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Abstract: Fog computing is being seen as a bridge between smart IoT devices and large scale 
cloud computing. It is possible to develop cloud computing services to network edge devices using 
Fog computing. As one of the most important services of the system, the resource allocation should 
always be available to achieve the goals of Fog computing. Resource allocation is the process of 
distributing limited available resources among applications based on predefined rules. Because the 
problems raised in the resource management system are NP-hard, and due to the complexity of 
resource allocation, heuristic algorithms are promising methods for solving the resource allocation 
problem. In this paper, an algorithm is proposed based on learning automata to solve this problem, 
which uses two learning automata: a learning automata is related to applications (LAAPP) and the 
other is related to Fog nodes (LAN). In this method, an application is selected from the action set of 
LAAPP and then, a Fog node is selected from the action set of LAN. If the requirements of deadline, 
response time and resources are met, then the resource will be allocated to the application. 
The efficiency of the proposed algorithm is evaluated through conducting several simulation 
experiments under different Fog configurations. The obtained results are compared with several 
existing methods in terms of the makespan, average response time, load balancing and throughput.
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I. INTRODUCTION

Fog computing is a distributed 
computing that acts as an intermediate 

layer between cloud servers and Internet of 
Things (IoT) devices/sensors. Similar to cloud 
servers, Fog computing provides processing, 
networking, and storage, but closer to IoT 
devices/sensors to reduce latency, network 
traffic, power consumption, and operating 
costs [1]. Fog computing has both edge and 
network computations. The development of 
multi-layered applications and the migration 
of services from a number of IoT devices/
sensors can be easily done through the Fog. 
Also, the edge network components can be 

closer to IoT devices/sensors than cloud and 
edge servers, thus reducing service delays 
for real-time applications [2]. Fig. 1 shows a 
3-layer architecture for Fog computing.

The features of Fog computing include 
[4],[5]: Awareness of location, mobility 
support, real-time interactions, scalability, 
interoperability, reduce service latency, reduce 
energy consumption, reduce network traffic, 
reduce capital and operational expenses, reduce 
content distribution, reduce network latency, 
wide geographical distribution, huge number 
of nodes, wireless access, real-time analysis 
and heterogeneity of software and hardware 
resources. Due to the above features, some 
applications are assumed for Fog computing 
in the fields of health, medicine, agriculture, 
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data centers, energy, industry, military, smart 
homes, smart cities, transportation, network of 
cars, online games and video transmission [4],[5].

 
Fig.1.  Three-layer architecture of Fog computing [3].

Resource allocation [6]-[8] is one of the 
most important services of the system, which 
should always be available to achieve the goals 
of Fog computing. A common problem with 
Fog computing is choosing the best resource 
for running specific applications. Resource 
allocation is the process of distributing limited 
available resources among applications based on 
predefined rules. Resource allocation mechanisms 
play an essential role in the process of scheduling 
of Fog computing, and the efficiency of these 
mechanisms determines the quality of service [3]. 
There are several interesting features that make 
resource allocation much more challenging. 
Some of these features include [9]: scalability, 
adaptability, error tolerance and reliability, load 
balancing, dynamic structure, high heterogeneity 
of resources and applications. 

Considering the challenging features of 
Fog computing, the heuristic solutions are 
undoubtedly the best way to solve the resource 
allocation problem in the Fog computing. The 
features of these solutions include [10],[11]. 

• Heuristic solutions are well-understood.
• There is no need for optimal solutions.

• Effective heuristic in a short time.
• Dealing with multi-objective nature.
• Appropriateness for decentralized 

solutions
• Ability to combine with other practices.
• Designing robust schedulers.
• Libraries and frameworks for meta-

heuristic.
• The learning automata and its hybrid 

models can be considered as a suitable 
model for solving the above problem 
because of the following features [12]-
[24]:

• The learning automata are able to perfectly 
adapt themselves to environmental 
changes. This feature is very suitable for 
use in Fog environments with a high 
degree of dynamism.

• In addition to very low computational 
requirements, the learning automata 
impose a small amount of communication 
costs in interacting with the environment. 
This feature distinguishes learning 
automata as a suitable alternative for use 
in environments with energy constraints 
and bandwidth than the other models.

• Interacting with each other, the learning 
automata are able to perfectly model 
the distribution of Fog environments 
and in addition, simulate the changing 
behavioral patterns of the nodes in relation 
to each other and with the environment 
considering their learning ability and 
their adaptability to the environment.

• Interacting with each other, the learning 
automata are able to converge to the 
global optimal answer only based on the 
local decisions when solving optimization 
problems. Therefore, learning automata-
based algorithms can be considered as an 
appropriate choice for the Fog as they can 
resolve the slag resulted from aggregation 
or dissemination of information in 
centralized algorithms.

• The learning automata complete their 
information required for decision-making 
in an iterable process and over time, from 
the environment in which they are located. 
Accordingly, in case of the occurrence of 
possible errors, the tolerance of learning 
automata-based algorithms will not affect 
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the algorithm's performance compared to 
the other algorithms.

