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Abstract - Schema matching is a critical step in 
many applications, such as data warehouse loading, 
Online Analytical Process (OLAP), Data mining, 
semantic web [2] and schema integration. This task 
is defined for finding the semantic correspondences 
between elements of two schemas. Recently, schema 
matching has found considerable interest in both 
research and practice. In this paper, we present 
a new improved solution for schema matching 
problem. An improvement hybrid semantic schema 
matching algorithm which semi automatically finds 
matching between two data representation schemas 
is introduced. The algorithm finds mappings based 
on the hierarchical organization of the elements of 
a term WordNet dictionary.
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I. INTRODUCTION

SCHEMA matching is the identification of 
database elements with similar meaning as 

preparation for subsequent database integration 
[3], [4], [6], [7] and [10]. Over the past 20 years, 
different schema matching methods have been 
proposed and have been shown to be successful 
to various degrees. However, schema matching 
is an ongoing research area and the problem is 
not yet considered to be solved [20]. A schema 
consists of a set of related elements, such as 
classes, or XML elements or attributes. The result 
of a Match operation is a mapping consists of a 
set of mapping elements, each of which indicates 
that certain elements of schema S1 are related to 
certain elements of schema S2.

Schema matching is primarily studied as 
a piece of other applications. For example, 
schema integration uses matching to find similar 
structures in heterogeneous schemas. Schema 
matching is used in several application domains 
such as database application domain, for instance 
Data integration, Data warehousing, Data 
mining, E-commerce, Query processing, Peer 
data management, Model management and so on. 
Another application domain of schema matching 
is semantic web like Semantic web services and 
Xml/html to ontology.

Manual schema matching is a time-
consuming, error-prone, and therefore expensive 
process. Thus, a faster and less labor-intensive 
integration approach that does this job automated 
is needed [14].

The semantic algorithm introduced in this 
paper, creates an improvement generic schema 
matching approach for RDF and OWL schemas. 
This is an improvement hybrid semantic schema 
matching algorithm that uses both element and 
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structural level matchers for finding best matches 
between entities. Another important component 
of this work is the WordNet Lexical Database 
that helps finding matching. This implementation 
finds matching with different cardinalities (1:1, 
1: n and n: 1).

The paper is organized as follows. Section 
II presents previous work and the basic 
characteristics of known matchers. Section III 
introduces our semantic algorithm and describes 
its operation. Also this section introduces the 
WordNet Lexical Database [11]. The evaluation 
results based on quality measures and comparison 
with other approaches are given in section IV. 
Conclusions and future work are discussed in 
section V.

II. RELATED WORK
In this section we present a classification of 

the major approaches to schema matching and 
describe the most popular ones.

1. A Classification Of  Schema Matching 
Approaches 

Schema matching support by using 
dictionaries, thesauri and other kind of 
domain knowledge is useful for identifying 
correspondences. Several approaches and tools 
were developed for supporting schema matching 
[12]. A good survey of these approaches is given 
in [13]. The authors classify schema matching 
approaches into three classes. Here, we briefly 
summarize this work. 

• Individual matchers compute a mapping 
using only a single match criterion,

• Hybrid matchers support multiple criteria by 
using a fixed combination of individual matching 
techniques [17].

• Composite matchers combine the results 
of individual matchers depending on schema 
characteristics, application domain or even results 
of previous steps, e.g., by applying techniques 
from machine learning [5].

Individual matchers are building blocks for 
hybrid and composite matchers can be further 
classified into:

• Schema vs. instance level: Schema-level 
matchers consider only schema information such 
as structures (data types, classes, attributes) as 
well as properties of schema elements like name, 
type etc. In contrast, instance-level matchers 
consider data contents, too. This allows a more 
detailed characterization of data, especially 

in cases with incomplete or unknown schema 
information.

• Element vs. structure matching: Element 
matchers consider matching between atomic 
schema elements such as attributes whereas 
structure-level matchers can deal with 
combinations of elements.

