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Abstract: Recently optimization algorithms are proposed to find the best solution for complex 
engineering problems. These algorithms can search unknown and multidimensional spaces and 
find the optimal solution in the shortest possible time. In this paper, we present a new modified 
differential evolution algorithm. Optimization algorithms typically have two stages of exploration 
and exploitation. Exploration refers to global search, and exploitation refers to local search. We 
used the same differential evolution (DE) algorithm. This algorithm uses a random selection of 
several other search agents to update the new search agent position, which makes the search 
agents continually have random moves in the search space, which refers to the exploration phase. 
Still, there is no mechanism considered explicitly for the exploitation phase in the DE algorithm. In 
this paper, we have added a new formula for the exploitation phase to this algorithm and named 
it the Balanced Differential Evolution (BDE) algorithm. We tested the performance of the proposed 
algorithm on standard test functions, CEC2005 Complex, and Combined Tests Functions. We also 
apply the proposed algorithm to solve some real problems to demonstrate its ability to solve 
constraint problems. The results showed that the proposed algorithm has better performance and 
competitive performance than the new and novel optimization algorithms.

Keywords: Balanced Differential Evolution, Optimization Algorithm, Exploration and Exploitation, 
Constrained Search Method, Economic Dispatch Problem.

I. INTRODUCTION

The process of finding optimal values for 
certain system parameters of all possible 

values to maximize or minimize output 
is called optimization. Because common 
optimization techniques have problems such 
as local optimization stagnation and the need 
to derive search space, random optimization 
methods have become popular in the last 
two decades. The use of meta-algorithms 
significantly increases the ability to find high-
quality solutions in the shortest possible 
time for hybrid optimization problems. The 
common goal of all meta-algorithms is to solve 
the well-known hard optimization problems 

[1]. Various criteria are used to classify meta-
algorithms [2]. In general, meta-heuristic 
algorithms are divided into two categories: 
single-solution algorithms and population-
based algorithms. Single-solution algorithms 
modify a solution during the search process, 
while in population-based algorithms, a 
solution population is considered. Meta-
heuristic algorithms are usually inspired by 
the concepts of biology, animal behavior, 
and physics. The basic framework of all 
optimization algorithms is almost identical. 
The algorithms start with a random initial 
population [3], [4]. This population performs 
the search process in some specified iterations 
[5], [6]. The search process involves two 
stages of exploration and exploitation. At 
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the exploration stage, the algorithm should be 
enriched with good design and random nature 
to explore different parts of the search space. 
The exploitation phase is usually done after the 
exploration phase. At this stage, the algorithm 
tries to focus on good solutions and improve 
the search operation by searching around these 
good solutions. A good algorithm must balance 
these two steps to avoid premature convergence 
or belated convergence. The difference between 
optimization algorithms is in the mechanism 
used to perform the search and balance in the 
exploration and exploitation phases. The most 
popular meta-heuristic algorithms include 
Genetic Algorithms (GA)[7], Particle Swarm 
Optimization (PSO)[8], Ant Colony Optimization 
(ACO)[9], Differential Evolution (DE)[10], and 
Harmony Search (HS) [11]. Genetic Algorithm 
(GA) is the most popular evolutionary inspiration 
technique that imitates the principles of Charles 
Darwin's theory of adaptation survival. This 
method involves the basic process of selection, 
crossover, and mutation to replace the worst 
solution in each generation. The PSO algorithm 
simulates the movement of a population of birds 
or groups of fish. In this algorithm, solutions are 
improved based on the best ones obtained by 
each particle so far, and the best one found by the 
entire population.

The ACO algorithm mimics the ants' 
collective behaviour in finding the shortest 
path from the nest to the food source. This ants 
behaviour has a type of group intelligence that 
has recently been studied by scientists. In the 
real world, the ants first go around randomly 
to find food, then return to the nest and leave a 
trail of Pheromone. Other ants, when they find 
this path, sometimes give up roaming and follow 
it. If they get food, they return to the nest and 
leave another trail next to the previous one. In 
other words, they reinforce the previous path. 
Research shows that there are many population-
based optimization techniques including Firefly 
Algorithm (FA) [12], Bat Algorithm (BA) [13], 
Salp Swarm Algorithm (SSA) [14], Gray Wolf 
Optimization (GWO) [15], Whale Optimization 
Algorithm (WOA) [16], Gravitational Search 
Algorithm (GSA) [17], Multi-Verse Optimization 
(MVO) [18], Anti-Lion Optimizer (ALO) [19], 
Artificial electric field algorithm (AEFA) [20], 
Levy flight distribution (LFD) [21], Poor and rich 

optimization (PRO) [22], and Tunicate Swarm 
Algorithm (TSA) [23]. The NFL theorem proves 
logically that no one can propose an algorithm 
to solve all optimization problems [24], which 
means that the success of an algorithm in solving 
a particular set of problems does not guarantee to 
solve all problems of optimization with different 
types and different nature. In other words, all 
optimization techniques act the same on average, 
considering all optimization problems with 
superior performance in a subset of optimization 
problems. The NFL theorem allows researchers to 
propose new optimization algorithms or modify 
existing algorithms to solve a subset of problems 
in different domains. 

Section 2 introduces the differential evolution 
(DE) algorithm. Section 3 proposes a formula to 
improve the exploitation phase of the Differential 
Evolution (DE) algorithm. Section 4 represents 
the experimental results of the test functions and 
real problems. Finally, Section 5 concludes the 
paper and discusses possible future research. 

