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Abstract 

In this paper, we propose a feasible interior-point algorithm for mixed symmetric cone linear 

complementarity problems which are a general class of complementarity problems. The 

symmetrization of the search directions used in this paper is based on Nesterov and Todd 

scaling scheme. By using Euclidean Jordan algebra, we prove the convergence analysis of the 

proposed algorithm and show that the complexity bound of the algorithm matches the 

currently best known iteration bound for feasible interior-point methods. 
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1. Introduction 

Let (𝒰,∘) and (𝒱,∘) be Euclidean Jordan 

algebras (EJAs) with dimensions m and n 

and ranks r1and r2 equipped with the 

standard inner product ⟨x, s⟩ = 𝐭𝐫 (x ∘ s) 

and 𝒦 be the symmetric cone 

corresponding to (𝒱,∘). Furthermore, 

suppose that 𝒥 = 𝒰 × 𝒱 is the Cartesian 

EJA with dimension m + n and rank 

r1 + r2. 

Let M: = [
M11 M12

M21 M22
] be an (m + n)-

matrix written as a 2 × 2 block matrix, 

where M11 and M22 are respectively n × n 

and m × m matrices (so, M12 and M21 are 

n × m and m × n matrices). The mixed 

symmetric cone linear complementarity 

problem (MSLCP) is the problem of 

computation a vector triple (x, s, y) ∈ 𝒦 ×

𝒦 × 𝒰 such that  

(s
0
) = M (x

y
) + (q1

q2
) ,       x ⋄ s = 0,         (1) 

where (q1

q2
) ∈ 𝒥 and M is a Cartesian 

positive semidefinite matrix. That is, for 

all vectors u ∈ 𝒥, ⟨u, Mu⟩ ≥ 0. Clearly, 

setting m = 0, the MSLCP reduced to 

standard symmetric cone linear 

complementarity problem (SLCP).  

The MSLCP is a certain kind of 

mathematical problems, that has become 

quite important in recent history, due to the 

discoveries that many different kinds of 

problems may be formulated as an 

MSLCP, and to the development of stable 

and efficient numerical solution 

procedures. The MSLCP includes many 

various classes of mathematical problems. 

It includes symmetric cone linear 

optimization (SCLO), convex quadratic 

symmetric cone programming (CQSCP), 

semidefinite optimization (SDO), 

symmetric cone nonlinear 

complementarity problem (SCNCP) and 

SLCP. Considerable research effort was 

devoted by mathematicians and engineers 

to solve this problem. Among them, 

feasible and infeasible interior-point 

methods (IPMs) are one of the most 

efficient numerical approaches for solving 

this class of optimization problems. 

A close look at the IPM literature tells us 

that the first IPM for linear 

complementarity problems (LCPs) was 

due to Kojima, Mizuno and Yoshise [11]. 

Potra [3] presented an infeasible IPM for 

LCPs with quadratic convergence and 

O(nL) complexity. The primal-dual full-

Newton step infeasible IPM for linear 

optimization (LO) was first analyzed by 

Roos [1]. The Roos's algorithm was 

extended by Mansouri et al. [8,9] to SDO 

and LCP. Faybusovich [12] made the first 

attempt to generalize IPMs to SCLO and 

SCLCP using the EJAs and associated 
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symmetric cones. Potra [4] proposed an 

infeasible corrector-predictor IPM for the 

monotone SCLCP. Gu et al. [8] and 

Zangiabadi et al. [18] extended the Roos's 

idea to SCLP and second-order cone 

optimization (SOCO) by using full 

Nesterov-Todd (NT) direction as search 

directions. 

In all of mentioned works, various 

proximity measures have been used by 

different authors to measure closeness of 

generated point from the optimal solution 

of underling problem. A homogeneous 

model for solving monotone mixed 

complementarity problems over symmetric 

cones has been presented by Lin et al. [15]. 

Wang et al. [7] proposed a weighted-path-

following interior-point algorithm based 

on Darvay's new search direction [17] for 

LO to monotone mixed LCP (MLCP). 

Recently, Zhang et al. [16] simplified the 

complexity analysis of full-Newton step 

infeasible IPM for SDO based on using a 

new proximity measure. The goal of this 

paper is to use the Zhang's proximity 

measure on SDO to present a feasible IPM 

for MSLCPs which are a more general 

class of complementarity problems. 

