
 Journal of Advances in Computer Engineering and Technology, 1(1) 2015

An Improved Semantic Schema Matching
Approach

Zahra Sheikhnajdy1, Mehran Mohsenzadeh2, Mashalah Abbasi Dezfuli3

Received (5-9-2011)
Accepted (22-10-2011)

Abstract - Schema matching is a critical step in
many applications, such as data warehouse loading,
Online Analytical Process (OLAP), Data mining,
semantic web [2] and schema integration. This task
is defined for finding the semantic correspondences
between elements of two schemas. Recently, schema
matching has found considerable interest in both
research and practice. In this paper, we present
a new improved solution for schema matching
problem. An improvement hybrid semantic schema
matching algorithm which semi automatically finds
matching between two data representation schemas
is introduced. The algorithm finds mappings based
on the hierarchical organization of the elements of
a term WordNet dictionary.

Index Terms - schema matching, schema
integration, ontology, RDF Schema, element level
matcher, structural level matcher.

1- Science and Research Branch, Islamic Azad University,
Khouzestan, Iran (z.sheikhnajdy@khouzestan.srbiau.ac.ir)
2-Department of Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran.
(mohsenzadeh@srbiau.ac.ir)
3-Department of Computer Engineering, Science and
Research Branch, Islamic Azad University, Khouzestan,
Iran, (mabbasi@khuzestan.srbiau.ac.ir)

I. INTRODUCTION

SCHEMA matching is the identification of
database elements with similar meaning as

preparation for subsequent database integration
[3], [4], [6], [7] and [10]. Over the past 20 years,
different schema matching methods have been
proposed and have been shown to be successful
to various degrees. However, schema matching
is an ongoing research area and the problem is
not yet considered to be solved [20]. A schema
consists of a set of related elements, such as
classes, or XML elements or attributes. The result
of a Match operation is a mapping consists of a
set of mapping elements, each of which indicates
that certain elements of schema S1 are related to
certain elements of schema S2.

Schema matching is primarily studied as
a piece of other applications. For example,
schema integration uses matching to find similar
structures in heterogeneous schemas. Schema
matching is used in several application domains
such as database application domain, for instance
Data integration, Data warehousing, Data
mining, E-commerce, Query processing, Peer
data management, Model management and so on.
Another application domain of schema matching
is semantic web like Semantic web services and
Xml/html to ontology.

Manual schema matching is a time-
consuming, error-prone, and therefore expensive
process. Thus, a faster and less labor-intensive
integration approach that does this job automated
is needed [14].

The semantic algorithm introduced in this
paper, creates an improvement generic schema
matching approach for RDF and OWL schemas.
This is an improvement hybrid semantic schema
matching algorithm that uses both element and

30				 Journal of Advances in Computer Engineering and Technology, 1(1) 2015

structural level matchers for finding best matches
between entities. Another important component
of this work is the WordNet Lexical Database
that helps finding matching. This implementation
finds matching with different cardinalities (1:1,
1: n and n: 1).

The paper is organized as follows. Section
II presents previous work and the basic
characteristics of known matchers. Section III
introduces our semantic algorithm and describes
its operation. Also this section introduces the
WordNet Lexical Database [11]. The evaluation
results based on quality measures and comparison
with other approaches are given in section IV.
Conclusions and future work are discussed in
section V.

II. RELATED WORK
In this section we present a classification of

the major approaches to schema matching and
describe the most popular ones.

1. A Classification Of Schema Matching
Approaches

Schema matching support by using
dictionaries, thesauri and other kind of
domain knowledge is useful for identifying
correspondences. Several approaches and tools
were developed for supporting schema matching
[12]. A good survey of these approaches is given
in [13]. The authors classify schema matching
approaches into three classes. Here, we briefly
summarize this work.

• Individual matchers compute a mapping
using only a single match criterion,

• Hybrid matchers support multiple criteria by
using a fixed combination of individual matching
techniques [17].

• Composite matchers combine the results
of individual matchers depending on schema
characteristics, application domain or even results
of previous steps, e.g., by applying techniques
from machine learning [5].