In this paper, a learning automata-based 
algorithm is proposed to solve resource allocation 
problem in Fog computing (RALA). This method 
uses two learning automata: a learning automata 
is related to applications (LAAPP) and the other 
is related to Fog nodes (LAN). In the proposed 
algorithm, an application is selected from the 
action set of LAAPP and then a Fog node is 
selected from the action set of LAN. If the 
following 3 conditions are met, then the resource 
will be allocated to the application:

• The selected application has the shortest 
deadline.

• The response time of the selected 
application is less than its deadline.

• The selected Fog node has the ability 
to provide the resources of the selected 
application.

Several simulation experiments are conducted 
under several Fog configurations to show the 
performance of the proposed resource allocation 
algorithm. The results of the proposed algorithm 
are compared with those of BLA [25], ACO [26], 
GABVMP [27], and Random. Simulation results 
show that the proposed algorithm outperforms 
the other methods in terms of makespan, average 
response time, load balancing and throughput.

The rest of the paper is organized as follows. 
Literature is reviewed in the section II. In Section 
III, the definition of learning automata and 
learning automata with variable action set is 
described. In Section IV, the resource allocation 
algorithm based on learning automata is 
proposed. In Section V, the results of the proposed 
algorithm are presented, and finally, conclusion is 
provided in section VI.

II. RELATED WORKS

As a modern and comprehensive computing 
model, Fog computing is expanding due to 
computations at the edge level. Resource 
allocation is the process of distributing limited 
available resources among applications based on 
predefined rules. In this section, a set of related 
mechanisms and algorithms are introduced.

A method based on the life of bees for the 

job scheduling problem in the Fog computing 
environment was presented in the paper [25]. 
The proposed method was based on marriage 
(reproduction) and search for a food source. 
Two evaluation criteria were considered: the 
execution time of the processor and the total 
amount of memory required for all jobs accepted 
for execution (dedicated memory). The results 
of the proposed algorithm had been compared 
with genetic algorithm and particle swarm 
optimization, and the simulation results showed 
an improvement in the proposed algorithm 
over other algorithms. Though proving a great 
performance in solving such large scale problem, 
it did not consider some special characteristics 
of Fog computing paradigm, e.g., the tradeoff 
problem whether send the tasks to the cloud or 
not.

Ghaffari [26] first studied Fog computing 
and scheduling, and then proposed an algorithm 
based on the ant colony to assign tasks to virtual 
machines with minimal time and cost. The 
proposed algorithm consists of 3 steps. In the 
first stage, input tasks were categorized based on 
end time and cost. In the second step, categorized 
tasks were prioritized in terms of time and cost. 
In the third step, the ant colony algorithm was 
implemented to assign tasks to virtual machines. 
The proposed algorithm was evaluated in terms 
of end time, delay, load balancing and energy. The 
ant colony usually takes longer time to search and 
not suitable for large-scale problems.

The issue of service quality in cloud/Fog 
computing environments had been investigated in 
[27] by providing two models. In this regard, first 
the issue of assigning tasks to virtual machines 
was formulated as a linear programming model, 
and the HABBP algorithm was presented for load 
balancing policy to assign cloudlets to virtual 
machines. Next, the problem of virtual machine 
placement was solved using the genetic algorithm 
(GABVMP). The simulation results showed, this 
algorithm outperforms the Random Placement 
and First Fit algorithms in term of the allocation 
cost parameter. The genetic algorithm has a slow 
convergence rate and it may converges to a local 
optima.

Guangshun Li et al. [28] first standardized and 
normalized the resource attributes and features. 
Next, fuzzy clustering and particle swarm 
optimization methods had been combined in 
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their paper to categorize resources to reduce 
the resource search scale. Finally, a resource 
scheduling algorithm based on fuzzy clustering 
was presented. The simulation results showed that 
the proposed algorithm had a higher convergence 
velocity than the conventional fuzzy algorithm. In 
this paper, the proposed algorithm is compared 
with the algorithm based on the Grid structure. 
Also, user satisfaction is the only parameter 
examined in this article.

In the paper [29], a heuristic algorithm for 
task scheduling in Fog computing was presented 
based on ant colony optimization and particle 
swarm optimization. This algorithm solved the 
problem of scheduling end devices with limited 
computational resources and high energy 
consumption, so that it was suitable for real-
time tasks and efficient processing. The proposed 
algorithm had been compared with ACO, PSO, 
Round Robin algorithms and provided good 
results in terms of reliability, energy consumption 
and completion time. This algorithm is static and 
the load balancing parameter is ignored.

A multi-objective simplified swarm 
optimization (MOSSO) method for solving 
the scheduling problem in Fog computing was 
presented in the paper [30]. MOSSO was a 
multi-objective optimization method based on 
Simplified Swarm Optimization (SSO). SSO 
was a population-based stochastic optimization 
method characterized by its simplicity and 
efficiency. The objectives of the MOSSO method 
were to reduce the processing rate as well as the 
cost, which provided better results compared to 
the multi-objective particle swarm optimization 
(MOPSO) algorithm. In this article, no attention 
has been paid to throughput and load balancing.

Huang et al. [31] provided a blockchain-based 
model for resource sharing in Fog nodes. The 
proposed model actively used the blockchain 
reward and penalty mechanism to share resources. 
The Fog node behavior in resource sharing and 
the degree of completion of the task in resource 
sharing were packaged into blocks and stored in 
the blockchain system to meet the transparency 
feature. In the following, a differentiated game 
method had been used to build a resource sharing 
model and simulate the optimal resource sharing 
strategy. One of the advantages of blockchain 
technology in Fog computing architecture is the 
creation of an appropriate level of security in an 

unsafe environment. The results of this algorithm 
have not been compared with other algorithms.