The paper is organized as follows. In 

Section 2, some concepts and results on 

EJAs and symmetric cones which are 

required in our analysis are listed. Section 

3 describes the main idea of IPMs and 

presents a feasible IPM for solving 

MSLCPs. The convergence analysis of the 

proposed algorithm which is the main part 

of this paper is presented in Section 4. 

Subsection 4.2 is devoted to obtain the 

complexity bound of the proposed 

algorithm. Finally, some conclusions and 

remarks follow in Section 5. 

 

2. Preliminaries 

In this section, we briefly review and 

introduce Euclidean Jordan algebra (EJA) 

as well as some of its basic properties. The  

EJA (𝒜,∘) is a finite dimensional vector 

space over ℝ equipped with the bilinear 

map ∘: (x, y) → x ∘ y ∈ 𝒜 and the standard 

inner product ⟨x, s⟩ = 𝐭𝐫 (x ∘ s) while the 

Cartesian EJA is a Cartesian product of a 

finite number (such as N) of classical EJAs 

with the canonical inner ⟨x, s⟩ =

∑ ⟨x(i), s(i)⟩N
i=1 . The related cone of squares 

corresponding with (𝒜,∘) is called the 

classical symmetric cone 𝒦. For each 

x ∈ 𝒜, L(x)y: = x ∘ y and P(x): =

2L(x)2 − L(x2), where L(x)2: = L(x)L(x), 

denote the linear and quadratic 

representation of 𝒜, respectively. 

A Jordan algebra has an identity element, 

if there exist a unique element e ∈ 𝒜  such 

that x ∘ e = e ∘ x = x for all x ∈ 𝒜. an 

element c ∈ 𝒜 is said to be idempotent if 
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c2 = c. An idempotent c is primitive if it is 

nonzero and cannot be expressed by sum 

of two other nonzero idempotents. A set 

idempotents {c1, c2, … , ck} is called a 

Jordan frame if ci ∘  cj ≠ 0 for any i ≠ j 

and ∑ ci = e.N
i=1  For any x ∈ 𝒜 let r the 

smallest positive integer such that 

{e, x, x2 , … , xr} is linearly dependent, r is 

called the degree of x and is denoted by 

deg(x). The rank of 𝒜, denoted by 

rank(𝒜), is defined as the maximum of 

deg(x) over all x ∈ 𝒜. 

The spectral decomposition theorem 

(Theorem III.1.2 of [2]) of an Euclidean 

Jordan algebra 𝒜 states that for any x ∈ 𝒜 

there exists a Jordan frame {c1, c2, … , ck} 

and real numbers  {λ1 , λ2, … , λk} (the 

eigenvalues of x) such that x =

∑ λi(x)ci.
r
i=1  For any x ∈ 𝒜, the norm 

induced by the standard inner product is 

named as the Frobenius norm, which is 

given by ‖x‖F ≔ √⟨x, x⟩. Some other 

norms related to absolute value of 

eigenvalues of x, namely norm 1 and norm 

infinity, defined as ‖x‖1 ≔ ∑ |λi(x)|r
i=1  

and ‖x‖∞ ≔ max|λi(x)|. 

Here, we list some key lemmas which are 

required in our analysis. 

 

Lemma 2.1 (Lemma 3.2 in [12]) Let int𝒦 

be the interior of 𝒦. For x, s ∈ int𝒦  

there exists a unique w ∈ int𝒦 such that 

x = P(w)s. Moreover, 

w = P (x
1

2) (P (x
1

2) s)

−1

2

= [P (s
−1

2 ) (P (s
1

2) x)

1

2
]. 

The point w is called the scaling point of x 

and s. 

 

Lemma 2.2 (Lemma 28 in [14])  Let 

u ∈ int𝒦. Then 

x ∘ s = μ e ⟺ P(u)x ∘ P(u)−1s = μ e. 

 

Lemma 2.3 (Lemma 30 in [14]) Let 

x, s ∈ int𝒦. Then 

‖P (x
1

2) s − e‖
F

≤ ‖x ∘ s − e‖F. 

 

Lemma 2.4 (Theorem 4 in [10]) Let 

x, s ∈ int𝒦. Then 

𝛌𝐦𝐢𝐧 (P (x
1

2) s) ≥ 𝛌𝐦𝐢𝐧(x ∘ s). 