Individual matchers are building blocks for
hybrid and composite matchers can be further
classified into:

• Schema vs. instance level: Schema-level
matchers consider only schema information such
as structures (data types, classes, attributes) as
well as properties of schema elements like name,
type etc. In contrast, instance-level matchers
consider data contents, too. This allows a more
detailed characterization of data, especially

in cases with incomplete or unknown schema
information.

• Element vs. structure matching: Element
matchers consider matching between atomic
schema elements such as attributes whereas
structure-level matchers can deal with
combinations of elements.

• Language vs. constraints: Language-based
matchers use textual information and linguistic
techniques for matching. A second approach is to
consider constraints defined as part of the schema,
e.g., data types, cardinalities of relationships or
key characteristics.

• Matching cardinality: Another kind of
characterization is the cardinality of matches.
For example, a 1: n mapping means that a single
attribute is mapped to a set of other attributes.

• Auxiliary information: Often external
information can be used to support the
identification of matches. This can be provided in
the form of user input, results from previous steps
or by using thesauri, dictionaries, ontologies, etc.

Fig. 1 shows classification of schema matching
approaches.

2. Prevalent Approaches
In this section we introduce most important

implementation of schema matching approaches.
COMA/COMA++ is a generic, composite

matcher with very effective match results [6]
and [7]. It can process the relational, XML, RDF
schemas as well as ontologies. The COMA++
supports a number of other features like merging,
saving and aggregating match results of two
schemas.

Clio [16] consists of a set of Schema Readers,
which read a schema and translate it to an internal
representation, a Correspondence Engine (CE),
which is used to identify matching parts of the
schemas or databases, and a Mapping Generator,
which generates view definitions to map data in
the source schema into data in the target schema.

Cupid [10] is a hybrid schema matcher,
combining a name matcher and a structure-based
matcher. This tool finds the element matching of
a schema, using the similarity of their names and
types at the leaf level.

SF uses no external dictionary, but offers
several filters for the best matching selection
from the result of the structure-based matcher.

Finally, [1], that we refer to it with *-algorithm,
is a hybrid Semantic Schema Mapping Algorithm.
This algorithm finds mappings based on the

Journal of Advances in Computer Engineering and Technology, 1(1) 2015					 31

hierarchical organization of the elements of a
term dictionary (WordNet) and on the reuse of
already identified matching.

Individual Matchers Composite Matchers

Schema-based Instance-based

… … … … …

Hybrid
Matchers

Composite
Matchers

•Word
Frequency

•Graph
Matching

•Type
Similarity

•Key
Properties

•Value
Pattern and
Ranges

Further Criteria:
-Match

Cardinality
-Auxiliary

information used…

Constraint-
based

Constraint-
based Linguistic

Schema Matching Approaches

•Name
Similarity

•Description
Similarity

•Global
Namespaces

Sample Approaches

Element LevelElement Level Structure Level

Linguistic Constraint-based

Fig.1. Classification of schema matching approaches

*-algorithm was compared with other 6 known
approaches and only COMA++ and an approach
of XML and ontology matching were able to
provide better results in some points. The results
are shown in Table II [1]. Notice that the set of
schemas and their characteristics are illustrated
in Table I.

TABLE I. CHARACTERISTICS OF THE EVALUATED
SCHEMAS [1]

TABLE II. RESULTS OF THE COMPARISON BETWEEN

APPROACHES’ EVALUATION IN [1]

III.	 AN IMPROVED HYBRI SCHEMA
MATCHING APPROACH

The algorithm’s inputs are two schemas in
OWL, RDF file format. Each schema consists of
classes, properties and set of their attributes such

as constraints and hierarchical relations between
them. The output is an ontology file that shows
each match entity pair mid their match measure.