II. DIFFERENTIAL EVOLUTION (DE)

In this section, an introduction to the classical 
differential evolution algorithm will be presented, 
which will facilitate the explanation of the 
improved DE algorithm later on. The differential 
evolution (DE) algorithm was proposed by Stern 
and Price (1995), and proven that an evolutionary 
algorithm (EA) is simple but efficient. Also, the 
DE algorithm provides competitive performance 
in various fields. The DE algorithm successfully 
applied to finite optimization problems. The 
Differential Evolution (DE) algorithm uses the N 
individual D dimension, for example:

1
, , ,{ ,..., }, 1,...,D

i G i G i GX X X i N    Where N 

represents the number of search agents. Each 

dimension 1
min min min{ ,..., }DX X X   and 

1
max max max{ ,..., }DX X X  is limited. Equ creates the 

initial population. (1) randomly in the desired 
space.

,0 min max min(0,1)*( ) (1)j j j j
iX X rand X X    
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Where rand is a random number with uniform 
distribution in the range [0, 1], the mutation 
operator is then used to generate the mutation 
vectors.   can be displayed as Equ. (2):

, 1, 2, 3, )*( ), 1 2 3 (2)i G r G r G r GV X F X X r r r i       

Where 1,r GX , 2,r GX   and 3, )r GX  are randomly 

selected from the current population and are 
different from the present I individual. F is the 
control parameter of the mutation at different 
scales that are chosen randomly from the range 
[0.2 0.8]. After this step, the crossover operator is 
used to generate a new solution by Equ. (3):

,
,

,

, 1, 2,...,
; (3)

1,2,...,,

j
i G j i jj

i G j
i G

V if rand CR or j n i NP
U

j DX otherwise

         
 

Where randj is a random number with 
uniform distribution in the range [0,1] and CR1 
is the crossover control parameter, which is a 
random number with uniform distribution in the  
range [0,1] and nj is a random integer created in 
the range [1,D]. Finally, the selection operator 
selects a better individual Ui,G and Xi,G. The better 
individual will survive in the next generation 
based on the comparison of fitness value. Equ. 
(4). shows the greedy selection:

, , ,
, 1

,

, ( ) ( )
(4)

,
i G i G i G

i G
i G

U if f U f X
X

X otherwise

    
  

 

 

Where ,( )i Gf U   and ,( )i Gf X   are the 

objective function values of Ui,G  and Xi,G.

III. PROPOSED METHOD

We used the same DE algorithm. DE 
algorithm updates the current position of 
the search agent based on randomly selected 
operators (this makes significant exploration 
of the environment) and does not move toward 
the present Found optimized point, which is 
a weakness for the exploitation act. We add a 
formula to remove the fault of the DE algorithm. 

Considering that the exploitation phase usually 
takes place after the exploration phase, we believe 
half of the iterations for the basic DE state and 
the other half of the iterations for the exploitation 
phase (Our suggested formula). We are hence 
causing the environment to be first explored by 
the DE algorithm to find promising regions and 
then the proposed formula exploits around these 
bright regions. We are achieving the right balance 
between these two phases. The proposed method 
for performing the exploitation phase is as in 
Equ. (5):

, 1 2 ,2 cos( ) ( ) (5)j j j j
i G i GU R R gBest X gBest     

 
Where ,

j
i GU  , is the next position of the search 

agent, R1 is a random number with a uniform 
distribution between range [0,1], p is the pi value 
3.14, R2 is a random number with uniform 
distribution in the field [-1,1], gBest Position is 

the best search agent and ,
j

i GX   is the current 

position of the search agent.

2R1 Makes larger random movements so 
that the algorithm does not get trapped in the 
local optimum, which means that we are also 
performing exploration during the exploitation 
phase. cos(pR2) Searches around the best search 
agent with different radius to find a better position 
around this search agent. Figure 1 shows how this 
formula works.

 

Fig. 1. Update the search agent position by the proposed 
formula.



Iraj Naruei. et al./ A Modified Differential Evolution Algorithm with a Balanced Performance for Exploration and Exploitation Phases

4                       J. ADV COMP ENG TECHNOL, 7(1) Winter  2021

The pseudocode of the proposed algorithm 
shown in Figure 2.

 

1 2 3

1 2 3 1 2 3

Generate the initial population of individuals
Do
   For each individual j in population

maxiter
      if  iter < ( )

2
choose three numbers n ,n , and n  
that is, 1 n ,n ,n N with n n n j
Generate a random

    

rand

i,G r1,G r2,G r3,G)
j

i,G j i jj

i,G j

i,G

j j j j

i,G 1 2 i,G

j j

i,G i,G

 integer i (1,N)
For each parameter i
V =X +F*(X -X )

V , if rand CR or j=n
U =

X , otherwise
End for

else
U =2R cos(πR )×(gBest -X )+gBest

end if
Replace X with the child U



 
 
 

j

i,G
if U is better

End for
Until the termination condition is achieved

 

 
 Fig. 2. Pseudo code proposed algorithm.

IV. RESULTS AND DISCUSSION

The proposed algorithm is evaluated on 
19 benchmark functions, and the results are 
compared with popular and new population-
based optimization algorithms. In general, 
benchmark functions can be divided into three 
groups: unimodal, multimodal, and composite 
functions. The first 13 benchmark functions 
are the classical test functions used by many 
researchers [25], [26]. From these 13 classical 
functions, the first seven are unimodal, and 
the second 6 are multimodal. The unimodal 
functions (f1-f7) are suitable for evaluating the 
exploitation phase of the algorithms because they 
have a global optimum and no local optimum. 
The multimodal functions (f8-f13) have many 
numbers of local optimum, and they are useful 
for evaluating the exploration phase and avoiding 
local optimal algorithms. Composite functions 
(f14-f19) are a combination of different uni-
modal and multimodal test functions, rotating, 
and displacement, which are from the CEC2005 
session [27]. Search space These functions are 
very challenging, they are very similar to real 
search spaces, and they are useful for evaluating 
algorithms in terms of balancing exploration and 
exploitation. The benchmark functions formula 

presented in Tables I to III, where Dim represents 
the dimensions of the function, RANGE 
represents the boundary of the function's search 
space, and FMIN is the optimal value. 