• Language vs. constraints: Language-based 
matchers use textual information and linguistic 
techniques for matching. A second approach is to 
consider constraints defined as part of the schema, 
e.g., data types, cardinalities of relationships or 
key characteristics.

• Matching cardinality: Another kind of 
characterization is the cardinality of matches. 
For example, a 1: n mapping means that a single 
attribute is mapped to a set of other attributes.

• Auxiliary information: Often external 
information can be used to support the 
identification of matches. This can be provided in 
the form of user input, results from previous steps 
or by using thesauri, dictionaries, ontologies, etc.

Fig. 1 shows classification of schema matching 
approaches.

2. Prevalent Approaches
In this section we introduce most important 

implementation of schema matching approaches.
COMA/COMA++ is a generic, composite 

matcher with very effective match results [6] 
and [7]. It can process the relational, XML, RDF 
schemas as well as ontologies. The COMA++ 
supports a number of other features like merging, 
saving and aggregating match results of two 
schemas. 

Clio [16] consists of a set of Schema Readers, 
which read a schema and translate it to an internal 
representation, a Correspondence Engine (CE), 
which is used to identify matching parts of the 
schemas or databases, and a Mapping Generator, 
which generates view definitions to map data in 
the source schema into data in the target schema. 

Cupid [10] is a hybrid schema matcher, 
combining a name matcher and a structure-based 
matcher. This tool finds the element matching of 
a schema, using the similarity of their names and 
types at the leaf level. 

SF uses no external dictionary, but offers 
several filters for the best matching selection 
from the result of the structure-based matcher.

Finally, [1], that we refer to it with *-algorithm, 
is a hybrid Semantic Schema Mapping Algorithm. 
This algorithm finds mappings based on the 
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hierarchical organization of the elements of a 
term dictionary (WordNet) and on the reuse of 
already identified matching.
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Fig.1. Classification of schema matching approaches

*-algorithm was compared with other 6 known 
approaches and only COMA++ and an approach 
of XML and ontology matching were able to 
provide better results in some points. The results 
are shown in Table II [1]. Notice that the set of 
schemas and their characteristics are illustrated 
in Table I.

TABLE I. CHARACTERISTICS OF THE EVALUATED 
SCHEMAS [1]

 
TABLE II. RESULTS OF THE COMPARISON BETWEEN 

APPROACHES’ EVALUATION IN [1]

 

III.	 AN IMPROVED HYBRI SCHEMA 
MATCHING APPROACH

The algorithm’s inputs are two schemas in 
OWL, RDF file format. Each schema consists of 
classes, properties and set of their attributes such 

as constraints and hierarchical relations between 
them. The output is an ontology file that shows 
each match entity pair mid their match measure.

Our goal is to implement an improved hybrid 
schema matching. For this reason, we studied 
several algorithms in schema matching domain 
and then analyzed and compared these algorithms. 
Finally we conclude the algorithm in [1] that we 
call it *-algorithm, is good and feasible and in 
most cases, offers better quality in the result than 
other approaches. On the other hand, it may be 
modified and extended in order to get an even 
better performance. This algorithm uses only 
element level mapping detection and in some 
cases it not able detection semantic ambiguity. 
The structure of our algorithm is shown in Fig. 2.
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Fig.2. The structure of improved hybrid schema matching 
approach

1. Operation Of Matcher1
Operation of matcher 1 is based on *-algorithm 

[1]. Matcher 1 after getting its input, each entity 
of the first schema compare with all the entities of 
the second schema (target), and the existence of 
a matching with an entity of the target schema is 
examined. If such a matching exists and satisfies 
the similarity thresholds declared by the user, 
then this entity is overlooked and the algorithm 
continues with the next entity of the source 
schema. 

