNar 

0.998 0.996 0.994 3.038 771.641 

5 
HNar, PCR, EEig06d, X4, BIC1, X3sol, CSI, X0Av, X2A, 
IDE, ESpm14x, Jhetm, HDcpx, RDSQ, WA, X1v, GNar 

0.998 0.996 0.994 3.025 830.321 

6 
HNar, PCR, EEig06d, X4, BIC1, X3sol, CSI, X0Av, X2A, 

IDE, ESpm14x, Jhetm, HDcpx, RDSQ, WA, X1v 
0.998 0.996 0.995 3.014 895.378 

7 
HNar, PCR, EEig06d, X4, BIC1, X3sol, CSI, X0Av, X2A, 

IDE, ESpm14x, HDcpx, RDSQ, WA, X1v 
0.998 0.996 0.995 3.003 969.752 

8 
HNar, PCR, EEig06d, X4, BIC1, X3sol, X0Av, X2A, IDE, 

ESpm14x, HDcpx, RDSQ, WA, X1v 
0.998 0.996 0.995 2.932 1054.676 

9 
HNar, PCR, EEig06d, X4, BIC1, X3sol, X0Av, IDE, 

ESpm14x, HDcpx, RDSQ, WA, X1v 
0.998 0.996 0.995 2.932 1150.652 

10 
HNar, PCR, EEig06d, X4, BIC1, X3sol, X0Av, ESpm14x, 

HDcpx, RDSQ, WA, X1v 
0.998 0.996 0.995 2.938 1235.763 

11 
HNar, PCR, EEig06d, X4, BIC1, X3sol, X0Av, ESpm14x, 

HDcpx, RDSQ, X1v 
0.998 0.995 0.995 2.936 1351.685 

12 
HNar, PCR, EEig06d, X4, X3sol, X0Av, ESpm14x, 

HDcpx, RDSQ, X1v 
0.998 0.995 0.995 2.938 1484.039 

13 
HNar, PCR, EEig06d, X4, X3sol, ESpm14x, HDcpx, 

RDSQ, X1v 
0.998 0.995 0.995 2.939 1618.649 
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Table 3. Statistical parameters of the models calculated with the SPSS software for the entropy (S/J mol
-1

 K
-1

) 
 

Model Independent Variable R R2 R2
adj RMSE F 

1 
ESpm10d, Hnar, EEig06d, MAXDN, CIC2, GMTI, EEig02x, GMTIV, Jhetv, 

BIC1, MSD, ESpm14u, X1A, TIE, ECC, S2K, ESpm07x, Xu, w, GNar, XMOD, 

Har 

0.992 0.984 0.978 2.678 159.551 

2 
ESpm10d, Hnar, EEig06d, MAXDN, CIC2, GMTI, EEig02x, GMTIV, Jhetv, 

BIC1, MSD, ESpm14u, X1A, ECC, S2K, ESpm07x, Xu, w, GNar, XMOD, Har 
0.992 0.984 0.978 2.656 170.081 

3 
ESpm10d, Hnar, EEig06d, MAXDN, CIC2, GMTI, EEig02x, GMTIV, Jhetv, 

BIC1, MSD, ESpm14u, X1A, S2K, ESpm07x, Xu, w, GNar, XMOD, Har 
0.992 0.984 0.979 2.655 181.663 

4 
ESpm10d, Hnar, EEig06d, MAXDN, CIC2, GMTI, GMTIV, Jhetv, BIC1, MSD, 

ESpm14u, X1A, S2K, ESpm07x, Xu, w, GNar, XMOD, Har 
0.992 0.984 0.979 2.643 194.460 

5 
ESpm10d, Hnar, EEig06d, MAXDN, CIC2, GMTI, GMTIV, Jhetv, MSD, 

ESpm14u, X1A, S2K, ESpm07x, Xu, w, GNar, XMOD, Har 
0.992 0.984 0.979 2.633 208.655 

