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Abstract 

We derive closed formulas for the prices of European options and 
their sensitivities when the underlying asset follows a double-exponential 
jump diffusion model, as considered by S. Kou in 2002. This author has 
derived the option price by making use of double series where each term 
requires the computation of a sequence of special functions, such that 
the implementation remains difficult for a large part of financial users. Our 
present result provides an alternative to the Kou's formula easily to 
implement, even for the Excel/VBA environment. 
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Introduction 

The Gaussian hypothesis for financial returns is well-known for a long 
time to be a convenient assumption when the period considered for 
computation is large enough. However such a hypothesis should be 
rejected for high or medium frequencies. To better capture and exploit 
asset return patterns ( as tail thicker than a normal distribution and time 
dependence), academic searchers and some pioneering practitioners 
model now the asset returns as following Levy processes. The classical 
arithmetic Brownian motion belongs to the large class of Levy processes 
which also includes the jump diffusion and Generalized Hyperbolic 
models (Variance Gamma, CGMY, . . . ). 

Merton [Me; 1976] has introduced for the first-time the jump diffusion 
in order to extend the Black and Scholes option pricing framework to 
include jumps occurrences. He has obtained explicit solution for option 
prices in term of series expansion when the jumps follow a Gaussian 
distribution. Later Kou [Ko; 2002] has also derived the European option 
price under a jump diffusion model associated to a double exponential 
distribution. The solution found by this last author is however little-bit 
difficult to implement for various users, as it is given in term of tail 
distribution which requires to value a double-series, where each term 
involves the computation of a sequence of some special functions. 

Despite the complexities around the option pricing, as seen from [Me; 
1976] and [Ko; 2002], the class of jump diffusion has been considered 
extensively now in theoretical and practical finance, probably for its 
simplicity and flexibility. As reported in a recent paper of Quittard-Pinon 
and Randrianarivony [Qu-Ra;2007], the solutions to pricing and hedging 
problems related to geometric Levy processes are rarely given in closed 
form. Very often the results are obtained through Monte-Carlo simulations 
or by numerical solutions to Partial-Integro-Differential-Equation (PIDE) or 
by the use of Fourier Analysis. These authors in [Qu-Ra;2007] has 
obtained an efficient method d through the Fast Fourier Transform (FFT) 
to implement the pricing of European options when the underlying asset 
is modeled by the process as considered by Kou and its extension. 
Recently Dia [Di; 2007] has been obtained European option price and the 
corresponding sensitivities in term of explicit Fourier series. In contrast to 
the Fourier transform based option pricing as seen in [Qu-Ra;2007], the 
formulas found by Dia involve only working with real numbers and are 
model independent in the sense that their structure remains unchanged 
for any payoff and any pricing model unlike existing pricing formulas. 

Our first contribution in this paper is to derive a closed formula for a 
vanilla European option when the underlying asset follows a double-
exponential jump diffusion models as considered first by Kou [Ko; 2002] 
and also recently by Quittard-Pinon& Randrianarivony [Qu-Ra;2007]. The 
option price we find here is given in term of a (real) Fourier integral which 
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may be easily computed by any elementary quadrature integration 
method d, since the integrand is a smooth function (non singularity at 
zero and very fast decrease at infinity). The explicit formula obtained by 
Dia [Di; 2007], given in term of Fourier series, requires some finite 
truncation for numerical computation. However, the right order of 
truncation for a given error approximation is not well carried. With the 
integral approach, as is presented in this paper, the question of integral 
truncation arises. Here we are able to accurately estimate the error 
approximation when replacing the whole integral by an integral over a 
finite interval, as it is required in practical calculation. Since no Fourier 
Transform or FFT is needed, then the computation can be just 
implemented on VBA/Excel for which many practitioners in finance are 
well-familiarized. The execution time is noticeable, because the pricing of 
options with 5 00 different strikes requires around 2 seconds with a 
machine equipped with Intel Core, processor running at 2 Ghz and 2 Go 
of memory. 

Our second contribution here is to provide explicit formulas for the 
option sensitivities which are also easy to implement. Each Greek 
parameter is obtained by performing a derivative of the option price 
formula with respect to the variable corresponding to the sensitivity under 
consideration. 