TABLE I UNIMODAL BENCHMARK FUNCTIONS.
 

FUNCTION DIM RANGE FMIN 

2
1 1
( ) n

ii
f x x


  30 [-100,100] 0 

2 1 1
( ) nn

i ii i
f x x x

 
    30 [-10,10] 0 

 2

3 1 1
( ) n i

ji j
f x x

 
    30 [-100,100] 0 

 4( ) max ,1if x x i n    30 [-100,100] 0 

1 2 2 2
5 11
( ) [100( ) ( 1) ]n

i i ii
f x x x x


     30 [-30,30] 0 

  
2

6 1
( ) 0.5n

ii
f x x


   30 [-100,100] 0 

 7 ( ) max ,1if x x i n    30 [-1.28,1.28] 0 

 

 TABLE II MULTIMODAL BENCHMARK FUNCTIONS.
NCTION DIM RANGE FMIN 

8 1
( ) sin( )n

i ii
F x x x


   30 [-500,500] 

-

418.9

829*5 

2
9 1
( ) [ 10cos(2 ) 10]n

i ii
F x x x


    30 [-5.12,5.12] 0 

2
10 1

1

1( ) 20exp( 0.2 )

1exp( cos(2 )) 20

n
ii

n
ii

F x x
n

x e
n







  

  





 
30 [-32,32] 0 

2
11 1 1

1( ) cos( ) 1
4000

nn i
ii i

xF x x
i 

     
30 [-600,600] 0 

 1 2 2 2
12 1 11

1 1

( ) 10sin( ) ( 1) [1 10sin ( )] ( 1)

1( ,10,100,4) ( ,10,100,4) 1
4

( )
( , , , ) 0

( )

n
i i ni

n n i
i i ii i

m
i i

i i
m

i i

F x y y y y
n

xu x u x y

k x a x a
u x a k m a x a

k x a x a

  



 

     


   

  
     
    



 

 

30 [-50,50] 0 

2 2 2
13 1 1

2 2
1

( ) 0.1{sin (3 ) ( 1) [1 sin (3 1)]

( 1) [1 sin (2 )]} ( ,5,100,4)

n
i ii

n
n n ii

F x x x x

x x u x

 






    

   




 
30 [-50,50] 0 
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TABLE III. COMPOSITE BENCHMARK FUNCTIONS. 
(CEC2005)
FUNCTION 

1 4

1 2 3 10

1 2 3 10

1 2 3 10

( 1) :
, , , ...,

[ , , , ..., ] [1,1,1, ...,1]
[ , , , ..., ] [5 / 100, 5 / 100, 5 / 100, ..., 5 / 100 ]

F C F
f f f f S phere Fu nction

   


    



 

1 5

1 2 3 1 0

1 2 3 10

1 2 3 10

( 2 ) :
, , , ..., '

[ , , , ..., ] [1,1,1, ...,1]
[ , , , ..., ] [5 / 10 0, 5 / 100, 5 / 1 00, ..., 5 / 100 ]

F C F
f f f f G riew ank s Function

   



    


 

1 6

1 2 3 1 0

1 2 3 1 0

1 2 3 1 0

( 3 ) :
, , , . . . , '

[ , , , . . . , ] [1 , 1 , 1 , . . . , 1 ]
[ , , , . . . , ] [1 , 1 , 1 , . . . , 1 ]

F C F
f f f f G r i e w a n k s F u n c t i o n

   


    



 

1 7

1 2

3 4

5 6

7 8

9 1 0

1 2 3 1 0

1 2 3 1 0

( 4 ) :
, '
, '
, '
, '
,

[ , , , . . . , ] [1 , 1 , 1 , . . . , 1 ]
[ , , , . . . , ] [ 5 / 3 2 , 5 / 3 2 , 1 , 1 , 5 / 0 .5 ,
5

F C F
f f A c k le y s F u n c t i o n
f f R a s t r i g i n s F u n c t i o n
f f W e i e rs t ra s s F u n c t i o n
f f G ri e w a n k s F u n c t i o n
f f S p h e re F u n c t i o n

   










    



/ 0 .5 , 5 / 1 0 0 , 5 / 1 0 0 , 5 / 1 0 0 , 5 / 1 0 0 ]

 

1 8

1 2

3 4

5 6

7 8

9 1 0

1 2 3 1 0

1 2 3 1 0

( 5 ) :
, '
, '
, '
, '
,

[ , , , . . . , ] [1,1,1, . . . , 1]
[ , , , . . . , ] [1 / 5 ,1 / 5 , 5 / 0 .5 , 5 / 0 .5 ,
5

F C F
f f R as trig in s F u n c t io n
f f W e ie rs tras s F u n c t io n
f f G rie w an k s F u n c t io n
f f A c k le y s F u n c t io n
f f S p h e re F u n c t io n

   








    


/ 1 0 0 , 5 / 1 0 0 , 5 / 3 2 , 5 / 3 2 , 5 / 1 0 0 , 5 / 1 0 0 ]

 

1 9

1 2

3 4

5 6

7 8

9 1 0

1 2 3 1 0

1 2 3

( 6 ) :
, '
, '
, '
, '
,

[ , , , . . . , ] [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 ,
0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 ]
[ , , , . . . ,

F C F
f f R a s t r i g i n s F u n c t i o n
f f W e i e rs t ra s s F u n c t i o n
f f G r i e w a n k s F u n c t i o n
f f A c k l e y s F u n c t i o n
f f S p h e re F u n c t i o n

   








    

1 0 ] [ 0 . 1 * 1 / 5 , 0 . 2 * 1 / 5 ,
0 . 3 * 5 / 0 . 5 , 0 . 4 * 5 / 0 . 5 , 0 . 5 * 5 / 1 0 0 ,
0 . 6 * 5 / 1 0 0 , 0 . 7 * 5 / 3 2 , 0 . 8 * 5 / 3 2 ,
0 . 9 * 5 / 1 0 0 , 1 * 5 / 1 0 0 ]



 

DIM= 10    RANGE= [-5,5]    FMIN= 0 

 
 

The values of the parameters of the algorithms 
compared to the proposed algorithm are 
presented in Table IV.