6 
ESpm10d, Hnar, EEig06d, MAXDN, CIC2, GMTIV, Jhetv, MSD, ESpm14u, 

X1A, S2K, ESpm07x, Xu, w, GNar, XMOD, Har 
0.992 0.984 0.980 2.622 224.501 

7 
ESpm10d, Hnar, MAXDN, CIC2, GMTIV, Jhetv, MSD, ESpm14u, X1A, S2K, 

ESpm07x, Xu, w, GNar, XMOD, Har 
0.992 0.984 0.980 2.619 239.795 

8 
ESpm10d, Hnar, MAXDN, CIC2, GMTIV, Jhetv, MSD, X1A, S2K, ESpm07x, 

Xu, w, GNar, XMOD, Har 
0.992 0.984 0.980 2.618 255.803 

9 
ESpm10d, Hnar, MAXDN, CIC2, GMTIV, Jhetv, MSD, X1A, S2K, Xu, w, 

GNar, XMOD, Har 
0.992 0.983 0.980 2.618 274.117 

10 
ESpm10d, Hnar, MAXDN, GMTIV, Jhetv, MSD, X1A, S2K, Xu, w, GNar, 

XMOD, Har 
0.992 0.983 0.980 2.616 296.185 

11 
ESpm10d, Hnar, MAXDN, GMTIV, Jhetv, MSD, S2K, Xu, w, GNar, XMOD, 

Har 
0.991 0.983 0.979 2.629 314.121 

12 ESpm10d, Hnar, MAXDN, GMTIV, Jhetv, MSD, S2K, w, GNar, XMOD, Har 0.991 0.982 0.979 2.626 344.059 

13 ESpm10d, Hnar, MAXDN, Jhetv, MSD, S2K, w, GNar, XMOD, Har 0.991 0.982 0.979 2.637 372.094 

14 ESpm10d, Hnar, MAXDN, Jhetv, MSD, S2K, GNar, XMOD, Har 0.991 0.981 0.979 2.639 412.221 

 

QSPR models for the heat capacity 

Table 4, shows the regression coefficients 

and statistical factors of models for the 

heat capacity of 80 alkenes. The regression 

parameters of the suitable linear model for 

the heat capacity incudes fourteen 

molecular descriptors are collected in 

Equation (3). 

 

Cv = 237.448+18.294 (Ss) - 212.266 

(RBF) + 0.149 (GMTI) - 0.179 (GMTIV) - 

15.288 (RHyDp) +16.700 (Jhetv) + 7.996 

(MAXDN) -11.037 (S2K) - 353.329 

(X1A) + 14.114 (XMOD) + 29.668 (BIC1) 

- 53.121 (ESpm06X) + 9.522 (ESpm14x) -

4.829 (ESpm10d)                                    (3) 

 
Ntrain=80, Rtrain=0.997, R

2
train=0.994, 

R
2

adj,train=0.992, RMSEtrain=1.678, 

Ftrain=710.480, DWtrain=1.588, Sigtrain=0.000.  

In the present study, to find the best 

BW-MLR models for predicting the 

mentioned properties of alkenes, we used 

the following sections. 

 

Multicollinearity 

The collinearity, reliability, stability and 

robustness of the models are influenced by 

the autocorrelation and multicollinearity 

properties of the descriptors contributed in 

the models. These parameters in the 

models were examined by calculating the 

variance inflation factor (VIF) and Durbin-

Watson (DW) statistics [24-26]. The VIF 

shows us how much the variance of the 

coefficient estimate is increased by 

multicollinearity. If the VIF value lies 

between1-10, then there is no 

multicollinearity, and if the VIF<1 or >10, 

then there is multicollinearity. 
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Table 4. Statistical parameters of the models calculated with the SPSS software for the heat capacity (Cv/J 

mol 
-1

K
-1

). 
 

Model Independent Variable R R2 R2
adj RMSE F 

1 

ESpm10d, RBF, EEig06d, MAXDN, GMTI, BIC1, X1A, Jhetv, 

S2K, ESpm14u, ESpm14x, ECC, HDcpx, Ss, UNIP, ESpm04u, 

GMTIV, RHyDp, ESpm06x, XMOD 

0.997 0.994 0.992 1.735 466.631 

2 

ESpm10d, RBF, MAXDN, GMTI, BIC1, X1A, Jhetv, S2K, 

ESpm14u, ESpm14x, ECC, HDcpx, Ss, UNIP, ESpm04u, GMTIV, 

RHyDp, ESpm06x, XMOD 

0.997 0.994 0.992 1.638 499.481 

3 

ESpm10d, RBF, MAXDN, GMTI, BIC1, X1A, Jhetv, S2K, 

ESpm14u, ESpm14x, ECC, HDcpx, Ss, ESpm04u, GMTIV, 

RHyDp, ESpm06x, XMOD 

0.997 0.994 0.992 1.631 534.783 

4 

ESpm10d, RBF, MAXDN, GMTI, BIC1, X1A, Jhetv, S2K, 

ESpm14x, ECC, HDcpx, Ss, ESpm04u, GMTIV, RHyDp, 

ESpm06x, XMOD 

0.997 0.994 0.992 1.637 572.405 

5 
ESpm10d, RBF, MAXDN, GMTI, BIC1, X1A, Jhetv, S2K, 

ESpm14x, ECC, HDcpx, Ss, GMTIV, RHyDp, ESpm06x, XMOD 
0.997 0.994 0.992 1.631 617.074 