A new model of task scheduling according to 
the role of containers was presented in the paper 
[32]. This model was proposed to minimize task 
completion time and maximize the number 
of concurrent tasks for Fog node. The task 
execution processing was divided into two sub-
steps: determining the tasks that were accepted 
or rejected, and scheduling the tasks accepted in 
the cloud or in the Fog. The proposed algorithm 
had been compared with FT-FQ, FT-RE, DT-FQ 
and DT-RE methods. An important feature of 
this algorithm was the reduction of tasks delay. 
In general, this algorithm provides a solution for 
scheduling workflows, taking into account the 
QOS factors requested by the user.

An optimization framework for Fog nodes 
(FNs), data service operators (DSOs), and data 
service subscribers (DSSs) for IoT Fog computing 
was presented in the paper [33]. In this framework, 
first, the Stackelberg game had been proposed 
to solve the pricing problem of DSOs and FNs, 
and then a many-to-many matching taked place 
between FNs and DSSs. The simulation results 
showed that all FNs, DSOs and DSSs could 
operate close to their optimal and the proposed 
framework was highly efficient compared to the 
FNs-free mode. The results of this algorithm have 
not been compared with the exact or heuristic 
algorithms.

Josilo and Dan [34] had proposed a theoretical 
model for the task allocation problem. In this 
paper, Variational Inequality Theory was used to 
compute an equilibrium task allocation in static 
strategies. Based on this strategy, a decentralized 
algorithm had been proposed for allocating the 
computational tasks among nearby devices and 
the edge cloud. The efficiency of the proposed 
algorithm had been compared with an optimal 
algorithm that uses global knowledge of system 
status. The results showed a good level of efficiency 
for the proposed algorithm. In this article, no 
attention has been paid to the completion time.

An application scheduling technique based 
on virtualization technology to find an effective 
and efficient algorithm was presented in the 
paper [35]. The algorithm could reduce energy 
consumption and the average delay of real-time 
applications in Fog computing networks. Four 
task scheduling policies had been reviewed in a 
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Fog node scheduler to examine their effectiveness. 
The four algorithms were: First-Come-First-
Service (FCFS), Shortest-Job-First (SJF), Round-
Robin (RR) and Generalized-Priority (GP). The 
simulation results showed that the FCFS algorithm 
has 11%, 7.78%, 4.4%, and 15.1% improvement in 
terms of energy consumption, average task delay, 
network usage and execution time, respectively 
compared to other algorithms. In this paper, 
heuristic algorithms are not examined.

A method for assigning a dynamic resource 
(DRAM) was presented in the paper [36] 
to load balancing in the Fog environment. 
Initially, a system framework for Fog computing 
was presented, and the load balancing for 
computational nodes was analyzed. Then, the 
DRAM method was implemented based on 
the allocation of static resource and dynamic 
scheduling for Fog services. The DRAM algorithm 
had four steps: Step 1: Fog service partition, Step 
2: spare space detection for computing nodes, 
Step 3: static resource allocation for Fog service 
subset and Step 4: load-balance driven global 
resource allocation. The simulation results 
showed that the proposed algorithm outperforms 
other algorithms in terms of average resource 
utilization and average load balancing variance. 
In this algorithm, the end time of each task is not 
considered.

III. LEARNING AUTOMATA THEORY

A learning automaton [37],[38] is an 
adaptive decision-making unit that improves 
its performance by learning how to choose the 
optimal action from a finite set of allowed actions 
through repeated interactions with a random 
environment. The action is chosen at random 
based on a probability distribution kept over the 
action set and at each instant the given action is 
served as the input to the random environment. 
The environment responds the taken action in 
turn with a reinforcement signal. The action 
probability vector is updated based on the 
reinforcement feedback from the environment. 
The objective of a learning automaton (LA) 
is to find the optimal action from the action 
set so that the average penalty received from 
the environment is minimized. LA have been 
found to be useful in systems where incomplete 

information about the environment exists. LA are 
also proved to perform well in complex, dynamic 
and random environments with a large amount of 
uncertainties.

The environment can be described by a triple 
E={α,β,c}, where α={α1,α2,…,αr} represents the 
finite set of the inputs, β={β1,β2,…,βm} denotes 
the set of the values that can be taken by the 
reinforcement signal, and c={c1,c2,…,cr} denotes 
the set of the penalty probabilities, where the 
element ci is associated with the given action 
αi. If the penalty probabilities are constant, the 
random environment is said to be a stationary 
random environment, and if they vary with 
time, the environment is called a non-stationary 
environment. The environments depending on 
the nature of the reinforcement signal β can be 
classifiedinto P-model, Q-model and S-model. 
The environments in which the reinforcement 
signal can only take two binary values 0 and 1 are 
referred to as P-model environments. Another 
class of the environment allows a finite number 
of the values in the interval [0, 1] can be taken by 
the reinforcement signal. Such an environment is 
referred to as Q-model environment. In S-model 
environments, the reinforcement signal lies in the 
interval [a,b].