Our price formula is obtained by exploring an idea by A. Lewis 
[Le;2001] related to option pricing via the generalized Fourier transform. 
The main point of our approach relies on making a fine analysis of the 
characteristic function associated to the log-asset process. The closed 
formulas, either for the option price or its sensitivities, found in this work 
may be extended for general jump diffusion (as we will perform in a 
further work). The finding in the present paper would give the incentive to 
make use of double exponential jump diffusion models as an interesting 
alternative to the (limited) Black and Scholes pricing used by a large part 
of academics and practitioners since the seventies. 

The well-known pioneering option pricing results by Merton [Me; 1976] 
and Kou [Ko; 2002] are recalled in Section 2. We put here the emphasis 
on the implementation of these results. 

For shortness the results related to Fourier transform as those found 
in [Di] and [Qu-Ra] are not reported here. Then we present, in Section 3, 
our main results about the option price and sensitivities in the case of a 
double exponential jump-diffusion mo del as considered by Kou. It 
appears here that our formulas are easy to perform in comparison of the 
other existing results [Me; 1976], [Ko; 2002], [Qu-Ra; 2007] and [Di; 
2007]. In section 4, we will examine and solve the issue linked to the 
practical implementation of our formulas. Then we move in section 5 to 
some numerical examples, whose the corresponding tables will be 
displayed in the annex part. Our conclusion is given in section 6. Finally 
in section 8, which is the annex part, we present the ideas about the 
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proofs of our results. For shortness the details of these last are not 
presented here but the willing reader may consult them, together with the 
MatLab co des, in the web site: www.ssrn.com.  
 
2 Known results and notations 
2.1 The Merton and Kou option pricing formulas 

Under the objective probability measure p, the financial asset price St 
is assumed to follow the jump diffusion process defined by the stochastic 
differential equation 
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be seen that necessarily St(·) takes the form 
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Where 

( )[ ]1)·(exp −≡ tJEk  
 

Merton [Me] has considered the case where J1(·) follows a normal law 
with mean µJ and variance 2

Jσ , with 0< Jσ . In the sequel we refer this 
case as the MJD (Merton-Jump- Diffusion) model. A quasi explicit 
solution for options prices in a series expansion, due to Merton [Me; 
1976], is available and states that 
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The Black-Scholes price (4) is recognized as given by closed-formula 

since it is just defined from the Gaussian CDF (5) whose an 
approximated value can be obtained by standard numerical integration 
(as the quadrature approach for instance) and implemented in usual 
softwares as Excel and MatLab. The Merton call-price Price_Call_MJD, 
as defined in (3), is more involved than the Black-Scholes price since it 
requires the valuation of a series involving infinite terms of Black-Scholes 
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prices. In practical computation, we are just limited to consider a finite 
number of terms which implies for us to take care of the precision related 
to the approximated price calculated. This point seems not clarified in 
various literature making reference to the Merton price (3). 

The call delta and gamma may be obtained by computing formally the 
derivatives from the price Price_Call_MJD, as defined in (3), however 
the differentiation deserves some justification, particularly for the vega, 
vanna and volga sensitivities. Moreover, in practical calculations, the term 
orders required for the truncations of the derivatives expressions are not 
so clear. 

S. Kou [Kou; 2002] has considered also the option pricing when the 
underlying asset follows the jump diffusion process (2) in the case where 
the jump J1(·) follows an asymmetric double exponential distribution with 
the density 
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distribution is displayed in the annex part. It is written in term of double 
series where each term requires the computation of a sequence of 
special function, such that the code implementation is a little bit 
complicated in comparison with the Merton price Price_Call_MJD. 

Computations of the call-option sensitivities from the price 
Price_Call_KJD, as written in (6), are not obvious. So the delta and 
gamma are derived in S. Kou, G. Petrella and H. Wang [Ko-Pe-Wa; 2005] 
by making use of the Laplace transform. 

From now it is assumed that the current time is 0 and we consider a 
call-option with the strike price K, time-to-maturity T and written on asset 
modeled by a sto chastic process as given in (2). Let us denote by 
Price_Call_KJD the call price under the parameter Θ , with 

),,,( 21 pλλλ=Θ . Such a price also depends on the values of T , S, K, 
σ  , r, q and Θ . To reject such dependence we will write  

 
Price_Call_KJD ≡   Price_Call_KJD(T , S, K , σ  , r, q, Θ ). 