6 
ESpm10d, RBF, MAXDN, GMTI, BIC1, X1A, Jhetv, S2K, 

ESpm14x, HDcpx, Ss, GMTIV, RHyDp, ESpm06x, XMOD 
0.997 0.994 0.992 1.679 660.263 

7 
ESpm10d, RBF, MAXDN, GMTI, BIC1, X1A, Jhetv, S2K, 

ESpm14x, Ss, GMTIV, RHyDp, ESpm06x, XMOD 
0.997 0.994 0.992 1.678 710.48 

 

Good regression model should not have 

happened multicollinearity. 

In all our final models, the 

multicollinearity has existed, because the 

values of correlations between independent 

variables are near to one and VIFs value 

are not between 1 and 10 .(see Tables 5-7(. 

To study the correlation between the 

molecular descriptors in the models 1-3, 

we used SPSS program to obtain the 

Pearson coefficient correlation (PCC) and 

collinearity statistics in the ANOVA table. 

The results of this study are recorded in 

Tables 5 to7. 

The suitable linear model for prediction 

of the thermal energy (Equation 1) 

includes nine molecular descriptors (HNar, 

PCR, EEig06d, X4, X3sol, ESpm14x, 

HDcpx, RDSQ and X1v). 

From Table 5, the Pearson correlation 

between RDSQ and X1v descriptors is 

close to unity, and VIF for RDSQ, HDcpx, 

X1v,and HNar are bigger than 10(see 

Table 5), therefore there is a linearity 

between these descriptors. After removing 

X1v from this model, and the next step 

PCR and HDcpx, we corrected Equation 1 

as follows: 

 

Eth = 366.464 + 15.537 (RDSQ) - 16.303 

(EEig06d) - 8.567 (ESpm14x)                (4) 

 
Ntrain=80, Rtrain=0.991, R

2
train=0.981, 

R
2

adj,train=0.981, Ftrain=1337.423, DWtrain=1.911, 

Sigtrain=0.000, RMSE=2.430 

 

The suitable linear model for prediction 

of the entropy (Equation 2) includes nine 

molecular descriptors (ESpm10d, HNar, 

MAXDN, Jhetv, MSD, S2K, GNar, 

XMOD and Har). From Table 6, the 

Pearson correlation between (GNar, HNar) 

and (XMOD and Har )descriptors are close 

to unity, and VIF for ESpm10d, HNar, 

Jhetv, MSD, S2K, GNar, XMOD and Har 

are bigger than 10 (see Table 6), therefore 

there is a linearity between these 

descriptors. After removing XMOD from 

this model, and the next step GNar and 

Jhetv, we corrected Equation 2 as follows: 

 

S= 241.191 + 21.765 Har + 15.762 

MAXDN - 6.529 ESpm10d                    (5) 

 
Ntrain=80, Rtrain=0.964, R

2
train=0.930, 

R
2

adj,train=0.927, Ftrain=335.457, DWtrain=1.893, 

Sigtrain=0.000, RMSE=2.383 
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Table 5. Correlation between the molecular descriptors (Eq. (1)) 

Pearson Correlation for Eth Collinearity Statistical 
Corrected 

model 

 HNar PCR EEig06d X4 X3sol ESpm14x HDcpx RDSQ X1v Tolerance VIF VIF VIF 

HNar 1 
-

0.276 
-0.035 

-

0.100 

-

0.017 
0.381 -0.217 0.793 

-

0.766 
0.038 26.465 - - 

PCR  1 -0.028 0.149 0.351 -0.380 0.367 0.005 
-

0.047 
0.562 1.780 1.308 - 

EEig06d   1 0.000 
-

0.042 
0.046 0.183 -0.110 0.070 0.696 1.436 1.427 1.2 

X4    1 0.278 -0.091 0.157 -0.080 
-

0.100 
0.202 4.959 - - 

X3sol     1 -0.408 0.289 0.157 
-

0.311 
0.156 6.422 - - 

ESpm14x      1 -0.781 -0.166 0.230 0.102 9.802 1.608 1.475 

HDcpx       1 0.176 
-

0.334 
0.040 24.941 8.202 - 

RDSQ        1 
-

0.958 
0.006 169.470 6.841 1.579 

X1v         1 0.003 292.944 - - 

 