LA can be classified into two main families 
[37],[38]: fixed structure learning automata and 
variable structure learning automata. Variable 
structure learning automata are represented by a 
triple <β,α,L>, where β is the set of inputs, α is 
the set of actions, and L is learning algorithm. The 
learning algorithm is a recurrence relation which 
is used to modify the action probability vector. 
Let αi(k) ∈ α and p(k) denote the action selected 
by learning automaton and the probability 
vector defined over the action set at instant k, 
respectively. Let a and b denote the reward and 
penalty parameters and determine the amount of 
increases and decreases of the action probabilities, 
respectively. Let r be the number of actions that 
can be taken by learning automaton. At each 
instant k, the action probability vector p(k) is 
updated by the linear learning algorithm given 
in Eq. 1, if the selected action αi(k) is rewarded 
by the random environment, and it is updated as 
given in Eq. 2 if the taken action is penalized.
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pj(k+1)=pj(k)+a[1-pj(k)];for j=i
pj(k+1)=(1-a)pj(k);  otherwise (1)
pj(k+1)=(1-b) p_j (k);for j=i
pj(k+1)=b/(r-1)+(1-b)pj(k); otherwise (2)

If a = b, the recurrence Eq. 1 and Eq. 2 are 
called linear reward-penalty (LR-P) algorithm, if 
a>>b the given equations are called linear reward-
∈penalty (LR-∈P), and finally if b = 0 they are called 
linear reward-Inaction (LR-I). In LR-I, the action 
probability vectors remain unchanged when the 
taken action is penalized by the environment.

1. Variable Action-Set Learning Automata
A variable action set learning automaton 

(VLA) is an automaton in which the number of 
actions available at each instant changes with 
time. It has been shown in [37] that a learning 
automaton with a changing number of actions is 
absolutely expedient and also ∈-optimal, when 
the reinforcement scheme is LR-I. Such an 
automaton has a finite set of n actions,      
α={α1,α2,…,αr}. A={A1,A2,…,Am} denotes the set 
of action subsets and A(k) ⊆ α is the subset of all 
the actions can be chosen by the learning 
automaton, at each instant k. The selection of the 
particular action subsets is randomly made by an 
external agency according to the probability 
distribution Ψ(k)={Ψ1(k),Ψ2(k) ,…,Ψm(k)} 
defined over the possible subsets of the actions, 
where Ψi(k)=prob[A(k)=Ai|Ai ∈ A,i=2n-1]. Let             
p���k� =prob[α(k)=αi|A(k),αi∈A(k)] denotes the 

probability of choosing action αi, conditionedon 
the event that the action subset A(k) has already 
been selected and αi∈A(k) too. The scaled 
probability p���k�   isdefined as

p���k� � p��k�
��k�                               (3)

where K(k)=∑αi∈A(k)pi(k) is the sum of the 
probabilities of the actions in subset A(k), and     
pi(k)=prob[α(k)=αi].

The procedure of choosing an action and 
updating the action probabilities in a VLA can be 
described as follows. Let A(k) be the action subset 
selected at instant n. Before choosing an action, 
the probabilities of all the actions in the selected 

subset are scaled as defined in Eq. 3. The 
automaton then randomly selects one of its 
possible actions according to the scaled action 
probability vector p���k� . Depending on the 

response received from the environment, the 
learning automaton updates its scaled action 
probability vector. Note that the probability of the 
available actions is only updated. Finally, the 
probability vector of the actions of the chosen 
subset is rescaled as 
p��� � �� � p���� � ��� ���� , for all αi ∈ 

A(k). The absolute expediency and ε-optimality 
of the method described above have been proved 
in [37].

IV. RESOURCE ALLOCATION ALGORITHM

Resource allocation is one of the most 
important services of the system, which should 
always be available to achieve the goals of Fog 
computing. Resource allocation is the process of 
distributing limited available resources among 
applications based on predefined rules. According 
to the reasons of resource allocation complexity, 
as well as the characteristics of the heuristic 
solutions, we have proposed an algorithm based 
on variable action set learning automata to solve 
this problem.

1- Problem Formulation
Suppose A={A1,A2,...,Am} is a set of 

applications, so that m is the total number of 
applications. Each application Ai consists of a 
number of independent tasks that can be run 

simultaneously: A� � �t��,t��,⋯ ,t���� . Each task 

in the application is limited to a deadline; in other 

words, D���
�   indicates the deadline for the task t1 

of the application Ai. Also, each of the tasks tl has 
a response time feature:
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𝑅𝑅𝑅𝑅���
� � ���������������������������

� ��������������� 

                                                                        (4)

so that RT���
� � D���

�  . Each application also 

has deadline and response time features that are 
defined as follows:

����R���� , RT��� ,⋯ , RT��
��� � RT��           (5)

����D��� , D��� ,⋯ , D��
�� � � D��                   (6)

so that RT�� � D�� .
Suppose N={N1,N2,...,Nn} is a set of Fog nodes 

and R={R1,R2,...,Rc} is the different types of 
resources available to the Fog network. Each of 
the Fog nodes has its own resources: 
N� � �R��, R��,⋯ , R����  The Eq. 7 determines 

how much each application needs from each 

resource, so that R���
��  indicates how many task tl 

from application Ai needs from resource p.