TABLE IV. INITIAL VALUES FOR THE CONTROLLING 
PARAMETERS OF ALGORITHMS.

 

algorithm parameter value 

GA 

Type 
Selection 
Crossover 
Mutation 

Real coded 
Roulette wheel 
Single point 0.8 

0.3 

PSO 

Topology 
Cognitive and social 

constants 
Inertial weight 

Fully connected 
C1=2 , c2=2 

Linearly decreases 
from 0.9 to 0.4 

FA Alpha, beta, and gamma 0.5, 0.2, 1 

ACO 

Intensification Factor 
Deviation-Distance 

Ratio 
factor 

0.5 
1 

0.8 

BA Loudness (A), pulse rate 
(r) 0.5, 0.5 

GSA norm, Rpower, alpha, 
and G0 2, 1, 20, 100 

DE Crossover probability 
Differential weight 

0.2 
[0.2-0.8] 

HS 

Number of New 
Harmonies 

HMCR 
Pitch Adjustment Rate 
Fret Width Damp Ratio 

20 
0.9 
0.1 

0.995 

BDE, WDE, WOA, 
GWO, SSA, ALO, 

MVO, 

There are no parameters other than the 
common parameters (i.e., the number of 

iterations, N, and D) 
 

1. Exploitation analysis of the proposed BDE 
algorithm

In this section, we tested the proposed 
algorithm on seven unimodal functions used 
to measure the exploitation of algorithms. 
The proposed algorithm compared with the 
basic DE algorithm and two new algorithms 
called Weighted Differential Evolution[28] and 
Bernstein-search differential evolution [29]. 
As can be seen from the results of Table V, 
the proposed algorithm in F1, F2, F5, and F6 
functions yields much better results than the 
other three algorithms. It is noteworthy that 
the proposed algorithm performs better than 
the basic DE algorithm in all 7 test functions, 
which indicates that the formula added to the DE 
algorithm improves the exploitation phase. 
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TABLE V. RESULTS FOR THE UNIMODAL BENCHMARK 
FUNCTIONS

Algorithm 
DE WDE BSD Proposed 

Function 

F1 

min 2.4504e-04 4.7952e+03 0.0254 3.6737e-13 
max 8.2719e-04 1.2544e+04 0.1654 1.2511e-10 
avg 5.2748e-04 9.9787e+03 0.0701 1.6862e-11 
std 1.4245e-04 1.6565e+03 0.0343 2.4829e-11 

F2 

min 0.0018 30.2875 0.0176 6.1865e-09 
max 0.0037 50.2461 0.0763 5.7654e-05 
avg 0.0026 44.5314 0.0450 2.0857e-06 
std 4.9552e-04 4.3281 0.0139 1.0499e-05 

F3 

min 1.9105e+04 1.5003e+04 486.2315 1.0950e+03 
max 3.9876e+04 3.2023e+04 1.5224e+03 4.2786e+04 
avg 3.0893e+04 2.5231e+04 982.6995 1.6203e+04 
std 4.7921e+03 3.9261e+03 260.5432 9.8637e+03 

F4 

min 10.5911 45.5220 1.7824 5.3869 
max 16.5127 63.8297 4.3840 27.3616 
avg 13.2160 57.3719 2.8596 12.3617 
std 1.4473 3.6722 0.6606 4.7869 

F5 

min 83.7544 3.8437e+06 34.9573 11.0130 
max 244.9160 1.5796e+07 221.3012 149.3052 
avg 157.9563 1.0006e+07 119.4331 57.0792 
std 46.7152 2.6483e+06 45.6118 36.7103 

F6 

min 2.8240e-04 6.9130e+03 0.0155 4.7905e-14 
max 0.0010 1.3833e+04 0.1379 2.2424e-10 
avg 5.4945e-04 1.0144e+04 0.0511 2.1664e-11 
std 1.9155e-04 1.7063e+03 0.0300 4.7440e-11 

F7 

min 0.0323 3.4729 0.0122 0.0142 
max 0.0728 8.1122 0.0528 0.0919 
avg 0.0540 5.2874 0.0300 0.0429 
std 0.0134 1.1566 0.0112 0.0200 

 

 
2. Exploration analysis of the proposed BDE 

algorithm
In this section, we tested the proposed 

algorithm on six multimodal test functions to 
evaluate the performance of the exploration 
phase of the algorithm. The proposed algorithm 
was compared with the basic DE algorithm and 
two new algorithms called Weighted Differential 
Evolution and Bernstein-search differential 
evolution. Table VI show these results. The 
proposed algorithm performs better in F10 and 
F11 functions than other algorithms. Hence to 
minimize or maximize the objective functions 
in optimization, an algorithm that can obtain the 
minimum value in minimization and maximum 
value in the maximization of the objective 
function would be better. The proposed algorithm 
in F12 and F13 test functions has the lowest value 
compared to other algorithms, which indicates 
that the proposed algorithm has an excellent 
ability to find the optimal value. The results of this 

table show that adding the proposed formula to 
the DE algorithm not only had little effect on the 
results of the test functions but also performed 
better in some cases. The diagram of some of the 
unimodal and multimodal test functions shown 
in Figure 3.

TABLE VI. RESULTS FOR THE MULTIMODAL 
BENCHMARK FUNCTIONS.