Our goal is to implement an improved hybrid
schema matching. For this reason, we studied
several algorithms in schema matching domain
and then analyzed and compared these algorithms.
Finally we conclude the algorithm in [1] that we
call it *-algorithm, is good and feasible and in
most cases, offers better quality in the result than
other approaches. On the other hand, it may be
modified and extended in order to get an even
better performance. This algorithm uses only
element level mapping detection and in some
cases it not able detection semantic ambiguity.
The structure of our algorithm is shown in Fig. 2.

Matcher 3

Matcher 2

Matcher 1 Composition of match
results

Selection of best
match pairs

S11 → S21
S12 → S 22
S13 → S23

Input schemas

Mapping
output

Fig.2. The structure of improved hybrid schema matching
approach

1. Operation Of Matcher1
Operation of matcher 1 is based on *-algorithm

[1]. Matcher 1 after getting its input, each entity
of the first schema compare with all the entities of
the second schema (target), and the existence of
a matching with an entity of the target schema is
examined. If such a matching exists and satisfies
the similarity thresholds declared by the user,
then this entity is overlooked and the algorithm
continues with the next entity of the source
schema.

If there is no matching that satisfy the given
thresholds, then each entity of both schemas
are tokenized based on the delimiters ‘ ’, ‘.’,
‘_’, ‘-’. For each token of the source entity, the
existence of a matching with a token of the target
entity is examined using WordNet dictionary.
The maximum similarity value for each token
combination is kept as long as it is greater than
the threshold. In this way, a matrix with similarity
values between tokens of the source entity and
tokens of the target entity is generated; with
dimensions N×M where N, M are the amounts
of source and target entities tokens respectively.
For each such matrix, the sums of the maximum
similarity values of each row (Sum1) and of

32				 Journal of Advances in Computer Engineering and Technology, 1(1) 2015

each column (Sum2) are calculated. Maximum
similarity value of the source and the target entity
is determined as the mean value of these two
sums:

MaxSim(Schema1_element,Schema2_element)
=(Sum1+Sum2)/(M+N)	 	 (1)

Input: 2 Schemas, S1, S2, (OWL, RDF or combination of them) in OWL or RDF
files format

Operation:
after getting their inputs, each schema parses and all important data extract
from here. (Such as classes, properties, constraints and hierarchical relation
between them)
While (∃ next S1.entity)
{

Get next S1.entity
If (Each similarity value Χ of current S1.entity with an
S2.entity ∉ [minimum threshold, maximum threshold]) then
{

 While (∃ next S2.entity)
{

Get next S2.entity
Tokenize S1.entity based on delimiters ‘ ’, ‘.’, ‘_’, ‘-’, upper case.
Tokenize S2.entity based on delimiters ‘ ’, ‘.’, ‘_’, ‘-’, upper case.

 While (∃ S1.tokens)
 {

 Get next S1.entity and set it to i
 While (∃ S2.tokens)
 {
 Get next S2.token and set it to j

 Max Sim (i, j) = 0
 If (i == j) then
 Max Sim (i, j) = 1

 Else
 For each (Lexicon based matching i with j)

 If (Lexicon based Similarity (i, j) > Max Sim (i,j)) then
 Max Sim (i, j) = Lexicon based Similarity (i, j)
 If (Max Sim (i, j) > Threshold) then
 Store Μax Sim (i, j) in Similarity_value_Matrix

 }
 }
 Calculate the sum of maximum similarity values for each row
 of the Similarity_value_Matrix and set it as Sum1

 Calculate the sum of maximum similarity values for each column of
 the Similarity_value_Matrix and set it as Sum2
 ΜaxSim (S1.entity, S2.entity) = (Sum1 + Sum2) /
 (amount (S1.tokens) + amount (S2.tokens))

 Store [S1.entity, S2.entity, ΜaxSim (S1.entity, S2.entity)]
 in List1

}
}

}
Output: a list (List1) containing all entity pair from two schemas with
matching greater than threshold (we suggest 0.92)

Fig. 3. Operation of matcher 1

These values are calculated for all the entities
of the source schema and then, a list containing
all entity pair from two schemas with matching
greater than threshold (we suggest 0.92) is
returned. Matcher 1 algorithm is shown in Fig. 3.