R���
� � � R���

��

������������

 
                                  (7)

In this method, two learning automata 
are used to select applications and Fog nodes: 
LAAPP={A1,A2,...,Am} with the action set of the 
applications so that m is the total number of 
applications and LAN={N1,N2,...,Nn} with the 
action set of the Fog nodes so that n is the total 
number of Fog nodes.

2. The proposed algorithm
The proposed learning automata-based 

resource allocation (RALA) uses two learning 
automata: a learning automata is related to 
applications (LAAPP) and the other is related to 
Fog nodes (LAN). The Eq.1 and Eq. 2 are used for 
reward and penalty, so that a and b are reward 
and penalty coefficients, respectively, and r is also 
the number of actions (applications in LAAPP and 
Fog nodes in LAN) in these equations.

The proposed algorithm has the following 
steps:

Step1: Assigning probability to the LAAPP 
action set.

Step2: Selecting an application according to 
the LAAPP probability vector.

Step3: Assigning probability to the LAN action 
set.

Step4: Selecting a Fog node according to the 
LAN probability vector.

Step5: Allocating resources to the application 
and running it.

Step6: Releasing the allocated resources.

The pseudo-code of the proposed algorithm is 
shown in Fig. 2. In this algorithm, the probability 
is firstly assigned to the LAAPP action set which is 
a set of applications provided for execution. At 
this step, all actions (applications) have an equal 
probability. An application is then selected based 
on the probability vector of LAAPP. If the selected 
application has the shortest deadline among the 
action set, then it will be rewarded according 
to Eq. 1 and the algorithm will enter the next 
step; otherwise, the selected application will be 
penalized according to Eq. 2 and the algorithm 
will be executed again from the application 
selection step.

After selecting the application, the probability 
must be assigned to the LAN action set. At this step, 
all actions (Fog nodes) have an equal probability. 
At this step, a Fog node is selected based on the 
LAN probability vector, and the response time of 
the application must be set. The response time is 
equal to the sum of predicted execution time and 
the delay time of the application. If the selected 
Fog node can meet the requirements of the 
resource and deadline of the selected application, 
then it will be rewarded according to Eq. 1 and 
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the algorithm will enter the next step, otherwise 
the selected Fog node will be penalized according 
to Eq. 2 and the algorithm will run again from the 
selection step on Fog node.

 
Fig.2. The pseudo-code of the proposed algorithm

If all the Fog nodes are penalized at this step, 
then the selected application will be transferred 
to the cloud, and the implementation of the 
algorithm will be executed from the application 
selection step. At this step, the resources of 
selected Fog node should be allocated to the 
selected application. In other words, resources 
must be removed from the list of free resources on 
Fog node and allocated to the application. After 
the execution of the application is completed 
by Fog node, then the application resources 
will be released and will be added to the list of 
free resources of Fog node, and Fog node will 
be rewarded according to Eq. 1. The proposed 
flowchart algorithm is shown in Fig. 3.

V. RESULTS

In order to evaluate the proposed algorithm, 
we simulated a Fog environment that included 
3 configurations (small scale, medium scale, 
and large scale): A small scale Fog environment 
includes 16 Fog nodes, 50 Fog devices, 1000 
applications, 128 processors, 32 memories and 32 
disks, a medium scale Fog environment including 
32 Fog nodes, 100 Fog devices, 2000 applications 
, 256 processors, 64 memories and 64 disks, and 
finally a large scale Fog environment including 
64 Fog nodes, 400 Fog devices, 8000 applications, 
1024 processors, 256 memories and 256 disks.
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Fig. 3.  The flowchart of the proposed algorithm

It is also assumed in all configurations that 
the system has one data center. Each application 
consists of a number of tasks. Each application 
is divided into k tasks so that k is randomly 
selected from U[1,2,3,4]. In each Fog device, the 
new application generation rate follows a Poisson 
distribution with an average rate [5,10,15,20]. 
Deadline of applications is achieved by a Normal 
distribution with an average of 500 and a variance 
of 100. Application execution time is obtained 
by a Normal distribution with an average of 500 
and a variance of 100. Processor computational 

capacity is obtained by a Normal distribution 
with an average of 1000 and a variance 150. The 
memory needed for the application is obtained by 
a Normal distribution with an average of 256 and 
a variance of 64. The memory storage capacity by 
applications is obtained by a Normal distribution 
with an average of 2000 and a variance of 100. 
Disk requirement of application is obtained by a 
Normal distribution with an average of 256 and 
a variance of 64. The disk storage capacity by 
applications is obtained by a Normal distribution 
with an average of 2000 and a variance of 100. The 
Nominal bandwidth of the network is 100Mbps. 
To improve the accuracy of the report's results, 
each test was repeated independently 50 times 
and the average results were presented. The 
parameters of this simulation are summarized in 
Table 1.

We performed all experiments on a desktop 
PC with an Intel Pentium Core 2 Duo CPU T6600, 
a clock rate of 2.20 GHz, 4BG of memory and 
Windows 7 (64-bit).To demonstrate the efficiency 
of the proposed algorithm (RALA), the obtained 
results were compared with BLA [25], ACO 
[26], GABVMP [27] and Random algorithms in 
terms of makespan, average response time, load 
balancing, and throughput.