 

3. The optimality conditions and central 

path 

In this section, we present a feasible 

interior-point algorithm for solving 

MSLCPs. More precisely, we first 

investigate the optimality conditions of 

MSLCP and then describe the idea behind 

of IPMs to solve this class of mathematical 

problems. Finding an approximate solution 

of MSLCP is equivalent to solve the  
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following system: 

M11x + M12y − s = −q1 ,            x ∈ 𝒦 

𝑀21𝑥 + 𝑀22𝑦 = −𝑞2 ,        𝑠 ∈ 𝒦           (2) 

𝑥 ∘ 𝑠 = 0. 
Similar to all of feasible interior-point 

algorithms, we assume that the MSLCP 

satisfies the interior point condition (IPC) 

,i.e, there exist a vector triple (x0, s0, y0) ∈

 int 𝒦 ×  int 𝒦 × 𝒰 such that 

(𝑠0

0
) = 𝑀 (𝑥0

𝑦0) + (𝑞1

𝑞2
)                             (3) 

The vast majority of feasible interior-point 

methods approximates an ε-solution of the 

underlying problem by tracing the so-

called central path. The central path 

(x(μ), y(μ), s(μ)) associated with MSLCP 

satisfies 

𝑀11𝑥 + 𝑀12𝑦 − 𝑠 = −𝑞1,      𝑥 ∈ int 𝒦 

𝑀21𝑥 + 𝑀22𝑦 = −𝑞2 ,       𝑠 ∈ int 𝒦       (4) 

𝑥 ∘ 𝑠 = 𝜇𝑒 

Where the parameter μ is positive and e is 

the identity vector in 𝒱 . These equations 

may be interpreted as perturbed optimality 

conditions. In each iteration of the 

algorithm μ tends to zero, while the 

(x(μ), y(μ), s(μ)) converges to solution of 

MSLCP. In order to solve system (4), we 

apply Newton's method and find an 

approximate solution of the problem. After 

using Newton's method and neglecting the 

quadratic term ∆x ∘ ∆s from the third 

equation of (4) we obtain the following  

system 

M11∆x + M12∆y − ∆s = 0 

 M21∆x + M22∆y = 0,                           (5) 

 x ∘ ∆s + s ∘ ∆x = μe − x ∘ s. 

Due to fact that x and s are not operator 

commute, i.e, L(x)L(s) ≠  L(s)L(x), 

system (5) doesn't always have a unique 

solution. This difficulty can be solved by 

applying Lemma 2.2 and replacing the 

third equation in (4) with P(u)x ∘

P(u)−1s = μe . After applying Newton's 

method, we obtain the following system 

 M11∆x + M12∆y − ∆s = 0 

M21∆x + M22∆y = 0,                             (6) 

P(u)x ∘ ∆s + P(u)−1s ∘ ∆x

= μe − P(u)x ∘ P(u)−1s. 

Some best-known choices of the variable 

u, such as u = x−
1

2 and  u = s
1

2 have been 

suggested by different authors. However, 

we choose u to be the scaling element 

introduced in Lemma 2.1 in which the 

resulting direction is called the Nesterov-

Todd direction (NT-direction). 

To simplify matters, we define 

 v ≔
P(w)

1
2s

√μ
= [

P(w)
−

1
2x

√μ
],    

 dx ≔
P(w)−

1
2∆x

√μ
,                                        (7) 

ds ≔
P(w)

1
2∆s

√μ
.   

Using (7), after some elementary 

calculations, we obtain 
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M̅11dx + M̅12

∆y

√μ
− ds = 0,   

 M̅21dx + M22
∆y

√μ
= 0,                             (8) 

dx + ds = v−1 − v. 

where  

 M̅11 = P(w)
1

2M11P(w)
1

2, 

 M̅12 = P(w)
1

2M12,                                  (9) 

 M̅21 = M21P(w)
1

2.    