Matcher 1 uses English dictionary WordNet
which is widely used in the information retrieval
domain. In next section we introduce this
dictionary and how use of WordNet in algorithm.

2. WordNet Dictionary
Information in WordNet is organized in logical

groups called “synsets”. Every “synset” consists
of a list of synonymous words or collocations and
pointers which describe the relations between

this “synset” and the other ones. A word can exist
in more than one “synset”.

Pointers represent two kinds of relations:
lexical and semantic. Lexical relations hold
between semantically related word forms.
Semantic relations hold between word meanings.
These relations consist of (but they are not
limited to) hypernyms (...Is kind of), hyponyms
(is kind of...), antonymy, entailment, meronyms
(parts of ...), holonyms (...is part of). Nouns and
verbs are organized into hierarchies based on
the hypernymy and hyponymy relation between
“synsets”.

The similarity value of two elements is
calculated based on the depth that the elements
appear in the different Lexicon’s hierarchies.
This similarity value calculated below:

Distance = ((dept1-dept)/dept1+ (dept2-dept) /dept2)/2
					 (2)
Sim=1-(Distance × Distance)		 (3)

Where dept1 is depth of the first entity, dept2
is depth of the second entity, dept is common
parent depth and finally sim is similarity value
between entity1 and entity2.

Finally, user select threshold and algorithm
ignores the matching with similarity value below
this (We suggest 0.92 for threshold and this
quantity selected after examine this approach
with many real world ontology data sets).

For example suppose that we want to match
“FatherLove” entity from schema 1 with
“MotherLove” entity from schema 2. Since there
is no matching exists between them, each entity
tokenizes and so matcher 1 execute for these
tokens. The step by step procedure shown in
below:

We have a similarity matrix with dimensions
2×2. based on dictionary maximum similarity for
“Father” and “Mother” is 0.99, for “Father” and
“Love” is 0, for “Love” and “Mother” is 0.22 and
finally for “Love” and “Love” is 1. So similarity

matrix for these entity pair is 







0.1

0
22.
99. .

And then:

Sim1 = .99 + 1 = 1.99
Sim2 = .99 + 1 = 1.99
ΜaxSim (“FatherLove” , ”MotherLove”) = (1.99 + 1.99) / (4) = 0.995

Journal of Advances in Computer Engineering and Technology, 1(1) 2015					 33

First we explain how computed 0.99 (i=0, j=0)
for “Father” and “Mother” tokens. WordNet try
to find their depth (dept1 and dept2 respectively).
For each token, the hierarchical structure from
token to its root represented below:

abstract_entity object living_thing organism person

 relative ancestor progenitor genitor parent Father

abstract_entity object living_thing organism person

 relative ancestor progenitor genitor parent Mother

Therefore, base on equations 2 and 3:

dept1=10, dept2=10, dept=9
distance= 0.1 and then sim=0.99

And so on, for “Love” and “Mother” tokens:

entity abstract_entity abstraction attribute state

 feeling emotion Love

And then base on equation 2 and 3:

dept1=7, dept2=10, dept=1
distance= 0.88 and then sim=0.22

3. Operation Of Matcher2
*-algorithm uses only element level matcher

for finding matches between entities. This leads
to increase false positive matches. If we use
structural level matcher too, several homonym’s
ambiguity disregards and not lead’s to false result.
For example suppose that schema1 and schema2
have an entity with the same name as Fig. 4:

Schema 1:
<owl:Class rdf:ID="Like">

<rdfs:subClassOf rdf:resource="#Similar"/>
<rdfs : subClassOf>

 <owl:Restriction>
 <owl:onProperty rdf:resource=”#ToObject”/>
 </owl:Resctriction>
 </rdfs:subClassOf>
</owl:Class>

 Schema 2:
<owl:Class rdf:ID="Like">

<rdfs:subClassOf rdf:resource="#Love"/>
<rdfs : subClassOf>

 <owl:Restriction>
 <owl:onProperty rdf:resource=”#ToPerson”/>
 </owl:Resctriction>
 </rdfs:subClassOf>
</owl:Class>