If there is no matching that satisfy the given 
thresholds, then each entity of both schemas 
are tokenized based on the delimiters ‘ ’, ‘.’, 
‘_’, ‘-’. For each token of the source entity, the 
existence of a matching with a token of the target 
entity is examined using WordNet dictionary. 
The maximum similarity value for each token 
combination is kept as long as it is greater than 
the threshold. In this way, a matrix with similarity 
values between tokens of the source entity and 
tokens of the target entity is generated; with 
dimensions N×M where N, M are the amounts 
of source and target entities tokens respectively. 
For each such matrix, the sums of the maximum 
similarity values of each row (Sum1) and of 
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each column (Sum2) are calculated. Maximum 
similarity value of the source and the target entity 
is determined as the mean value of these two 
sums:

MaxSim(Schema1_element,Schema2_element)                   
=(Sum1+Sum2)/(M+N)	               	 (1)

Input: 2 Schemas, S1, S2, (OWL, RDF or combination of them) in OWL or RDF 
files format

Operation: 
after getting their inputs, each schema parses and all important data extract 
from here. (Such as classes, properties, constraints and hierarchical relation 
between them)
While (∃ next S1.entity)
{

Get next S1.entity 
If (Each similarity value Χ of current S1.entity with an 
S2.entity ∉ [minimum threshold, maximum threshold]) then 
{

     While (∃ next S2.entity)
{

Get next S2.entity 
Tokenize S1.entity based on delimiters ‘ ’, ‘.’, ‘_’, ‘-’, upper case. 
Tokenize S2.entity based on delimiters ‘ ’, ‘.’, ‘_’, ‘-’, upper case. 

          While (∃ S1.tokens)
        {

          Get next S1.entity and set it to i 
             While (∃ S2.tokens) 
               {
                  Get next S2.token and set it to j 

           Max Sim (i, j) = 0 
                  If (i == j) then 
                     Max Sim (i, j) = 1 

                Else 
                 For each (Lexicon based matching i with j ) 

                     If (Lexicon based Similarity (i, j) > Max Sim (i,j)) then 
                         Max Sim (i, j) = Lexicon based Similarity (i, j) 
                     If (Max Sim (i, j) > Threshold) then 
                         Store Μax Sim (i, j) in Similarity_value_Matrix 

                }
          }
          Calculate the sum of maximum similarity values for each row 
            of the Similarity_value_Matrix and set it as Sum1 

                       Calculate the sum of maximum similarity values for each column of 
            the Similarity_value_Matrix and set it as Sum2 
          ΜaxSim (S1.entity, S2.entity) = (Sum1 + Sum2) / 
                          (amount (S1.tokens) + amount (S2.tokens)) 

         Store [S1.entity, S2.entity, ΜaxSim (S1.entity, S2.entity)] 
             in List1

}
}

}
Output: a list (List1) containing all entity pair from two schemas with 
matching greater than threshold (we suggest 0.92) 

Fig. 3. Operation of matcher 1

These values are calculated for all the entities 
of the source schema and then, a list containing 
all entity pair from two schemas with matching 
greater than threshold (we suggest 0.92) is 
returned. Matcher 1 algorithm is shown in Fig. 3.

Matcher 1 uses English dictionary WordNet 
which is widely used in the information retrieval 
domain. In next section we introduce this 
dictionary and how use of WordNet in algorithm.

2. WordNet Dictionary
Information in WordNet is organized in logical 

groups called “synsets”. Every “synset” consists 
of a list of synonymous words or collocations and 
pointers which describe the relations between 

this “synset” and the other ones. A word can exist 
in more than one “synset”.

Pointers represent two kinds of relations: 
lexical and semantic. Lexical relations hold 
between semantically related word forms. 
Semantic relations hold between word meanings. 
These relations consist of (but they are not 
limited to) hypernyms (...Is kind of), hyponyms 
(is kind of...), antonymy, entailment, meronyms 
(parts of ...), holonyms (...is part of). Nouns and 
verbs are organized into hierarchies based on 
the hypernymy and hyponymy relation between 
“synsets”.