Algorithm 
DE WDE BSD Proposed 

Function 

F8 

min -9.8668e+03 -8.4058e+03 -9.2126e+03 -10.8668e+04 
max -8.9599e+03 -7.3124e+03 -7.7869e+03 -8.8453e+03 
avg -9.5420e+03 -7.7470e+03 -8.3110e+03 -10.6132e+04 
std 358.7499 236.9287 300.8447 1673.5341 

F9 

min 69.3267 160.4797 28.2491 76.3937 
max 99.9105 200.6283 53.9470 137.3118 
avg 87.7591 180.5386 43.6630 116.3648 
std 7.2161 10.4880 6.2818 13.1324 

F10 

min 0.0047 15.5957 0.0309 1.5598e-07 
max 0.0082 17.2140 0.1187 4.2016e-06 
avg 0.0063 16.5010 0.0675 9.5691e-07 
std 0.0010 0.4934 0.0187 8.1089e-07 

F11 

min 0.0012 62.8098 0.0485 2.1294e-13 
max 0.0230 105.6460 0.3091 0.0443 
avg 0.0067 86.4470 0.1404 0.0073 
std 0.0061 12.0908 0.0684 0.0110 

F12 

min 3.7585e-05 3.7904e+05 1.0733e-04 1.3508e-14 
max 1.7133e-04 1.2279e+07 0.0026 0.1037 
avg 7.9758e-05 4.3868e+06 7.6405e-04 0.0035 
std 4.0127e-05 2.7323e+06 6.0704e-04 0.0189 

F13 

min 1.8386e-04 6.7397e+06 8.7938e-04 5.5576e-13 
max 5.9877e-04 3.6276e+07 0.0557 0.0989 
avg 3.0639e-04 2.2674e+07 0.0162 0.0110 
std 1.0023e-04 7.4738e+06 0.0131 0.0202 

 

3. Balance Analysis of Exploration and 
Exploitation of the Proposed Algorithm

What is essential in designing optimization 
algorithms is that the algorithm must create a right 
balance between the two phases of exploration 
and exploitation. Suppose the algorithm fails to 
achieve balance well. In that case, the algorithm 
either involves premature convergence because it 
failed to perform the exploration well or involves 
late convergence because it failed to operate 
well. Therefore, newly introduced or improved 
algorithms required to test in terms of balance 
the two phases of exploration and exploitation. 
To evaluate the balance between exploration 
and exploitation of the proposed algorithm, we 
used CEC2005 benchmark functions, which are 
composite and complex. These functions have 
many local optimal, and the algorithm may get 
stuck in local optimal.
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Fig. 3. Results of some test functions.

We compared the proposed algorithm with 
popular optimization algorithms such as PSO, GA, 
ACO, GSA, FA, DE, HS, and new optimization 
algorithms such as BA, GWO, ALO, MVO, 
WOA, and SSA. The results of Table VII show 
that in terms of mean and standard deviation, the 
performance of the proposed algorithm is better 
than all the compared algorithms. One of the most 
famous charts, which shows many descriptive 

statistics indicators of data, is the boxplot [30]. To 
prove this claim, we showed the boxplots of each 
six functions in Figure 4. 

The boxplot illustrates well the domain of 
variations of different runs. As shown in Figure 
4, the proposed algorithm has the least domain 
of variation in all six functions, which indicates 
that the results of the proposed algorithm are 
not random, and the results are reliable. It's 
noteworthy that some algorithms have been 
removed from the boxplot due to their poor 
performance to see the results of other algorithms 
better.

 

Fig. 4. Boxplot of CEC2005 benchmark functions. 
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4. Convergence analysis of the proposed 
algorithm

The movement of the search agents in the early 
stages of the optimization algorithms is sudden 
to explore the entire search area, and gradually 
the movement becomes slower to perform 
exploitation [31]. The convergence behaviour 
of the proposed algorithm is shown in Fig. 3, 
where the search history and the path of the first 

search agent are plotted in the first dimension. 
The second column of Fig. 3 shows the search 
history of all search agents. Column three shows 
convergence, at the beginning of the algorithm 
are sudden movements which gradually converge 
at one point. The fourth column of Fig. 5 shows 
average fitness for all search agents in each 
iteration. The fifth column is the convergence 
curve that represents the best value in each 
iteration.

TABLE. VII. RESULTS FOR THE COMPOSITE AND COMPLEX FUNCTIONS.
Algorithm 

PSO ACO GSA FA GA BA HS DE WOA SSA MVO ALO GWO Proposed 
Function 

F14 

min 1.5875e-09 0 1.5926e-17 2.6930e-13 0.0029 32.6261 0.0109 0.0039 1.1489 1.0305e-10 0.0035 397.4413 0.0272 0 

avg 93.3333 76.6667 18.1826 117.4096 80.0191 188.9511 33.4264 14.8035 91.2377 60.0000 83.3396 599.7261 75.1945 3.3333 

max 400.0000 300 145.4773 300.0000 400.0006 372.5525 100.0512 58.4321 310.9591 300.0000 300.0110 754.5454 300.0179 100 

std 117.2481 85.8360 42.0367 78.3665 109.5401 82.1159 47.9039 17.7941 106.5350 85.5006 101.9914 84.9694 76.3767 18.2574 

F15 

min 5.0769 0 100.0000 40.5689 4.5953 76.9688 3.4771 14.1667 42.0367 7.6355 7.8929 367.6698 10.8568 1.3913 

avg 154.6440 98.1215 208.6797 229.4857 128.2596 348.9973 143.0915 52.0919 179.2558 26.1350 134.1337 704.9707 136.5402 12.9551 

max 312.1533 312.1533 346.3061 446.6643 292.2114 681.8824 305.4230 97.0981 418.0740 50.3143 323.9771 972.8750 422.0006 34.2681 

std 98.5157 94.0449 54.5958 123.6389 103.2858 160.5098 85.0365 18.9692 114.4808 12.2996 89.7563 148.6437 118.4057 7.3662 