The algorithms are simulated on iFogSim [39]. 
iFogSim simulation toolkit is developed upon the 
fundamental framework of CloudSim. CloudSim 
is one the wildly adopted simulators to model 
cloud computing environments. Extending the 
abstraction of basic CloudSim classes, iFogSim 
offers scopes to simulate customized Fog 
computing environment with large number of Fog 
nodes and IoT devices (e.g. sensors, actuators). 
However, in iFogSim the classes are annotated in 
such a way that users, having no prior knowledge 
of CloudSim, can easily define the infrastructure, 
service placement and resource allocation 
policies for Fog computing. iFogSim applies 
Sense-Process-Actuate and distributed dataflow 
model while simulating any application scenario 
in Fog computing environment.
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Table 1. Simulation Parameters

Parameter 
Config #1 

Small 
Scale 

Config #2 
Medium 

Scale 

Config #3 
Large 
Scale 

Number of Fog nodes 16 32 64 
Number of Fog Devices 50 100 400 

Total number of applications 1000 2000 8000 
Number of processors 128 256 1024 
Number of memories 32 64 256 

Number of disks 32 64 256 
Number of data center 1 

Number of tasks per application Uniform distribution [1, 2, 3, 4] 
Application generation rate Poisson distribution [5, 10, 15, 20] 

Deadline of application Normal distribution (500,100) ms 
Execution time of application Normal distribution (500,100) MI 

Processor computational 
capacity Normal distribution (1000, 150) MIPS 

Memory requirement of 
application Normal distribution (256,64) MB 

Memory storage capacity Normal distribution (2000,100) MB 
Disk requirement of application Normal distribution (256,64) GB 

Disk storage capacity Normal distribution (2000,100) GB 
Nominal bandwidth 100 Mbps 

 

1. Makespan
One of the most important and common 

optimization measures is "makespan reduction". 
The makespan is a general indicator of efficiency 
of the Fog system so that small values of makespan 
indicate that the resource allocation is efficiently. 
This metric is defined as the maximum execution 
time of all submitted applications. In other words, 
makespan is the completion time of the latest 
application. Here, we measure the makespan in 
milliseconds. 

The simulation results of the proposed 
algorithm (RALA) are presented in Fig. 4 under 
different reward/penalty coefficients of 0.005, 0.01 
and 0.1 in term of makespan. As can be seen, as 
the coefficients increase, the makespan decreases 
in small, medium and large configurations. 
In small configuration, the makespan for the 
coefficients of 0.005, 0.01 and 0.1 is 125, 110 and 
98, respectively, and therefore the coefficient of 
0.1 has a decrease of 27 units compared to the 
coefficient of 0.005. In the medium configuration, 
the makespan for the coefficients of 0.005, 0.01 
and 0.1 is equal to 415, 380 and 310, respectively, 
and therefore the coefficient of 0.1 has a decrease 
of 105 units compared to the coefficient of 0.005. 
In large configuration, the makespan for the 
coefficients of 0.005, 0.01 and 0.1 is 1570, 1310 
and 960, respectively, and therefore the coefficient 
of 0.1 has a decrease of 610 units compared to the 
coefficient of 0.005. Thus, as the configuration size 
increases, makespan's rate of decline has increased, 
since the algorithm convergence rapidly. It is 

contradicts the philosophy of the existence of Fog 
despite the reduction in makespan, because most 
applications are transferred to the cloud.
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Fig. 4.  The average makespan for different reward (a) 
and penalty (b) parameters in proposed algorithm.
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Fig. 5.  The average makespan for different algorithms 
under different configurations.

Fig.5 shows the simulation results of the 
RALA algorithm, with reward and penalty 
coefficients of 0.01 with the BLA [25], ACO [26], 
GABVMP [27] and Random algorithms in term 
of makespan. The RALA algorithm outperforms 
other comparable algorithms due to the dynamic 
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RALA scheduling as well as the use of applications 
scheduling technique with a smaller response time 
to meet their deadline. In all configurations, the 
RALA algorithm differs most from the Random 
algorithm because it hasn’t a specific strategy for 
assigning applications to Fog nodes so that it is 
170, 940, and 2570 in small, medium, and large 
scales, respectively and therefore, the largest 
difference occurred in a large scale, which is not 
unexpected given the size of the configuration. 
However, the proposed algorithm in medium 
scale has the most improvement (71%) over the 
Random algorithm. In all configurations, the 
proposed algorithm has the least difference with 
the BLA algorithm, and this is due to the use of 
CPU and memory parameters in BLA algorithm 
to assign applications to Fog nodes. The RALA 
algorithm has the lowest improvement in small 
scale with a size of 8% and the largest improvement 
in large scale with a size of 21% compared to the 
BLA algorithm. ACO and GABVMP algorithms 
have similar functions due to the use of time 
parameter in algorithm decisions. The RALA 
algorithm has the lowest improvement compared 
to the ACO algorithm in the small scale (27%) 
and the highest improvement in the medium scale 
(32%). Similarly, the proposed algorithm has the 
lowest improvement compared to the GABVMP 
algorithm in the large scale (33%) and the highest 
improvement in the medium scale (38%).