The similarity value of two elements is 
calculated based on the depth that the elements 
appear in the different Lexicon’s hierarchies. 
This similarity value calculated below:

Distance = ((dept1-dept)/dept1+ (dept2-dept) /dept2)/2
					               (2)
Sim=1-(Distance × Distance)		  (3)

Where dept1 is depth of the first entity, dept2 
is depth of the second entity, dept is common 
parent depth and finally sim is similarity value 
between entity1 and entity2.

Finally, user select threshold and algorithm 
ignores the matching with similarity value below 
this (We suggest 0.92 for threshold and this 
quantity selected after examine this approach 
with many real world ontology data sets).

For example suppose that we want to match 
“FatherLove” entity from schema 1 with 
“MotherLove” entity from schema 2. Since there 
is no matching exists between them, each entity 
tokenizes and so matcher 1 execute for these 
tokens. The step by step procedure shown in 
below:

We have a similarity matrix with dimensions 
2×2. based on dictionary maximum similarity for 
“Father” and “Mother” is 0.99, for “Father” and 
“Love” is 0, for “Love” and “Mother” is 0.22 and 
finally for “Love” and “Love” is 1. So similarity 

matrix for these entity pair is 







0.1

0
22.
99. . 

And then:

Sim1 = .99 + 1 = 1.99
Sim2 = .99 + 1 = 1.99
ΜaxSim (“FatherLove” , ”MotherLove”) = (1.99 + 1.99) / (4) = 0.995
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First we explain how computed 0.99 (i=0, j=0) 
for “Father” and “Mother” tokens. WordNet try 
to find their depth (dept1 and dept2 respectively). 
For each token, the hierarchical structure from 
token to its root represented below:

abstract_entity  object  living_thing  organism  person  

 relative  ancestor  progenitor  genitor parent  Father 

abstract_entity  object  living_thing  organism  person  

 relative  ancestor  progenitor  genitor parent  Mother 

Therefore, base on equations 2 and 3: 

dept1=10, dept2=10, dept=9 
distance= 0.1 and then sim=0.99 

And so on, for “Love” and “Mother” tokens: 

entity  abstract_entity  abstraction  attribute  state  

 feeling  emotion  Love

And then base on equation 2 and 3: 

dept1=7, dept2=10, dept=1 
distance= 0.88 and then sim=0.22 

3. Operation Of Matcher2
*-algorithm uses only element level matcher 

for finding matches between entities. This leads 
to increase false positive matches. If we use 
structural level matcher too, several homonym’s 
ambiguity disregards and not lead’s to false result. 
For example suppose that schema1 and schema2 
have an entity with the same name as Fig. 4:

Schema 1:
<owl:Class rdf:ID="Like">

<rdfs:subClassOf rdf:resource="#Similar"/>
<rdfs : subClassOf>

          <owl:Restriction>
              <owl:onProperty rdf:resource=”#ToObject”/>
          </owl:Resctriction>
       </rdfs:subClassOf>
</owl:Class>

    Schema 2:
<owl:Class rdf:ID="Like">

<rdfs:subClassOf rdf:resource="#Love"/>
<rdfs : subClassOf>

          <owl:Restriction>
              <owl:onProperty rdf:resource=”#ToPerson”/>
          </owl:Resctriction>
       </rdfs:subClassOf>
</owl:Class>

Fig. 4. An example of semantic ambiguity

But these entities have different means; it 
means extract from their attributes. “Like” in 
schema 1 refers to similar attribute and another 
“Like” in schema 2 refers to love. For this 
example, similarity related to an object while the 
love attribute related to a person. So these entities 

are different and need not be matched.
Our algorithm tries to discard these semantic 

ambiguities with some measurement parameters. 
First, properties of each entity should be check. 
Therefore all properties of each entity and all 
share properties between two entities should be 
consider. A property in an entity refers to each 
property that exists in hierarchical relation of this 
entity, and a share property in an entity refers 
to a property that exists in another entity set of 
correspondences too. The similarity value for 
properties attributes is:

Sim-property=1-(((x-z)/(x+1) + (y-z)/(y+1))/2           (4)

That x equal to all properties of entity 1, y 
equal to all properties of entity 2 and z equal to 
all share properties between entity 1 and entity 
2. Note that extra 1 in (x+1) and (y+1), only for 
avoiding division by zero in some cases (when 
both or one of entities haven’t any property) and 
not so effect on Sim-property function amount.