F16 

min 98.6116 113.2252 92.9694 316.5141 81.3590 232.7017 102.4075 138.1543 219.6151 141.9804 119.5522 734.1056 123.8327 96.4661 

avg 213.5193 294.2018 244.5110 530.0246 266.3518 549.3272 168.5382 197.0508 426.1589 205.1376 241.8100 1.0262e+03 211.7950 138.9825 

max 573.0122 532.8344 564.1437 738.5087 536.0576 971.5559 245.1473 300.0453 687.6983 288.9038 458.8793 1.3065e+03 383.8393 227.2639 

std 100.9759 79.1417 108.6843 122.4081 108.6906 183.9312 37.2124 37.2512 133.0421 39.0231 87.8533 152.5953 71.1985 31.6866 

F17 

min 265.2150 329.1214 379.3369 410.3104 365.7324 391.2444 304.2207 319.0547 354.1240 276.6679 289.1526 858.1156 263.7557 283.0750 

avg 440.9509 386.5058 545.9930 609.2554 487.3977 653.5975 375.9608 345.7826 611.2633 354.9927 405.1630 1.0296e+03 405.1075 308.8969 

max 607.5132 732.6510 722.3274 824.6867 611.5647 889.3420 613.0268 390.1966 758.4532 607.2507 607.1968 1.2858e+03 734.9262 348.5650 

std 135.2587 90.6269 85.4338 120.4006 82.8341 162.5537 68.0334 15.5664 135.2981 66.2669 113.5859 100.3885 130.4053 18.0222 

F18 

min 2.8984e-05 0 4.3055 2.7234 10.2664 175.8204 3.9995 8.1057 41.5599 1.6230 2.5874 271.4260 2.2240 3.9596 

avg 92.9367 122.8017 228.3092 153.9865 134.9226 452.4372 122.8914 34.5088 186.8345 31.3749 91.4417 705.6995 153.2369 17.9327 

max 508.8939 205.1854 500 545.1053 511.6341 755.9447 230.4270 108.2184 569.3977 103.9091 509.8884 982.0372 510.3997 55.5628 

std 146.5752 101.0622 101.5676 162.4923 115.1310 154.8680 96.1000 20.9960 155.0380 43.1760 169.9353 218.7547 161.7342 12.6775 

F19 

min 500.0002 500 613.1760 511.2597 403.1994 491.0319 504.1762 437.0618 509.6863 401.6789 403.9472 801.2347 500.9246 400.0000 

avg 825.4653 848.1431 829.1813 876.4646 778.0474 876.4716 825.7530 522.5745 795.3360 635.3327 725.6787 960.7075 836.8471 495.6028 

max 903.0465 902.9593 904.9380 908.9796 908.9500 987.6315 907.9610 626.0057 924.3305 903.9652 903.4403 1.0114e+03 905.4697 514.1832 

std 150.9544 138.8490 101.1551 92.6154 191.9231 117.0116 122.0777 33.8458 173.6248 188.9743 206.5175 40.2025 152.0038 25.8704 
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5. Performance of proposed algorithm on 
constrained problems

In this section, there are three constrained 
problems in engineering design that have been 
used by many researchers: Tension/compression 
spring, pressure vessel design, and 3-bar terrace 
design. These problems have several constraints 
on equality and inequality. The algorithm should 
be able to optimize the constrained issues as well. 

1) Tension/Compression spring design 
problem

As shown in Fig. 6. The main goal of this 
engineering design problem is to minimize the 
weight of the spring involving three decision 
variables which are wire diameter (d), mean coil 
diameter (D), and some active coils (N) [32]. 
This problem is subjected to three inequality 
constraints and an objective function given in 
Equ. (6).

 

 
Fig. 5. Search history and trajectory of the first search agent in the first dimension.
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Fig. 6. a 3D view of the spring, b 2D view of the spring, c 
displacement heat map, d stress heat map [33].

This problem has solved with many 
mathematical and meta-heuristic approaches 
[34]. The results of comparing the proposed 
algorithm with different optimization methods 
with the same penalty function presented in Table 
VIII. The proposed algorithm was able to find the 
best solution with the least weight. The boxplot of 
these results shown in Fig. 7.

Fig. 7 shows that the proposed algorithm 
domain of changes is low, and the results of Table 
VIII are reliable.

 

         

 

Fig. 7. Boxplot of optimization algorithms for Tension/
compression spring

TABLE VIII RESULTS FOR TENSION/COMPRESSION SPRING
 

Algorithms d D N weight 
Proposed 0.051674240269161 0.356361294682208 11.309893654220970 0.012665236795762 

WOA 0.051570755371899 0.353878269149070 11.457442622631019 0.012665531420461 
PSO 0.051520372987135 0.352673093103354 11.530090557248791 0.012665753370316 
FA 0.051617750492592 0.355001881898848 11.394109546335027 0.012669009152984 
BA 0.051808745345115 0.359551974034547 11.129493328259862 0.012671143067769 

GWO 0.051279143996523 0.346845349283398 11.896862969127122 0.012674597731402 
DE 0.052364855310668 0.372334483409713 10.457666318851194 0.012718906350874 

ACO 0.053691799675533 0.406838948323859 8.859270871177701 0.012736177748293 
MVO 0.050000000000000 0.317175182071943 14.063890263180618 0.012737668297520 
SSA 0.050000000000000 0.313654356100474 14.539845769754217 0.012840126986158 
GA 0.056478105859860 0.483118711787788 6.480103511901926 0.013068184527540 

GSA 0.056101588408330 0.465552293653536 7.240154020410609 0.013539355647122 
HS 0.059118720699916 0.561133954332981 4.964410699642398 0.013658436187036 

ALO 0.064732195539379 0.633802689219889 8.412993605043161 0.027654789299257 
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2) Pressure vessel design
The objective of this problem is to minimize 

the total cost consisting of material, forming, 
and welding of a cylindrical vessel as in Fig. 8. 
Vessels both ends are capped, and the head has a 
hemispherical shape. There are four variables in 
this problem: 

The thickness of the shell (Ts).
 The thickness of the head (Th).
 Inner radius (R).
 Length of the cylindrical section without 

considering the head (L). 
This problem is subject to four constraints. 