2. Average Response Time
The response time is the interval between 

providing an application and the start of the 
response reception. A process mostly begins 
to produce an output when the application 
processing is continued. Thus, this criterion is 
better than turn-around. Here, we measure the 
average response time in milliseconds. 

The simulation results of the proposed 
algorithm (RALA) are presented in Fig. 6 under 
different reward / penalty coefficients of 0.005, 
0.01 and 0.1 in term of average response time. In 
all three small, medium and large configurations, 
the average response time at a= b= 0.01 coefficient 
is 40, 210 and 920, respectively, which is less than 
the other two coefficients, i.e. 0.005 and 0.1. In the 
coefficient a=b=0.005 for small, medium and large 
configurations is 45, 270 and 1150, respectively. 
At the coefficient a=b=0.1, since the system 
converges rapidly and also due to the transfer 

of more applications to the cloud. Therefore, 
receiving the first output from implementation 
of the application for Fog devices is delayed, so 
the average response time is the highest in all 
three configurations in comparison with other 
coefficients.

Fig.7 shows the simulation results of the 
RALA algorithm, with reward and penalty 
coefficients of 0.01 with the BLA [25], ACO 
[26], GABVMP [27] and Random algorithms 
in term of average response time. The proposed 
algorithm outperforms other algorithms in all 
3 configurations. As mentioned in the previous 
subsection, this good function is due to the use 
of dynamic scheduling technique and performing 
applications with a smaller response time in 
this algorithm. In all configurations, the RALA 
algorithm has the least improvement over the 
BLA algorithm compared to other algorithms, so 
that it is 43%, 38% and 20% in small, medium and 
large scales, respectively, and this is due to the 
proximity of the two algorithm decision strategy, 
because the BLA algorithm also uses CPU and 
memory parameters to decisions. The difference 
in average response time for RALA and ACO 
algorithms is 45, 210 and 650 in small, medium 
and large scales, respectively, with the largest 
difference occurring in a large scale; however, 
the highest improvement in the RALA algorithm 
compared to the ACO algorithm occurred in the 
small scale (53%) and the lowest improvement 
in the large scale (41%). The improvement 
percentage of the RALA algorithm compared to 
the GABVMP algorithm is 58%, 59% and 44% 
in small, medium and large scales, respectively, 
so that the lowest improvement in a large scale 
and the highest improvement occurred in a 
medium scale. However, the biggest difference 
in the average response time occurred in large 
scale with 730. The RALA algorithm has the most 
improvement in all configurations compared to 
the Random algorithm, with 75%, 78%, and 57% 
in small, medium, and large scales, respectively.
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Fig. 6.  The average response time for different reward 
(a) and penalty (b) parameters in proposed algorithm.
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Fig. 7.  The average response time for different algorithms 
under different configurations.

3. Load Balancing
Load balancing represents the distribution 

of the workload allocated to the Fog nodes. A 
uniform workload distribution shows the load 
balancing only when all the Fog nodes have 
the same computational capacities. However, 
in case of different computational capacities, 
the workload submitted to each Fog node must 
be proportional to its capacity. In this case, the 

standard deviation of the completion time (i.e., the 
time at which a Fog node completes the execution 
of its last application) of the Fog nodes stands for 
the load balancing. Makespan and response time 
are minimized, if the workload placed on the Fog 
nodes is balanced. Load balancing increases as 
the standard deviation of the completion time 
decreases. Let T denotes the completion time of 
all the Fog nodes. Load balancing is computed as

T� � ��
T� � ����                               (8)

Where T�  and σT denote the mean and 

standard deviation of completion time T, 
respectively. Here, we measure the load balancing 
in percentage.

The simulation results of the proposed 
algorithm (RALA) are presented in Fig. 8 under 
different reward / penalty coefficients of 0.005, 0.01 
and 0.1 in term of load balancing. As the value of the 
coefficients increases, the load balancing in small, 
medium, and large configurations decreases, and 
this is due to the increased convergence rate of 
the algorithm, which prevents the load balancing 
from being performed correctly. As can be seen, 
with increasing configuration size, the rate of 
reduction of load balancing has increased, so that 
in small scale, the difference in load balancing for 
coefficients of 0.005 and 0.1 is equal to 7 units, 
while it is equal to 23 units in large scale. In the 
medium configuration, the load balancing for 
coefficients of 0.005, 0.01 and 0.1 is equal to 92, 85 
and 75, respectively, so that the load balancing for 
the coefficient of 0.1 compared to the coefficient 
of 0.005 has a decrease of 17 units.

The simulation results of the RALA algorithm, 
with reward and penalty coefficients of 0.01 are 
presented in Fig. 9 with the BLA[25], ACO [26], 
GABVMP [27] and Random algorithms in term 
of load balancing. Due to the dynamic scheduling 
as well as the use of suitable Fog nodes to meet 
the requirements of application resources, 
the proposed algorithm outperforms other 
algorithms. It is obvious that as the configuration 
size increases, the load balancing tends to decrease. 
In all configurations, the RALA algorithm has the 



Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 

   J. ADV COMP ENG TECHNOL, 7(1) Winter 2021                               31

most differences with the Random algorithm, so 
that it is 36, 43 and 44 in small, medium and large 
scales, respectively, and the largest improvement 
is in large scale. In all configurations, the proposed 
algorithm has the least difference with the BLA 
algorithm. As mentioned earlier, this is due to the 
proximity of the two algorithm decision strategy. 
In small, medium and large configurations, the 
difference between RALA and BLA algorithms 
is 4, 10 and 16, respectively. The percentage 
improvement of the RALA algorithm compared 
to the BLA algorithm is 5%, 13% and 26% in 
small, medium and large scales, respectively. As 
it turns out, the biggest difference and the highest 
percentage of improvement has occurred in large 
scale. The improvement percentage of the RALA 
algorithm compared to the GABVMP algorithm 
is 21%, 63% and 63% in small, medium and large 
scales, respectively. The biggest difference in 
load balancing between RALA and GABVMO 
algorithms has occurred in medium scale of 
33. The difference between RALA and ACO 
algorithms is 11, 21 and 27 in small, medium 
and large scales, respectively, but the highest 
improvement in the RALA algorithm compared 
to the ACO algorithm occurred in the large scale 
(53%) and the lowest improvement in the small 
scale (14%).
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Fig.8.  The load balancing for different reward (a) and 
penalty (b) parameters in proposed algorithm.
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Fig9.  The load balancing for different algorithms under 
different configurations.

4. Throughput
Throughput is another important criterion 

that indicates the number of applications that are 
processed per unit time. The simulation results of 
the proposed algorithm (RALA) are presented in 
Fig. 10 under different reward/penalty coefficients 
of 0.005, 0.01 and 0.1, respectively. 

As the coefficients increase, the throughput 
in small, medium, and large configurations 
decreases, since the algorithm convergence 
rapidly, but it is not appropriate because it 
contradicts the existential philosophy of Fog, 
because most applications are transferred to the 
cloud. In small configuration, the throughout for 
the coefficients of 0.005, 0.01 and 0.1 are 850, 910 
and 950, respectively. In medium configuration, 
the throughout for the coefficients of 0.005, 0.01 
and 0.1 are 1250, 1810 and 1915, respectively. 
In the large configuration, the throughout for 
the coefficients of 0.005, 0.01 and 0.1 are 6230, 
7450 and 7820, respectively. The difference in 
throughout for the coefficients of 0.005 and 0.1 
in small, medium and large scales is 100, 665 
and 1590, respectively, and therefore it can be 
concluded that in large scale, most applications 
transformed to the cloud.

The simulation results of the RALA algorithm 
are presented In Fig. 11 with reward and penalty 
coefficients of 0.01, with the BLA [25], ACO [26], 
GABVMP [27] and Random algorithms in term 
of throughput. In all configurations, the RALA 
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algorithm has the least improvement over the BLA 
algorithm compared to other algorithms, so that it 
is 5%, 19%, and 14% in small, medium, and large 
scales, respectively, and the largest improvement 
occurred in medium scale. In all configurations, 
the RALA algorithm has the most differences 
with the Random algorithm, so that it is 250, 
890 and 3130 in small, medium and large scales, 
respectively, and the largest difference occurred 
in large scale that has not been unexpected 
due to the configuration size. The difference in 
throughput for RALA and ACO algorithms is 100, 
600, and 940 in small, medium, and large scales, 
respectively, with the largest difference occurring 
in large scale, but the highest improvement in 
the RALA algorithm compared to the ACO 
algorithm occurred in medium scale (53%) and 
the lowest improvement in small scale (12%). 
The percentage improvement of RALA algorithm 
over GABVMP algorithm is 15%, 56% and 19% 
in small, medium and large scales, respectively, 
so that the lowest improvement occurred in small 
scale and the highest improvement occurred in 
medium scale. However, the biggest difference in 
the throughput occurred in large scale with a size 
of 1240.
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Fig.10.  The throughput for different reward (a) and 
penalty (b) parameters in proposed algorithm.
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Fig.11. The throughput for different algorithms under 
different configurations.

VI. CONCLUSION

The present study proposed a learning 
automata-based algorithm to solve the resource 
allocation problem in Fog computing. In this 
method, two learning automata are used to 
select applications (LAAPP) and Fog nodes (LAN). 
Initially, the probability values are assigned to 
the action set of LAAPP. Then an application is 
then selected based on the LAAPP probability 
vector. If the selected application has the shortest 
deadline among the action set, then the algorithm 
enters the next step, otherwise the selection 
of the application takes place again. Next, the 
probability values are assigned to the action set 
of LAN. At this step, a Fog node is selected based 
on the LAN probability vector, and the response 
time of the application must be set. If the selected 
Fog node is able to meet the requirements of the 
resource and deadline of the selected application, 
then the algorithm enters the next step; otherwise 
the selection of the Fog node takes place again. 
If all the conditions are met, then the selected 
Fog node resources should be allocated to the 
selected application. After the execution of the 
application is completed by Fog node, then the 
application resources will be released and will be 
added to the list of free resources of Fog node. 
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For the purpose of demonstrate the efficiency of 
the proposed algorithm, several simulations have 
been performed on three configurations: small, 
medium and large scales. Finally, the results of 
the proposed algorithm were compared with the 
results of BLA, ACO, GABVMP and Random 
algorithms. According to the obtained results, 
the proposed algorithm outperforms the other 
mentioned algorithms in terms of makespan, 
average response time, load balancing and 
throughput.
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