 So, all matches that pass from stage1, with 
Sim-property less than .6, discard. This algorithm 
is shown in Fig. 5.

In our example x=1, y=1, and z=0, then Sim-
property=.5 and this match discard.

Input: output of matcher 1 (a list (List1) containing all entity pair from two 
schemas with matching greater than threshold (we suggest 0.92)).
Operation: 
this matcher uses for decrease false positive matches and cause to several 
ambiguity disregards.
i is a counter for List1 nodes, each node containing two entity pair and 
element level match value between them.
create a list (List2) for store result of matcher 2.
While (∃ next List1 [i])
{
     If type of entity pair is Class then
     {

Compute all properties of entity 1(x), all properties of entity 2 (y), 
and all share properties between entity 1 and entity 2 (z).

Sim-property=1-(((x-z)/(x+1)+ (y-z)/(y+1))/2)
     }

     If type of entity pair is Property then
     {

Compute number of classes that entity1 exists in their as a property 
(domains of entity 1, x), number of classes that entity 2 exists in their 
as a property (domains of entity 2, y) and number of classes that both 
entity1 and entity2 exist in their as two properties (share domains of 
entity1 and entity2, z).

Sim-property=1-(((x-z)/(x+1)+ (y-z)/(y+1))/2)
     }

If (Sim-property >= 0.6)
Add this node to List2.

}
Output: List2 that disregards several homonyms ambiguity.

Fig. 5. Operation of matcher 2

4. Operation Of Matcher 3
Maybe there are two namesake entities with 

different concepts which none of them have any 
property. For example suppose that in Fig. 4, 
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there is no onProperty field exists for both “Like” 
entities. In this case, Sim-property can’t help to 
find semantic ambiguity, because x=0, y=0, z=0 
(element level match value between “ToObject” 
and “ToPerson” equal to zero) and then Sim-
property=1 and so this node passes successfully 
from matcher 2, while this entity pair not the 
same. Thus we have to solve ambiguity with 
matcher 3.

If two entities is match together, certainly these 
parents too match together. The similarity value 
between these parents can be with .2 tolerances. 
This get with about 100 match entities check. 
Thus, after running Sim-property, in matcher 3, 
only nodes with their Sim-parents greater than .7 
accept.

Note that in our strategy Sim-parent as like as 
sim, and only different between them, is the entity 
pair types in hierarchical relations in schemas. 
This means that, in sim, two entities compared 
with together, while in Sim-parrent the following 
strategy used:

If both entities don’t have any parent, 
obviously Sim-parent can’t any help and default 
set to 1. If one entity has parent and another don’t 
has, Sim-parent executes between this parrent 
and entity 2. And finally, if both entities have 
parent, Sim-parent execute between their parents. 

For our example, matcher 3 execute for 
“Similar” and “Love”, and then Sim-parent equal 
to zero. Thus this entity pair discards.

We trust that after running these three 
matchers, several true matches found and several 
semantic ambiguities discard from result.

5. Selecting Best Match Pairs
After acting three matchers, may each entity 

from schema 1, matches with some entities from 
schema 2. So in this step, best match pairs (i.e. 
match pairs that it’s match degree more high than 
other) select.