The suitable linear model for prediction 

of the heat capacity (Equation 3) includes 

fourteen molecular descriptors (ESpm10d, 

RBF, MAXDN, GMTI, BIC1, X1A, Jhetv, 

S2K, ESpm14x, Ss, GMTIV, RHyDp, 

ESpm06x  and XMOD). From Table 7, the 

Pearson correlation between (RHyDp, 

XMOD) and (ESpm06x, ESpm14x) 

descriptors are close to unity, and VIF for 

these descriptors are bigger than 10 (see 

Table 6), therefore there is a linearity 

between these descriptors. After removing 

RHyDp from this model, and the next step 

ESpm06x, XMOD, RBF and Jhetv, we 

corrected Equation 3 as follows: 
 

Cv = 277.653 +0.201 (GMTIV) - 350.058 

(X1A)                                                      (6) 

 
Ntrain=80, Rtrain=0.965, R

2
train=0.931, 

R
2

adj,train=0.929, Ftrain=521.719, DWtrain=1.782, 

Sigtrain=0.000, RMSE=1.922 

 

Validation  
Validation is the important step in 

QSAR/QSPR modeling in order to ensure 

the model created is a good model or a 

poor model [27-29]. There are several 

techniques to approximate the quality and 

accuracy of the QSPR model [31]. 

In this section, for verification, validity 

of the regression models and the predictive 

ability and statistical significance of the 

QSPR models, internal validation and 

external validation technique was applied 

to made model by splitting of set of 

chemical compounds into a training set 

(80%) and a test set(20%)[30]. From the 

internal validation technique, the leave 

one- out cross-validation (LOOcv) method 

was used to validate the selected QSPR 

models; the value of Q
2
 LOO can be 

calculated as the following: 
 

     
∑     ̂    

 

∑     ̅  
    

     

   
                      

 

In the Equation (7), the notation i|i 

indicates that the quantity is predicted by a 

model estimated when the i-th sample was 

left out from the training set and PRESS is 

the sum of squares of the prediction errors 

and TSS represents the total sum of 

squares [31]. 

The Q
2
 LOO values of the thermal 

energy (Eth/kJ mol
-1

), heat capacity (Cv/J 

mol
-1

 K
-1

) and entropy(S/J mol
-1

 K
-1

) 

models (Equations (4-6)) were calculated 

as 0.978, 0.987 and 0.929, respectively. 

Statistical factors such as R, R
2
, R

2
adj, 

F, and RMSE of the best models 

(Equations (4-6)) for training and test sets 

of the heat capacity,(Cv/J mol
-1

K
-1

) 

entropy, (S/J mol
-1

K
-1

) and thermal energy, 

(Eth/kJ mol
-1

) are reported in Table 7. 
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Table 6. Correlation between the molecular descriptors (Eq. (3)) 