 
The right notation would be Price_Call_KJD (0, T, S, K, σ , r, q, Θ ) if 
we would like to emphasize that it represents the present time 0 price of 
such a call. By the fundamental asset pricing theory, one has 
 

(7)  
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For a given call-option, the determining variables are the spot level S and 
the volatility σ . 
Therefore we can also assume the existence of some regular two-
variables function C such that  
 

C(S,σ )=Price_Call_KJD(T, S, K, σ , r, q, Θ ) 
 

Recall that the sensitivities of the call-price with respect to these variables 
S and σ  are given by the following expressions: 
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Delta_Call_KJD(T, S, K, σ , r, q, Θ )
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It may be noted here that we have not introduced the call-price sensitivity 
with respect to the passage of time, as is often the case in financial literature. 
Indeed as is seen in [Ra; 2009], the effect of a time-passage s, with 0 < s < T 
is exactly given by 
 
Price_Call_KJD(T-s, S, K, σ , r, q, Θ ) - Price_Call_KJD(T, S, K, σ , r, 

q, Θ ), 
 

So that for the derivative hedging viewpoint the main issue is to 
determine the sensitivities with respect to the spot and volatility valued at 
the point (T - s, S, K, σ  , r, q, Θ ). Except for the Speed case, here we 
limit our computations to the case of second order sensitivities. As 
considered in [Ra; 2009], when considering a constant volatility, the 
knowledge of the speed may be useful in controlling the hedging-error. 
 
3 Main Results 
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In this section, we consider the Kou's framework Jump diffusion and 
provide the alternative pricing and sensitivities formulas for the results 
obtained in [Ko; 2002], [Qu-Ra; 2007] and [Di; 2007]. 
Proposition 1 (call price) The price of the cal l is given by 
 

Price_Call_KJD ≡Price_Call_KJD(T, S, K, pqr ,,,,,, 21 λλλσ ) 
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the call-put parity relation asserts that the difference between the price 

of a call and the corresponding put with the same strike K and time-to-
maturity T is given by exp[-qT ]S- Kexp[-rT ]. As a consequence the price 
of the put is given by 
 

Price_Call_KJD ≡Price_Call_KJD(T, S, K, pqr ,,,,,, 21 λλλσ ) 
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Proposition 2 (delta call) the delta of the cal l is given by 
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with ),,,,;( 210 pTvg λλλ  and ),(0 xvh  are defined respectively as in 
(13) and (16). 
Using this result and identity (18), it appears that the delta of the put is 
given by  
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Proposition 3 (gamma call) the gamma of the call is given by 
Gamma_Call_KJD ≡Gamma_Call_KJD(T, S, K, pqr ,,,,,, 21 λλλσ ) 
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12 /   Closed formulas for the price and sensitivities of European options … 

 
Vol.1 / No.1 / winter 2011 

It may be noted that 
Gamma_Call_KJD                                 (28)≡Gamma_Call_KJD 

 
Proposition 4 (speed call) the speed of the call is given by 

Speed_Call_KJD ≡Speed_Call_KJD(T, S, K, pqr ,,,,,, 21 λλλσ ) 
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with ),,,,;( 212 pTvg λλλ  is defined respectively as in (27). 
It may be noted that 

Speed_Put_KJD                                    (33)≡Speed_Put_KJD  
 
Proposition 5 (vega call) The vega of the call is given by 
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(36)          ),,,,;()( 2124 pTvgvg λλλ=  
  

with ),(0 xvf  and ),,,,;( 212 pTvg λλλ  are defined as in (15). And (27) 
respectively. 
Clearly it appears that 

(37)   Vega_Call_KJD = Vega_Call_KJD 
 
Proposition 6 (Volga call) the Volga of the call is given by 
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with ),(0 xvf  and ),,,,;( 212 pTvg λλλ  are defined as in (15). And (27) 
respectively. 
It may be noted that 
 

(41)   Vega_Call_KJD = Vega_Call_KJD  
 

Proposition 7 (Vanna call) The vanna of the call is given by 
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with ),(1 xvf  and ),,,,;( 211 pTvg λλλ  are defined as in (15). And (27) 
respectively. 
It is clear that 
 

(45)   Vanna_Call_KJD = Vanna_Call_KJD 
 

All of these Propositions may be seen as particular cases of the 
general results we are now presenting in the next Section. 
 