IV. EVALUATION OF ALGORITHM

1. Matching Quality Measures
To provide a basis for evaluating the quality of 

an algorithm, the match task has to be performed 
manually first. The obtained real match result can 
be used to assess the quality of the result semi-
automatically determined by the algorithm. False 
negatives, A, are matches needed but not semi-
automatically identified, while false positives are 
matches falsely detected by the semi-automatic 

match operation. True negatives, D, are false 
matches, which have also been correctly discarded 
by the automatic match operation. Intuitively, 
both false negatives and false positives reduce 
the match quality. Fig. 6 shows this classification.

 

A: False Negative     B: True Positive
                         C: False Positive       D: True Negative

Matches obtained from algorithm
 

                                                                              D

A B                    C

Real matches 

Fig. 6. Classification of matches

The quality measures [7], [8], [9], which we 
use in our evaluation can be computed as below:

Precision = 
||||

||
CB

B
+

                                     (1) 

Recall = 
||||

||
BA

B
+

                                         (2) 

Fmeasure = 2∗ 
RecallPrecision 
Recall*Precision 

+
                 (3) 

Overall = Recall ∗ (1− 
ecisionPr

1 )                (4) 

2. Comparision Results
Mean values of quality measures for our 

algorithm are shown in Fig. 7.
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Fig. 7. Mean value of quality measures

Because of inaccessibility implementation 
of other schema matching algorithms except 
*-algorithm, we compare our algorithm with 
*-algorithm with the same real world standard 
RDF schemas (e.g. Animal schemas, Food 
schemas, Network schemas, Book schemas and 
etc). Table III shows result of this comparison.

Note that because of inaccessibility 
*-algorithm data set, mean value in Table II 
and Table III was compute with different real 
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world schemas. So via these two tables, we can 
compare our solution with other approaches such 
as COMA++, Cupid, SF and so on.

TABLE III.  RESULTS OF THE COMPARISON 
BETWEEN OUR APPROACH AND *-ALGORITHM 

EVALUATION
Quality Measures *-Algorithm Our Algorithm
Mean Precision 0.88 0.96

Mean Recall 0.89 0.89
Mean Fmeasure 0.88 0.92

Mean Overall 0.77 0.85

Our solution founds several true matches with 
high match degree. Matcher 2 and matcher 3 
cause to omitting several semantic ambiguities, 
with analyzing content of entities.

But, in some cases, our algorithm is not able 
to find correct matches with high degree, and it 
cause to decreasing of recall and overall quality 
measures.

For example in element level, “PairOfNodes” 
and “NodePair” matches with 0.8 match degree 
and its reason is preposition “Of”, that we can 
solve its with step word omitting approaches. 
By this technique, degree match between these 
entities increase to 1.

V. CONCLUSION AND FUTURE WORK
In this paper a new improved solution 

for schema mapping was presented and an 
improvement hybrid semantic schema matching 
algorithm which semi-automatically finds 
matching between two data representation 
schemas was introduced. This algorithm tried 
to find best quality matches and overcome to 
semantic ambiguity.

In element level, matcher 1 can finds correct 
matches with high degree such as (child, parent, 
0.81), (animal, tiger, 0.89), (male, female, 0.96) 
and finally (humanBeing, person, 0.79).

Structural level matchers (matcher 2 and 
matcher 3), are use for remove several semantic 
ambiguity (with two different meaning), such as 
like (similarity and love), look (see and search) 
and etc. therefore these two matchers cause to 
decrease false positive matches and so increase 
correctness of matches. We trust that after running 
these three matchers, several true matches found 
and several semantic ambiguities discard from 
result.

In future work, our goal is to use Word Sense 
Disambiguation and Context Analysis approach 
[15], [18], [19] for finding semantic matching 

between multi terms entities. Thus the algorithm 
instead of split a multi term entity, analysis entity 
with context analysis techniques and concept 
graph and so get ever better quality match.

Another goal for our future works is 
implementing improvement semantic schema 
integration with RDF Schema metadata, using 
hierarchical relation between entities in WordNet 
dictionary.

At the end, this algorithm can be used in 
different application domain such as semantic 
integration, query processing system and data 
warehouses.
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