1 Pearson Correlation for  cv 
Collinearity 

Statistical 

 
ESpm1

0d 

RB

F 

MA

X 

GM

TI 

BI

C1 

X1

A 

Jhe

tv 

S2

K 

ESpm1

4x 
Ss 

GMT

IV 

RHy

Dp 

ESpm0

6x 

XMO

D 
VIF VIF 

ESpm1

0d 
1 

-

0.2

86 

0.00

8 

0.45

0 

-

0.15

5 

0.4

98 

0.47

7 

0.3

80 
0.647 

0.16

8 
0.352 0.463 0.345 0.456 

123.2

63 
------- 

RBF  1 
0.20

8 

0.20

7 

-

0.29

4 

0.1

55 

0.36

6 

0.5

58 
0.104 

0.61

5 
0.010 0.233 0.156 0.153 

40.73

7 

17.36

2 

MAX

DN 
  1 0 

-

0.40

1 

0.3

05 

0.13

5 

0.0

59 
0.231 

0.20

8 
0.001 0.060 0.297 0.103 3.263 2.528 

GMTI    1 
0.03

7 

0.0

23 

0.33

2 

0.0

99 
0.074 

0.47

7 
-0.542 

-

0.556 
0.105 0.187 

516.2

25 
------ 

BIC1     1 
0.3

52 

0.35

8 

0.2

96 
0.288 

0.16

9 
0.007 

-

0.186 
-0.210 0.011 8.802 ------ 

X1A      1 
0.30

6 

0.3

25 
0.806 

.0.2

75 
-0.145 

-

0.144 
0.836 0.143 

59.70

2 

15.05

7 

Jhetv       1 
0.0

72 
0.196 

0.11

6 
-0.126 

-

0.383 
-0.079 0.122 

31.61

1 

19.93

6 

S2K        1 0.184 
0.46

3 
-0.039 0.093 0.182 0.779 

124.2

16 

89.12

9 

ESpm1

4x 
        1 

0.10

0 
-0.037 

-

0.107 
-0.915 0.168 

540.9

84 
------ 

Ss          1 -0.613 
-

0.723 
0.046 0.048 

1070.

68 

386.0

81 

GMTI

V 
          1 0.526 -0.118 0.104 

590.4

08 

58.80

3 

RHyD

p 
           1 -0.142 0.943 

1457.

24 
------ 

ESpm0

6x 
            1 0.034 

696.5

31 

402.2

75 

XMO

D 
             1 

741.3

88 
----- 

 

Table 6. continued 

2 Pearson Correlation for   cv Collinearity Statistical  

 ESpm06x RBF MAXDN GMTIV Jhetv X1A S2K Ss VIF VIF VIF VIF 

ESpm06x 1 -0.071 0.304 -0.082 -0.566 0.655 0.526 -0.069 28.302 18.770 ----- ----- 

RBF  1 -0.106 0.782 0.717 -0.304 -0.597 -0.812 14.584 3.061 2.913 ----- 

MAXDN   1 -0.019 -0.070 0.274 0.514 -0.137 2.509 1.508 1.494 ----- 

GMTIV    1 0.652 -0.459 -0.538 -0.938 55.675 2.946 2.945 1.390 

Jhetv     1 -0.487 -0.531 -0.641 19.033 8.903 4.101 ----- 

X1A      1 0.424 0.416 12.689 9.267 4.396 1.390 

S2K       1 0.311 13.445 ------ ----- ----- 

Ss        1 120.60 -----  ------ ----- 

 

Table 7. Statistical parameters obtained by the BW- MLR model for the entropy, thermal energy and heat 

capacity for training and test sets (Eqs.(4)-(6)) 
 

Data set properties N R R2 R2
adj RMSE DW F sig 

training 
Cv 

J mol-1K-1 
80 0.965 0.931 0.929 1.922 1.782 521.719 0.000 

test 
Cv 

J mol-1K-1 
20 0.948 0.899 0.887 1.065 1.884 375.770 0.000 

training 
Eth 

kJ mol-1 
80 0.991 0.981 0.981 2.430 1.911 1337.423 0.000 

test 
Eth 

kJ mol-1 
20 0.997 0.994 0.993 3.249 1.996 883.491 0.000 

training 
S 

J mol-1K-1 
80 0.964 0.930 0.927 2.383 1.893 335.457 0.000 

test 
S 

J mol-1K-1 
20 0.975 0.951 0.942 1.282 1.953 103.423 0.000 
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Durbin-Watson Statistic 

The Durbin-Watson (DW) Statistic is a test 

for presence of autocorrelation in the 

residuals from a regression analysis. The 

DW test reports a test statistic, with a value 

from 0 to 4. A value near 2 indicates 

nonautocorrelation; a value toward 0 

indicates positive autocorrelation; and a 

value toward 4 indicates negative 

autocorrelation [32]. In our model, the 

Durbin-Watson values are near 2 (Table 

7); therefore, there is no autocorrelation. 

 

Residuals 

The residual is the difference between the 

experimental (observed) value of the 

dependent variable (y) and the calculated 

(predicted) value ( ̂) is called the residual. 

The residual of the BW-MLR calculated 

values of the entropy, thermal energy, and 

heat capacity were propagated in both 

sides of zero line that indicates no 

systematic error exists in the development 

of the BW- MLR models (see Figs 1-3).  

Figures (4-6) show the linear correlation 

between observed and predicted values of 

the entropy, thermal energy, and heat 

capacity obtained using Equations (4-6) 

respectively. 