4 On numerical computations 
4.1 Approximated formulas 

To perform the call-price or its sensitivities, from the formulas stated in 
the previous section, we are reduced to compute (improper integrals) as 
 

dvTvvgxvfxI ]
2
1exp[)(),(),( 22

0
σσ −= ∫

∞
 

 
Actually, for the practical viewpoint, we can only do numerical 

computation of proper integral over finite interval as 
 

dvTvvgxvfMxI
M

]
2
1exp[)(),(),,( 22

0
σσ −= ∫  

 
for some nonnegative real number M sufficiently large in order that the 

remaining integral term dvTvvgxvf
M

]
2
1exp[)(),( 22σ−∫

∞
 is small 

enough and can be neglected. 
The approximated values of Price_Call, Delta_Call, Gamma_Call, 

Speed_Call, Vega_Call, Volga_Call and Vanna_Call are de_ned 
respectively by 
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and  
(52)
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8
1exp[)( 6

2
1

2
2M σσσσ

−
−=Vanna_Call  

We introduce the approximation errors 
 

Ml_Price_CalPrice_Call e_Callerror_Pric = M  

 

Ml_Delta_CalDelta_Call _Callrror_Delta = e M  

 

Ml_Gamma_CalGamma_Call a_Callerror_Gamm = M  

 

Ml_Speed_CalSpeed_Call d_Callerror_Spee = M  
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MVega_CallVega_Call_ _Callerror_Vega = M  

 

Ml_Volga_CalVolga_Call a_Callerror_Volg = M  

and 

Ml_Vanna_CalVanna_Call a_Callerror_Vann = M  

 
The question, when making use of approximations 

MPrice_Call , MM ,Gamma_CallDelta_Call ,… and so on, is 
reduced to determine the nonnegative real M such that the errors 

,... l, l, MMM a_Calerror_Gamma_Calerror_Delte_Callerror_Pric
 do not exceed a given size the user can tolerate. Of course we should be 
aware that the computation of each definite integral 

dvTvvgxvfMxI
M

]
2
1exp[)(),(),,( 22

0
σσ −= ∫  itself suffers from usual 

numerical error. For shortness, let us introduce the expression 
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Proposition 8 For the ,, MM a_Callerror_Delte_Callerror_Pric  

∞
Aand,Ma_Callerror_Gamm  as defined above then we have the 

following estimates 
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To benefit from this result, we have to fine (easily computable) high 
bounds for these infinite integrals involved from (54) to (60). To this end, 
the following result is available. 
Proposition 9 Let 0<M. Then we have 
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Each estimates in this Last Proposition is not sharp, as we may see in 

its pro of, in the sense that the constant π may be replaced by 
M
1

. 

However, for large values of M, the most important term is 

⎥⎦
⎤

⎢⎣
⎡− 22

4
1exp TMσ  which decreases very fast to 0 rather than 

M
1

. We 

keep the constant π to ease the determination of explicit values of M in 
the sequel. 
Proposition 8 and 9 are useful tools for practical computations of the call 
price and its sensitivities. For instance to get Price_Call from its 
approximate value Price_CallM for M such that the absolute error 
error_Price_CallM remains under some given nonnegative 

1010( −=εε ax  for example), then is sufficient to choose the real Ma 
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4.2 Numerical Value of M 
We consider the price error approximation in the Kou's setting where S = 100, 
K = 100, 
r = 0.05, q = 0, σ   = 0.16, λ   = 1, 1λ  = 10, 2λ = 5, p = 0.4 and  ε  = 10 12. 
Therefore one has  

( )MSISTASA ,,ln]
8
1exp[ 0

2
1

2
21M σσ−−≈Price_Call  

 
and the value of M depends on the time-to-maturity T as we can 

observe from the following table 
 

T 0.25 0.50 0.75 1 
M 102 73 60 52 

 
4.3 Computation execution time 
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The Fast Fourier Transform pricing, as considered by various authors as 
in [Qu-Ra] is seen to be computationally fast when willing to generates a 
matrix of prices with different strikes. 
However this approach suffers from accuracy. Here our formulas involve 
the computation of Fourier integral, and we are able to have a good 
control on the calculation error, because of our Propositions 8 and 9. 
Moreover the computation execution time is also very fast if we just have 
to deal with few options together. As an illustration, we consider the price 
error approximation in the Kou's setting with S = 100, r = 0.05, q = 0, σ  = 
0.16, λ  = 1, 1λ = 10, 2λ =5, p=0.4 and 1210−=ε . Making calculation 
with a machine equipped with Intel (R) Core (TM) and processor running 
at 2.00 GHZ and 2.00 Go of memory, the following result has been 
obtained 
 
 
 
 
 
 

nb of strikes Execution time (second) 
2 0.0198 

40 0.1878 
100 0.4605 
500 2.0135 

5000 22.0080 
 
5 Numerical examples 
As an illustration of our results, we will focus on the setting of Kou with S 
= 100, r = 0.05, q = 0, σ  = 0.16, λ  = 1, 1λ = 10, 2λ =5 and p = 0.4. The 
results obtained are summarized over table 8.3.1 to table 8.3.6 presented 
in the Annex part. 
 