Fig. 4. An example of semantic ambiguity

But these entities have different means; it
means extract from their attributes. “Like” in
schema 1 refers to similar attribute and another
“Like” in schema 2 refers to love. For this
example, similarity related to an object while the
love attribute related to a person. So these entities

are different and need not be matched.
Our algorithm tries to discard these semantic

ambiguities with some measurement parameters.
First, properties of each entity should be check.
Therefore all properties of each entity and all
share properties between two entities should be
consider. A property in an entity refers to each
property that exists in hierarchical relation of this
entity, and a share property in an entity refers
to a property that exists in another entity set of
correspondences too. The similarity value for
properties attributes is:

Sim-property=1-(((x-z)/(x+1) + (y-z)/(y+1))/2 (4)

That x equal to all properties of entity 1, y
equal to all properties of entity 2 and z equal to
all share properties between entity 1 and entity
2. Note that extra 1 in (x+1) and (y+1), only for
avoiding division by zero in some cases (when
both or one of entities haven’t any property) and
not so effect on Sim-property function amount.

 So, all matches that pass from stage1, with
Sim-property less than .6, discard. This algorithm
is shown in Fig. 5.

In our example x=1, y=1, and z=0, then Sim-
property=.5 and this match discard.

Input: output of matcher 1 (a list (List1) containing all entity pair from two
schemas with matching greater than threshold (we suggest 0.92)).
Operation:
this matcher uses for decrease false positive matches and cause to several
ambiguity disregards.
i is a counter for List1 nodes, each node containing two entity pair and
element level match value between them.
create a list (List2) for store result of matcher 2.
While (∃ next List1 [i])
{
 If type of entity pair is Class then
 {

Compute all properties of entity 1(x), all properties of entity 2 (y),
and all share properties between entity 1 and entity 2 (z).

Sim-property=1-(((x-z)/(x+1)+ (y-z)/(y+1))/2)
 }

 If type of entity pair is Property then
 {

Compute number of classes that entity1 exists in their as a property
(domains of entity 1, x), number of classes that entity 2 exists in their
as a property (domains of entity 2, y) and number of classes that both
entity1 and entity2 exist in their as two properties (share domains of
entity1 and entity2, z).

Sim-property=1-(((x-z)/(x+1)+ (y-z)/(y+1))/2)
 }

If (Sim-property >= 0.6)
Add this node to List2.

}
Output: List2 that disregards several homonyms ambiguity.

Fig. 5. Operation of matcher 2

4. Operation Of Matcher 3
Maybe there are two namesake entities with

different concepts which none of them have any
property. For example suppose that in Fig. 4,

34				 Journal of Advances in Computer Engineering and Technology, 1(1) 2015

there is no onProperty field exists for both “Like”
entities. In this case, Sim-property can’t help to
find semantic ambiguity, because x=0, y=0, z=0
(element level match value between “ToObject”
and “ToPerson” equal to zero) and then Sim-
property=1 and so this node passes successfully
from matcher 2, while this entity pair not the
same. Thus we have to solve ambiguity with
matcher 3.

If two entities is match together, certainly these
parents too match together. The similarity value
between these parents can be with .2 tolerances.
This get with about 100 match entities check.
Thus, after running Sim-property, in matcher 3,
only nodes with their Sim-parents greater than .7
accept.

Note that in our strategy Sim-parent as like as
sim, and only different between them, is the entity
pair types in hierarchical relations in schemas.
This means that, in sim, two entities compared
with together, while in Sim-parrent the following
strategy used:

If both entities don’t have any parent,
obviously Sim-parent can’t any help and default
set to 1. If one entity has parent and another don’t
has, Sim-parent executes between this parrent
and entity 2. And finally, if both entities have
parent, Sim-parent execute between their parents.

For our example, matcher 3 execute for
“Similar” and “Love”, and then Sim-parent equal
to zero. Thus this entity pair discards.

We trust that after running these three
matchers, several true matches found and several
semantic ambiguities discard from result.