System (8) uniquely defines the search 

direction (dx, ds) so that (∆x, ∆s) are 

computed via (6). If (x, y, s) ≠

(x(μ), y(μ), s(μ)), then (∆x, ∆s, ∆y) is 

nonzero. The new iterate is obtained by 

taking a full-Newton step as follows: 

X+ = x + ∆x, 

y+ = y + ∆y,                                         (10) 

s+ = s + ∆s  

From the third equation of system (8), we 

have 

dx + ds = v−1 − v ⟺ v ∘ (dx + ds) =

e − v2.                                                   (11) 

Due to basic idea of IPMs, we need a 

parameter to measure the closeness of 

iterates to the central path. Similar to 

Zhang et al. [16], we use the following 

proximity measure in our analysis 

δ(x, s; μ) = δ(v) ≔ ‖e − v2‖F.           (12) 

 

3.1. Generic feasible algorithm for 

MSLCP 

We can now describe the feasible 

algorithm in a more formal way. At the 

start of the algorithm, we choose a strictly 

feasible triple vector (x0 , s0, y0) with 

μ0 =
𝐭𝐫(x0∘s0)

μ0
 such that  

δ(x0 , s0 , y0) ≤ τ with τ ∈ (0,1). By using 

Newton's method, we find a new iterate 

close to the central path. Then, μ is 

reduced by the factor 1 − θ with 0 < θ <

1. This process is repeated until μ reduces 

to a small enough value. Now, at this stage 

we have found an ε-approximate solution 

of MSLCP. The generic full-Newton step 

feasible interior-point algorithm for 

MSLCP is depicted in Fig.1. 

 

Fig 1: Primal-Dual Feasible IPM for 

MSLCP 

Step 0 (Initialization): Choose an 

accuracy parameter ε > 0, a barrier 

parameter 0 < θ < 1 as θ =
1

6√r2
 and an 

initial feasible point (x0,  y0, s0) with 

μ0 =
𝐭𝐫(x0∘s0)

r2
 and δ(x0, s0 , y0) ≤ τ =

1

2
. 

Step1 (Test convergence): If μr2 ≤ ε, 

declare convergence and stop. Otherwise, 

proceed to the next step. 

Step2 (Computation): Update the 

parameter μ as μ = (1 − θ)μ and compute 

the scaled search direction (dx, ∆y, ds) by 

solving system (8).  
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Step3 (Update iterate): Generate new 

iterate (x+,  y+, s+) as (10), set (x, y, s) =

(x+,  y+, s+), and go to step 1. 

 

4 Convergence analysis 

The aim of this section is to investigate the 

feasibility and quadratic convergence of 

the generated points by the algorithm in 

Fig. 1. To simplify analysis, let 

pv = dx + ds ,   qv = dx − ds               (13) 

It follows  

dx =
pv+qv

2
,  

ds =
pv−qv

2
,                                            (14) 

dx ∘ ds =
pv

2−qv
2

4
 .  

In following lemmas, we get some bounds 

for the eigenvalues of the variance vector 

v and standard inner product ⟨dx, ds⟩. 

 

Lemma 4.5 Let δ: = δ(x, s; μ). Then 

q(δ) = √1 − δ ≤ λi(v) ≤ √1 + δ = p(δ),   

i = 1,2, … , n.                                         (15) 

Proof According to the definition of 

δ: = δ(x, s; μ) in (12), we have 

|λi(e − v2)| = |1 − λi(v)2| ≤

‖e − v2‖F = δ,      i = 1,2, … , n   

This follows the proof. ∎ 

 

Lemma 4.6 Let δ: = δ(x, s; μ). Then 

 0 ≤ ⟨dx, ds⟩ ≤
δ2

4(1−δ)
.                          (16) 

Proof Since M is a Cartesian positive 

semidefinite matrix, by using the two first 

equations of the search direction system 

(6) and applying the notions in (7) we 

conclude that 

⟨dx, ds⟩ =
1

μ
⟨∆x, ∆s⟩ ≥ 0.  

On the other hand, from (13) we obtain 

‖pv‖F
2 = ‖dx + ds‖F

2 = 

‖dx − ds‖F
2 + 4⟨dx, ds⟩ ≥ 4⟨dx, ds⟩. 

Using (11) and Lemma 4.5 in the later 

inequality, we obtain 

⟨dx, ds⟩ ≤
1

4
‖dx + ds‖F

2 =  

1

4
‖v−1 ∘ (e − v2)‖F

2  

≤
1

4λmin
2 (v)

‖e − v2‖F
2 ≤

δ2

4(1−δ)
.   

This completes the proof.∎ 

The above lemma is crucial in finding the 

bounds for the eigenvalues of the product 

dx ∘ ds .  