6 Conclusion 

1. In this paper we have derived a closed formula for a vanilla 
European option when the underlying asset follows a double 
exponential jump diffusion models, as considered first by Kou [Ko; 
2002] and also recently by Quittard-Pinon & Randrianarivony [Qu-
Ra;2007]. The option price we obtain is given in term of a ( real ) 
Fourier integral which may be easily computed by any elementary 
quadrature integration method, since the integrand is a smooth 
function (non singularity at zero and very fast decrease at infinity). 
Moreover we are able to accurately estimate the error 
approximation resulting from replacing the whole integral by an 
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integral over a finite interval. Since no Fourier Transform or FFT is 
needed, then the computation can be just implemented on 
VBA/Excel for which many practitioners in finance are well-
familiarized. Our other contribution is about providing explicit 
formulas for the option sensitivities which are also easy to 
implement by a large part of practitioners. The closed formulas, 
either for the option price or its sensitivities, found in this work 
would be a new impetus on the use of double exponential jump 
diffusion model as an interesting alternative to the (limited) Black 
and Scholes pricing used by a large part of academics and 
practitioners in finance since the seventies. 

 
2. Our present work may be extended to the pricing of European 

option when the underlying asset belongs a general class of jump 
diffusion models. We hope to perform such an investigation for a 
near future investigation. 

 
3. The work in this paper is focused only on the price and sensitivities 

for vanilla European option under jump diffusion models. However 
it should be noted that in exchange markets most of available 
options are of American-style. Not only the results obtained in this 
paper are interesting for their own-sake but they may be very 
useful since, the pricing of an American-style option may be 
reduced to the pricing of suitable European call options as is 
shown and performed in [La-Fu,Ma,Li,Zh;2005]. 
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8 Annex 
8.1 The Kou's pricing formulas 
The full expression of ),;,,,,( 21 τλλλσµγ x  on which the Kou's formula 
is as follows: 
 

=),;,,,,( 21 τλλλσµγ x  
 

knk
k

n

kn
n PxI ,1111

11

2
1

,1,;)(
2

)(
2
1exp

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−

⎥⎦
⎤

⎢⎣
⎡

−
=

∞

=
∑∑ τσλ

τσ
λµτλτσπ

πτσ

τσλ

 

knk
k

n

kn
n QxI ,2212

11

2
1

,1,;)(
2

)(
2
1exp

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

⎥⎦
⎤

⎢⎣
⎡

+ −
=

∞

=
∑∑ τσλ

τσ
λµτλτσπ

πτσ

τσλ

 
 

(67)      

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−Φ+

τσ
µτπ x

0  

 
n

n n
)(

!
1]exp[ λτλτπ −=  

Here n
nn

n
nn pQpP )1(, ,, −==  and for }1,1{ −∈ nk  

 

∑
−

=

−

−−

−
−− −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
1

21

2

21

1
1, )1(

n

ki

ini
inki

i
n

ki
knkn ppCCP

λλ
λ

λλ
λ

 

 



24 /   Closed formulas for the price and sensitivities of European options … 

 
Vol.1 / No.1 / winter 2011 

∑
−

=

−

−−

−
−− −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
1

21

2

21

1
1, )1(

n

ki

iin
kiin

i
n

ki
knkn ppCCQ

λλ
λ

λλ
λ

 

 
The sequence of function Im is defined, for 0,0 ≠< αβ  and for all 

m≤−1  
 

( )δβ
α
β

α

α
δβα −

⎥⎦
⎤

⎢⎣
⎡

−=
−

=
∑ cHh

c
cI i

imm

i
m

0

)(
exp

),,;(  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

+

β
αδβ

β
α

β
αδ

β
π

α
β c

m

2

21

2
exp2

 

 
And for 0,0 << αβ  and for all m≤−1  

( )δβ
α
β

α

α
δβα −

⎥⎦
⎤

⎢⎣
⎡

−=
−

=
∑ cHh

c
cI i

imm

i
m

0

)(
exp

),,;(  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

+

β
αδβ

β
α

β
αδ

β
π

α
β c

m

2

21

2
exp2

 