5. Selecting Best Match Pairs
After acting three matchers, may each entity

from schema 1, matches with some entities from
schema 2. So in this step, best match pairs (i.e.
match pairs that it’s match degree more high than
other) select.

IV. EVALUATION OF ALGORITHM

1. Matching Quality Measures
To provide a basis for evaluating the quality of

an algorithm, the match task has to be performed
manually first. The obtained real match result can
be used to assess the quality of the result semi-
automatically determined by the algorithm. False
negatives, A, are matches needed but not semi-
automatically identified, while false positives are
matches falsely detected by the semi-automatic

match operation. True negatives, D, are false
matches, which have also been correctly discarded
by the automatic match operation. Intuitively,
both false negatives and false positives reduce
the match quality. Fig. 6 shows this classification.

A: False Negative B: True Positive
 C: False Positive D: True Negative

Matches obtained from algorithm

 D

A B C

Real matches

Fig. 6. Classification of matches

The quality measures [7], [8], [9], which we
use in our evaluation can be computed as below:

Precision =
||||

||
CB

B
+

 (1)

Recall =
||||

||
BA

B
+

 (2)

Fmeasure = 2∗
RecallPrecision
Recall*Precision

+
 (3)

Overall = Recall ∗ (1−
ecisionPr

1) (4)

2. Comparision Results
Mean values of quality measures for our

algorithm are shown in Fig. 7.

0.96

0.89

0.92

0.85

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Precision

Recall

Fmeasure

Overall

Fig. 7. Mean value of quality measures

Because of inaccessibility implementation
of other schema matching algorithms except
*-algorithm, we compare our algorithm with
*-algorithm with the same real world standard
RDF schemas (e.g. Animal schemas, Food
schemas, Network schemas, Book schemas and
etc). Table III shows result of this comparison.

Note that because of inaccessibility
*-algorithm data set, mean value in Table II
and Table III was compute with different real

Journal of Advances in Computer Engineering and Technology, 1(1) 2015					 35

world schemas. So via these two tables, we can
compare our solution with other approaches such
as COMA++, Cupid, SF and so on.

TABLE III. RESULTS OF THE COMPARISON
BETWEEN OUR APPROACH AND *-ALGORITHM

EVALUATION
Quality Measures *-Algorithm Our Algorithm
Mean Precision 0.88 0.96

Mean Recall 0.89 0.89
Mean Fmeasure 0.88 0.92

Mean Overall 0.77 0.85

Our solution founds several true matches with
high match degree. Matcher 2 and matcher 3
cause to omitting several semantic ambiguities,
with analyzing content of entities.

But, in some cases, our algorithm is not able
to find correct matches with high degree, and it
cause to decreasing of recall and overall quality
measures.

For example in element level, “PairOfNodes”
and “NodePair” matches with 0.8 match degree
and its reason is preposition “Of”, that we can
solve its with step word omitting approaches.
By this technique, degree match between these
entities increase to 1.

V. CONCLUSION AND FUTURE WORK
In this paper a new improved solution

for schema mapping was presented and an
improvement hybrid semantic schema matching
algorithm which semi-automatically finds
matching between two data representation
schemas was introduced. This algorithm tried
to find best quality matches and overcome to
semantic ambiguity.

In element level, matcher 1 can finds correct
matches with high degree such as (child, parent,
0.81), (animal, tiger, 0.89), (male, female, 0.96)
and finally (humanBeing, person, 0.79).

Structural level matchers (matcher 2 and
matcher 3), are use for remove several semantic
ambiguity (with two different meaning), such as
like (similarity and love), look (see and search)
and etc. therefore these two matchers cause to
decrease false positive matches and so increase
correctness of matches. We trust that after running
these three matchers, several true matches found
and several semantic ambiguities discard from
result.

In future work, our goal is to use Word Sense
Disambiguation and Context Analysis approach
[15], [18], [19] for finding semantic matching

between multi terms entities. Thus the algorithm
instead of split a multi term entity, analysis entity
with context analysis techniques and concept
graph and so get ever better quality match.