 

Lemma 4.7 Let x, s ∈ 𝒱. Then 

|λj(dx ∘ ds)| ≤
δ2

4(1−δ)
.                           (17) 

Proof Since dx ∘ ds =
pv

2−qv
2

4
, the 

elementary relations of norms and this fact 

that ‖pv‖F
2 ≤ ‖qv‖F

2 imply that 

‖dx ∘  ds‖∞ ≤
1

4
max{‖qv‖∞

2 , ‖pv‖∞
2 }  

≤
1

4
max{‖qv‖F

2, ‖pv‖F
2}  

≤
1

4
‖pv‖F

2  

≤
1

4

δ2

(1−δ)
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This follows the Lemma. ∎ 

Now, our aim is to find some conditions 

that guarantee the feasibility of the iterates 

after the full NT-step. As before, let 

x, s ∈ int𝒦 , μ > 0 and w be the scaling 

point of x and s. Then, using (7), we obtain 

x+ = x + ∆x = √μP(w)
1

2(v + dx),  

s+ = s + ∆s = √μP(w)−
1

2(v + ds)      (18) 

Since P(w)
1

2 and P(w)−
1

2 are 

automorphisms of int𝒦 due to Lemma 

III.2.2 in [4] 

x+,  s+ ∈ int𝒦 if and only if v + dx and 

v + ds belong to int𝒦, respectively. 

Now, we investigate under what 

conditions the full-NT step is strictly 

feasible. Defining x(α): = x + α∆x and 

s(α): = s + α∆s, for α ∈ [0,1] the 

following lemma gives a sufficient 

condition that guarantees the iterates x(α̅) 

and s(α̅) are strictly feasible when α̅ > 0.  

For proof and more details see Lemma 4.1 

in [7]. 

 

Lemma 4.8 Let x, s ∈ 𝒦, and x(α) ∘

s(α) ∈ int𝒦 for α ∈ [0, α̅]. Then 

x(α̅) ∈ int𝒦, s(α̅) ∈ int𝒦. 

 

Lemma 4.9 Let δ ≤ 2√2 − 2. Then 

e + dx ∘  ds ∈ 𝒦. 

Proof Due to Lemma 4.7 the absolute 

value of eigenvalues of dx ∘ ds do not 

exceed 
δ2

4(1−δ)
. This implies that 1 −

δ2

4(1−δ)
  is a lower bound for the eigenvalues 

of e + dx ∘ ds.  Applying some simple 

calculations, we conclude that if δ ≤

2√2 − 2  then e + dx ∘  ds ∈ 𝒦. This 

completes the proof. ∎ 

 

Lemma 4.10 Let δ < 2√2 − 2. Then the 

iterates x+,  s+ with full NT-step are 

strictly feasible. 

Proof Defining a step length α ∈ [0,1], 

vx(α) = v + αdx, and vs(α) = v + αds 

and using the third equation in (8), we 

have  

vx(α) ∘ vs(α) = (v + αdx) ∘ (v + αds)  

= v2 + αv ∘ (dx + ds) + α2(dx ∘ ds)   

= v2 + αv ∘ (v−1 − v) + α2 =

(1 − α)v2 + αe + α2(dx ∘ ds).            (19) 

Since, δ < 2√2 − 2 Lemma 4.9 implies 

that dx ∘ ds ≻ −e  Substituting in (19), we 

get  

vx(α) ∘ vs(α) ≻ (1 − α)v2 + αe − α2e

= (1 − α)(v2 + αe). 

If α ∈ [0,1], the vector v2 + αe belongs to 

𝒦, hence we have vx(α) ∘ vs(α) ≻ 0. 

Lemma  

 

4.8 implies that, for α = 1, we have 

vx(1) = v + dx ∈ int𝒦  and vs(1) = v +

ds ∈ int𝒦.   
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Due to automorphism property of 

quadratic mapping P, we conclude that 

x+,  s+ belong to int𝒦 and this completes 

the proof. ∎ 

We are ready to prove the property of 

quadratic convergence of the iterates. Let 

w+ and v+ =
P(w+)

1
2s+

√μ
[=

P(w+)
−

1
2x+

√μ
], 

respectively be the scaling point and 

variance vector related to the new iterates 

x+ and  s+. One of the most important 

lemma in our analysis is as follows. 

 

Lemma 4.11 (Proposition 5.9.3 in [13]) 

One has 

(v+)2 ∼ P(v + dx)
1

2(v + ds),             (20) 

 

In which the notation x ∼ s means x and s 

share the same set of the eigenvalues. 

In the next lemma, we proceed to prove  

the local quadratic convergence of full NT-

step. 