 

Interpretation of the best descriptors 

As can be seen from Table 8, the four 

block of descriptors, namely, 2D matrix-

based descriptors (Har index), 

Connectivity (X1A and RDSQ indices), 

Topological(MAXDN index) and Edge 

adjacency indices (EEig06d and ESpm14x 

indices) are useful to predict the mentioned 

properties than the other block of 

descriptors. This means that these 

descriptors have more effect on the Cv, S 

and Eth of alkenes 2D Matrix-based 

descriptors are calculated based on the 

elements of so-called graph-theoretical 

matrices [33] by using several algebraic 

operations. The Balaban-like indices 

inferred from the adjacency matrix [34, 35] 

are important examples of this category. 

Connectivity indices are calculated 

from the vertex-degree of a molecular 

graph [36, 37]. The Randić index [38] is a 

prominent example of this category. 

Topological indices are defined by 

various structural features into account, 

e.g., distances and eigenvalues. The term 

topological index has been firstly coined 

by Hosoya [39].  

Edge adjacency indices are based on the 

edge adjacency matrix of a graph. The 

resulting descriptor-value is the sum of all 

edge entries of the adjacency matrix of a 

graph. Balaban developed several indices 

by using graph-theoretical matrices [40]. 

 

 

 

 
Fig. 1. Residuals plotted against the observed heat capacity (Cv/J mol

-1
K

-1
)for training and test sets of alkenes. 
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Fig. 2. Residuals plotted against the observed entropy (S/J mol
-1

K
-1

) for training and test sets of 100 alkenes. 
 

 
 

Fig. 3. Residuals plotted against the observed thermal energy (Eth/kJ mol
-1

) for training and test sets of 100 

alkenes. 

 
 

Fig. 4. Comparison between predicted and experimental values of the heat capacity (Cv/J mol
-1

K
-1

 )of 100 

alkenes using BW-MLR method. 

 

 
Fig. 5. Comparison between predicted and experimental values of the entropy(S/J mol

-1
K

-1
) of 100 alkenes using 

BW-MLR method. 
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Fig. 6. Comparison between predicted and experimental values of the thermal energy (Eth/kJ mol
-1

) of 100 

alkenes using BW-MLR method. 

 
Table8. List of the best selected molecular descriptors that appear in the final models 

 

N Property Symbol description Block description 

80 Cv 

X1A average connectivity index of order 1 Connectivity indices 

GMTIV 
Gutman Molecular Topological Index by valence 

vertex degrees 
Topological indices 

80 S 

ESpm10d Spectral moment 10 from edge adj. matrix Edge adjacency indices 

MAXDN maximal electrotopological negative variation Topological indices 

Har Reciprocal squared distance matrix (H2) 
2D matrix-based 

descriptors 

80 Eth 

EEig06d Eigenvalues Edge adjacency indices 

ESpm14x 
Spectral moment 14 from edge adj. matrix weighted by 

edge degrees 
Edge adjacency indices 

RDSQ reciprocal distance sum inverse Randic-like index Connectivity indices 

 

CONCLUSION

QSPR studies are mathematical 

relationships between the properties 

studied and their molecular descriptors. 

In the present study, QSPR models have 

been developed to predict the thermal 

energy (Eth/kJ mol
-1

), heat capacity 

(Cv/Jmol
-1

K
-1

) and entropy(S/J mol
-1

K
-1

) 

of 100 alkenes. These properties were 

obtained from quantum-chemistry 

technique at the Hartree-Fock (HF) level 

using the ab initio 6-31G
*
 basis sets. The 

Backward stepwise regression and Genetic 

Algorithm (GA) technique was applied to 

select the most important molecular 

descriptors and BW-MLR method was 

used to build QSPR models for the 

prediction of the studied properties. 

Molecular descriptors calculated with 

Dragon software. The statistical 

parameters such as the squared correlation 

coefficient (R
2
), adjusted correlation 

coefficient (R
2

adj), Fisher ratio (F) and 

Root Mean Square Error (RMSE) have 

been used to evaluate the quality and 

predictive ability of proposed BW-MLR 

models. The leave one-out cross-validation 

(LOOcv) and external validation methods 

were used to validate the selected QSPR 

models. The validation results suggest that 

the models possess good predictive ability 

and robustness. The BW-MLR results 

indicated that the statistical coefficients are 

very satisfactory and there is suitable linear 

relationship between the quantum 

properties and molecular descriptors of 

100 alkenes.  
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