 
Here Hh is defined  
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8.2 Some words about Proofs 
For shortness we do give here the proof details, but promise to post them 
together with the MatLab codes in the web site www.ssrn.com. 
Proposition 1 may be obtained from the following formula due to A. 
Lewis [Le;2001] (in p.14) 
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Then the full computation of );
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( TXiu −φ  leads to the result stated in 

Proposition 1. 
Proofs of Propositions 2 to 7 are based on derivation of the main price 

formula stated in Proposition 1. The formal derivations are clear but the 
main key and justification lie on the assumption that 
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this assumption (71) may be established by using facts as stated in 

Propositions 8 and 9. 
Propositions 8 and 9 are technical results which come from the fast 

decrease of the exponential term in the integral defined in (68). 
8.3 Tables 

in the sequel, we will focuse on the setting of Kou with S = 100, r = 
0.05, 
q = 0, σ  = 0.16, λ  = 1,  1λ = 10, 2λ =5 and p = 0.4. 
 
 
 
 
 
8.3.1  Prices of the call and put 

strike price call Kou price call BS price put Kou price put BS 
90 14.8119 12.8767 2.5898 0.6546 
92 13.2764 11.2372 3.0049 0.9657 
94 11.8140 9.6971 3.4931 1.3763 
96 10.4346 8.2704 4.0644 1.9002 
98 9.1473 6.9683 4.7277 2.5487 

100 7.9594 5.7981 5.4904 3.3291 
102 6.8761 4.7634 6.3577 4.2450 
104 5.8997 3.8631 7.3320 5.2953 
106 5.0304 3.0927 8.4132 6.4755 
108 4.2653 2.4441 9.5988 7.7776 
110 3.5996 1.9069 10.8837 9.1909 

 
8.3.2  Delta of the call and put 

strike delta call Kou delta call BS delta put Kou delta put BS 
90 0.8540 0.8866 -0.1460 -0.1134 
92 0.8231 0.8448 -0.1769 -0.1552 
94 0.7867 0.7952 -0.2133 -0.2048 
96 0.7450 0.7384 -0.2550 -0.2616 
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98 0.6984 0.6758 -0.3016 -0.3242 
100 0.6477 0.6093 -0.3523 -0.3907 
102 0.5941 0.5408 -0.4059 -0.4592 
104 0.5387 0.4724 -0.4613 -0.5276 
106 0.4831 0.4061 -0.5169 -0.5939 
108 0.4284 0.3436 -0.5716 -0.6564 
110 0.3760 0.2861 -0.6240 -0.7139 

 
8.3.3  Gamma of the call and put 

strike Gamma Kou Gamma BS 
90 0.0127 0.0170 
92 0.0155 0.0211 
94 0.0184 0.0251 
96 0.0212 0.0288 
98 0.0239 0.0318 

100 0.0262 0.0339 
102 0.0279 0.0351 
104 0.0290 0.0352 
106 0.0293 0.0343 
108 0.0290 0.0325 
110 0.0281 0.0301 

8.3.4  Vega of the call and put 
strike Vega Kou Vega BS 

90 10.1579 13.5862 
92 12.3708 16.8612 
94 14.6953 20.0816 
96 16.9973 23.0095 
98 19.1286 25.4227 

100 20.9453 27.1437 
102 22.3254 28.0617 
104 23.1836 28.1422 
106 23.4792 27.4251 
108 23.2181 26.0124 
110 22.4475 24.0493 

 
8.3.5  Vanna and Vega of the call and put 

strike Vanna Kou Volga BS 
90 -0.8521 99.0557 
92 -0.9293 96.6260 
94 -0.9516 88.0844 
96 -0.9060 74.7078 
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98 -0.7871 58.7490 
100 -0.5986 42.9829 
102 -0.3530 30.1370 
104 -0.0696 22.3555 
106 0.2281 20.8259 
108 0.5167 25.6366 
110 0.7750 35.8689 

 
8.3.6  Speed of the call and put 
 
 
 
 
 
 
 
 
 
 
 
 
 

strike Speed BS 
90 -0.0016 
92 -0.0015 
94 -0.0016 
96 -0.0016 
98 -0.0015 

100 -0.0013 
102 -0.0010 
104 -0.0007 
106 -0.0003 
108 0.0001 
110 0.0004 