The formulation form of these constraints and 
problems in Equ. (7):

1 2 3 4
2
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Table IX presents the results of the comparison 
of the proposed algorithm with other algorithms 
for this problem. The results of Table IX show that 
the proposed algorithm has found the best values 
for the parameters of this problem with the lowest 
cost. The proposed algorithm has provided much 
better results than the basic DE, which indicates 
a good improvement of the DE algorithm. Fig.9 
shows the boxplot of these results. It is also 
evident in this figure that the proposed algorithm 
has little variation domain, and the results are 
reliable.

 

 

Fig. 8. (a) 3D shape of the pressure vessel, (b) 2D shape of 
the pressure vessel, (c) displacement heat map, (d) stress 

heat map [33].

 

Fig. 9. Boxplot of optimization algorithms for pressure 
vessel.
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3) A three-bar truss design problem
In general, the problem of truss design is 

prevalent in the field of civil engineering. The 
purpose is to design a low-weight truss that does 
not violate the constraint. The most important 
issue in designing a truss is constraints that include 
stress, deflection, and buckling constraints. 
Figure 10 shows the structural parameters of this 
problem. 

 
 

Fig. 10 Three bar-truss design problem [18].

TABLE IX RESULTS FOR PRESSURE VESSEL
Algorithm

s Ts Th R L total cost 

Proposed 
0.74100850817837

0 
0.36628088995135

0 
38.39422322345019

0 
2.286564435936813e+0

2 
5.824798828628441e+0

3 

ACO 
0.77743403867928

8 

0.38428604813510

1 

40.28155640844108

4 

2.005305344500567e+0

2 

5.884078280730308e+0

3 

SSA 
0.83791178813365

8 

0.41418111560070

3 

43.41511471046137

0 

1.610681292744691e+0

2 

5.888208003957637e+0

3 

GWO 
0.77906020161171

1 

0.38560594720381

1 

40.35602222865913

0 

1.994939256120291e+0

2 

5.889669867585164e+0

3 

DE 
0.78052857577532

8 

0.38726634257205

5 

40.39553071156605

0 

1.997447060478521e+0

2 

5.917024284041992e+0

3 

PSO 
0.81754690904105

9 

0.40411386073841

1 

42.35994347379517

0 

1.734229412412289e+0

2 

5.956106814947694e+0

3 

MVO 
0.84199414784016

6 

0.42023057431232

7 

43.38350721621248

0 

1.636621013054519e+0

2 

6.104855009443729e+0

3 

GA 
0.88561999863257

0 

0.43701941845265

4 

45.65157074689843

0 

1.370774062346848e+0

2 

6.119592843410516e+0

3 

WOA 
0.81415463142436

2 

0.43077978054233

5 

41.33636253638083

0 

1.863145086502679e+0

2 

6.146038417556294e+0

3 

HS 
0.92604345496069

1 

0.45743378824743

9 

47.91202135927384

4 

1.158333410458892e+0

2 

6.195537242050121e+0

3 

FA 
0.92180525509833

0 

0.45591059157923

7 

47.76145021411317

0 

1.222955539863427e+0

2 

6.334605342004511e+0

3 

BA 
1.25134752036365

6 

0.61855886166043

0 

64.83588917731569

0 
48.448017378547725 

9.324375396912084e+0

3 

ALO 
2.74441897479229

3 

0.81546873799562

3 

55.13930623317773

4 
67.086738176662070 

2.056635223733777e+0

4 

GSA 
4.76587875371550

1 

0.82890463147757

6 

43.14958877113123

5 

1.689427207932072e+0

2 

5.596192960162536e+0

4 
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The formula for this problem and its 
constraints are in the form of Equ. (8).

 
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The results of the comparison of the 

performance of the proposed algorithm with 
other optimization algorithms are presented in 
Table X. In this problem, the proposed algorithm 
performs better than the other algorithms 
mentioned, and the proposed algorithm was able 
to provide the best values of the parameters with 
the least weight. As can be seen from the results 
in Table X, the results are very close together, 
and the proposed algorithm has been able to give 
better results.

TABLE X RESULTS FOR THREE-BAR TRUSS 

Algorithm  d D weight 

Proposed 0.78867781353 0.40824071332 2.638958433817377e+02 
PSO 0.78867872161 0.40823814491 2.638958433859190e+02 
FA 0.78876577397 0.40799208293 2.638958593120682e+02 
GA 0.78863028258 0.40837516590 2.638958448549885e+02 

ACO 0.78857445715 0.40853322470 2.638958609215823e+02 

BA 0.78841089116 0.40899671736 2.638959467368605e+02 
GSA 0.79249252715 0.39758796196 2.639095321943150e+02 
DE 0.78868817252 0.40821145928 2.638958479415125e+02 
HS 0.78705362428 0.41286129495 2.638985114510033e+02 
MVO 0.78885344194 0.40774451450 2.638958987150073e+02 
ALO 0.81245940423 0.34983962967 2.647821846365519e+02 
WOA 0.78867256011 0.40825566377 2.638958525355147e+02 
GWO 0.78865856636 0.40829801440 2.638961295684239e+02 
SSA 0.78885469521 0.40774065336 2.638958471478859e+02 

 

The boxplot of these results is shown in Fig.11. 
The domain of changes in most algorithms is low 
because of the low number of parameters, but 
the accuracy of the proposed algorithm is higher 
than the other algorithms and the Basic DE.