Another goal for our future works is
implementing improvement semantic schema
integration with RDF Schema metadata, using
hierarchical relation between entities in WordNet
dictionary.

At the end, this algorithm can be used in
different application domain such as semantic
integration, query processing system and data
warehouses.

36				 Journal of Advances in Computer Engineering and Technology, 1(1) 2015

REFERENCES
[1] Manakanatas D., Plexousakis D., “A Tool for

Semi-Automated Semantic Schema Mapping: Design and
implementation”, International Workshop Data Integration
and the Semantic Web, pp. 290-306, June 5-9, 2009.

[2] Dou D., Qin H., LePendu P., “ontograte: towards
automatic integration for relational databases and the
semantic web through an ontology-based framework”,
International Journal of Semantic Computing Vol. 4, No. 1
pages 123–151, 2010.

[3] Shvaiko P., Giunchiglia F., Yatskevich M.,” semantic
matching with s-match”, Springer, 2009.

[4] Partyka J., Khan L., Thuraisingham B., “Semantic
Schema Matching Without Shared Instances”, IEEE
International Conference on Semantic Computing, 2009.

[5] Doan A., Domingos P., Halevy A., “Reconciling
schemas of disparate data sources: a machine-learning
approach”, SIGMOD conference, pages 09–520, 2001.

[6] Aumueller D., Do H.H., Massmann S., Rahm E.,
“Schema and Ontology Matching with COMA++”, Proc.
ACM SIGMOD international conference on Management
of data, pages 906-908, 2005.

[7] Do H. H., Rahm E., “COMA – A System for Flexible
Combination of Schema Matching Approach”, Proc. VLDB,
pages 610-621, 2002.

[8] Do H. H., Rahm E., Melnik S., “Comparison of
Schema Matching Evaluations”. Proc. GI – Workshop “Web
and Databases”, Oct. 2002.

[9] Yatskevich M., “Preliminary Evaluation of Schema
Matching Systems”, Technical Report DIT-03-028, May
2003.

[10] [10]	 Madhavan J., Bernstein P.A., Rahm E.,
“Generic Schema Matching with Cupid”, Proc. In VLDB :
Proceedings of the 27th International Conference on Very
Large Data Bases, pages 49-58, San Francisco, CA, USA,
2001.

[11] WordNet a Lexical Database for the English
Language, http://wordnet.princeton.edu/

[12] Saake G., Sattler K.U., Conrad S., “Rule-based
schema matching for Ontology-based mediators”, Elsevier,
2005.

[13] Rahm E., Bernstein P., “A survey of approaches to
automatic schema matching”, VLDB J. 10 (4), pages 334–
350, 2001.

[14] Evermann J., “Theories of Meaning in Schema
Matching: A Review”, Journal of Database Management,
19(3), pages 55-82, July-September 2008.

[15] Teymoorian F., Mohsenzadeh M., “English-Persian
Text Retrieval Using Concept Graph”, IEEE International
Conference on Computer Science and Information
Technology (IACSIT), Singapore, 2009.

[16] Chiticariu L., Mauricio A. Andez H., Kolaitis P.
G., Popa L., “Semi-Automatic Schema Integration in Clio”,
ACM – September, pages 23-28, 2007.

[17] Milo T., Zohar S., “Using schema matching to
simplify heterogeneous data translation”, in: Int. Conference
on Very Large Data Bases (VLDB) 98, pages 122–133,
1998.

[18] Soltanpoor R., Mohsenzadeh M., Mohaqeqi M.,
“Using concept graph and Naive Bayes to improve the
classification of unknown documents”, IEEECS, Conference
on Information and Software Engineering, India, 2010.

[19] Teymoorian F., Mohsenzadeh M., Seyyedi M.,
“Using Concept Graph to Increase Bilingual Text Retrieval
Precision”, IEEE International Conference on Digital
Ecosystems and Technologies, Istanbul, Turkey, 2009.

[20] Evermann J., “Theories of Meaning in Schema
Matching: A Review”, Journal of Database Management,
19(3), pages 55-82, July-September 2008