 

Lemma 4.12 Let δ < 2√2 − 2. Then after 

a full NT-step one has 

δ(x+, s+; μ) <
δ2

2(1−δ)
.   

Proof Using Lemmas 2.3, 4.6 and 4.11, 

and applying (19) for α = 1, we have 

δ(x+, s+; μ) = ‖e − v+ ∘ v+‖F =   

‖e − P(v + dx)
1

2(v + ds)‖
F
   

≤ ‖e − (v + dx) ∘ (v + ds)‖F =   

‖−dx ∘ ds‖F   

≤
1

2
(‖dx‖F

2 + ‖ds‖F
2) =   

1

2
(‖dx + ds‖F

2 − 2⟨dx, ds⟩)   

1

2
(

1

λmin
2 (v)

 ‖e − v2‖F
2) ≤

δ2

2(1−δ)
,   

Where the last inequality is obtained 

because of Lemma 4.5. This concludes the 

desired result. ∎ 

 

Corollary 1  

If δ ≤
1

2
, then δ(x+, s+; μ) ≤ δ2 which 

shows the quadratic convergence of the 

algorithm. 

The following lemma investigates the 

effect on the proximity measure of a full 

NT-step followed by an update of the 

parameter μ.  

 

Lemma 4.13 Let δ < 2√2 − 2 and r2be 

the rank of EJA (𝒱,∘) and μ+ = (1 − θ)μ,  

where θ ∈ [0,1]. Then 

δ(x+, s+; μ+) ≤
1

1−θ
(θ√r2 +

δ2

2(1−δ)
).   

Proof Due to the definition of δ(v) and 

Lemma 2.3, we have 

δ(x+, s+; μ+) = ‖e −
v+

√1−θ
∘

v+

√1−θ
‖

F
=

1

1−θ
‖(1 − θ)e − v+ ∘ v+‖F    

=
1

1−θ
‖(1 − θ)e − P(v + dx)

1

2(v + ds)‖
F
   

≤
1

1−θ
‖(1 − θ)e − (v + dx) ∘ (v + ds)‖F   
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=
1

1−θ
‖−θe − dx ∘ ds‖F  

≤
1

1−θ
(θ√r2 +

δ2

2(1−δ)
).  

This completes the proof.∎ 

 

Lemma 4.14  After a full NT-step, 

μr2 ≤ ⟨x+, s+⟩ ≤ μ (r2 +
δ2

4(1−δ)
).  

Proof From (18) and the third equation in 

(8), we have  

⟨x+, s+⟩ = μ⟨v + dx, v + ds⟩ =

μ(⟨v, v⟩ + ⟨v, dx + ds⟩ + ⟨dx, ds⟩)   

= μ(⟨v, v⟩ + ⟨v, v−1 − v⟩ + ⟨dx, ds⟩) =

μ(r2 + ⟨dx, ds⟩).  

Lemma 4.6 implies the desired results.∎ 

 

4.2. Complexity analysis 

We conclude this subsection with a 

theorem that gives the complexity of the 

algorithm in Fig. 1. The algorithm starts 

with the iterate (x, s, y) and a μ > 0 such 

that δ(x, s; μ) ≤
1

2
 where (x, s) ∈ int𝒦 ×

int𝒦 and y ∈ 𝒰. Then the barrier 

parameter μ updated to μ+ = (1 − θ)μ 

with θ =
1

6√r2
. Assuming r2 ≥ 4, after a 

full NT-step, Lemma 4.13 implies 

δ(x+, s+; μ+) ≤
1

2
.  Hence, after each 

iteration of the algorithm we have 

δ(x, x; μ) ≤
1

2
,        ⟨x, s⟩ ≤ μ(r2 + δ2),     

Therefore the proposed algorithm is well-

defined. The following lemma states the 

main result of this section. 

 

Lemma 4.15 If θ =
1

6√r2
, the number of 

iterations of feasible algorithm with full 

NT-step doesn't exceed 

√r2 log
tr(x0∘s0)

ε
.  

 

5. Concluding and remarks 

In this paper, we proposed a feasible 

interior-point algorithm based on using the 

NT-search direction for MSLCPs.  At each 

iteration of the algorithm, the duality gap μ 

is reduced by the rate 1 − O (
1

√r2
) and the 

complexity of the algorithm is 

O(√r2  log ε−1). This complexity  

coincides with the currently best known 

complexity bound obtained so far for this 

class of mathematical problems.  
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