 

 

Fig. 11. Boxplot of optimization algorithms for three-bar 
truss

4) Economic load dispatch problem 

The economic load dispatch problem is 
defined as minimizing the total operating cost 
of a power system while meeting the whole load 
plus transmission losses within the generator 
limits. Mathematically, the problem is outlined 
to minimize equation (9) subjected to the energy 
balance equation given by (10) and the inequality 
constraints given by Equ. (11).

2
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1

min max
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Where
 ai , bi and ci are the cost coefficients
 PD is the load demand 
 Pi is the real power generation
 PL is the transmission power loss
NG is the number of generation buses.

One of the important, simple, but approximate 
methods of expressing transmission loss as 
a function of generator powers is through 
B-coefficients. The general form of the loss 
formula using B-coefficients is

1 1
(12)

NG NG

i i ij j
i j

P PB P MW
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Where 
Pi and Pj are the real power generations at the 

ith jth  buses respectively
Bij  are loss coefficients.

In a standard economic load dispatch problem, 
the input-output characteristics of a generator 
are approximated using quadratic functions, 
underneath the idea that the progressive cost 
curves of the units are monotonically increasing 
piecewise-linear functions. However, real input-
output characteristics display higher-order 
nonlinearities and discontinuities due to valve–
point loading in fossil fuel burning plants.

The generating units with multi-valve steam 
turbines exhibit a more significant variation 
in the fuel cost functions. The valve–point 
effects introduce ripples in the heat–rate curves. 
Mathematically operating cost is defined as:

2 min

1
( ) | sin{ ( )} | ) (13)

NG

i i i i i i i i i i i
i

F P a P b P c d e P P


        

 
Where ai, bi, ci, di  and i are the cost coefficients 

of the ith unit.

In order to show the effectiveness of the 
proposed algorithm for the economic load 
dispatch problem, two power benchmark tests 
having standard IEEE bus systems have been 
taken into consideration. The proposed algorithm 
was performed 30 times with an initial population 
of 50 and 250 iterations on the economic load 

dispatch problem.

a. Test system I: 13-generating unit system 
without valve-point effect

The first test case consists of a 13-generating 
unit system without valve-point loading. The 
results of 13-generating unit systems are tested 
for load demand of 1800 MW and are shown in 
Table XI, and the effectiveness of the proposed 
algorithm for a 13-generating unit system is 
compared with Famous and new algorithms.

 
Corresponding analysis of results (Table XI) 

shows that the proposed algorithm has the lowest 
cost in terms of statistical average relative to other 
algorithms. To confirm the results, the boxplot of 
these 30 runs is shown in Fig. 12.

 

 

Fig. 12. Boxplot of the 13-generating unit system

TABLE XI RESULTS FOR ECONOMIC LOAD DISPATCH FOR A 13-GENERATING UNIT SYSTEM (LOAD DEMAND = 1800 MW) 

algorithm min max std avg 
Proposed 3.942908360000000e+05 3.947708347473913e+05 1.702916262348927e+02 3.944528998165501e+05 

GWO 3.943755947652264e+05 3.953150723006313e+05 2.277009190496261e+02 3.947495936224741e+05 

MVO 3.943079570069738e+05 3.962459245326403e+05 4.287871883177548e+02 3.949320390303100e+05 

ALO 3.942945460790953e+05 3.979388786711827e+05 1.009983054859659e+03 3.949973550181657e+05 

DE 3.950134788856796e+05 4.001816342752689e+05 1.472808687795597e+03 3.972839338063846e+05 

PSO 3.968290219406239e+05 3.999403048419059e+05 9.220882528019836e+02 3.980576075108528e+05 

WOA 3.942908362524503e+05 4.099378526143908e+05 4.205763758262005e+03 4.000378578427732e+05 

HS 3.975843848286539e+05 4.042595044850244e+05 1.712676986482858e+03 4.017708384618684e+05 

SSA 3.953518834700992e+05 4.029978440000000e+05 1.916308443471383e+03 4.019297078929522e+05 

BA 4.022771094724992e+05 4.428226863427925e+05 1.260470203951983e+04 4.188199079380141e+05 

GA 4.123058029373971e+05 4.268616332165159e+05 3.085039990981851e+03 4.202360516049843e+05 

FA 4.047544719345829e+05 4.348094421613113e+05 6.399301093928142e+03 4.208275325399591e+05 

GSA 4.235363270478695e+05 4.565316587297490e+05 7.099053517237799e+03 4.390921865866760e+05 
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As shown in Fig.12, the proposed method has 
the least variance, which indicates the stability 
of the proposed algorithm. Fig. 13 shows the 
convergence curve of the optimization algorithms 
for this system.

 

 

Fig. 13. Convergence curve of the 13-generating unit 
system

b. Test system II: 40-generating unit system 
considering the valve-point effect

The second test system, which consists of 
a 40-generating unit system, is tested for load 
demand of 10500 MW. The Valve-point effect 
is taken into consideration, but transmission 
losses are neglected while calculating the 
optimal fuel cost. The results of 40-generating 
unit systems are shown in Table XII. The results 
of Table XII show that the proposed algorithm 
performs better in terms of statistical (minimum, 
maximum, standard deviation, and average) 
relative to other algorithms. This indicates that 
the proposed algorithm still performs better than 
other compared algorithms by applying more 
constraints such as valve-point and increasing the 
problem dimension. The base DE algorithm ranks 
second, but the average value of the proposed 
algorithm is better than the minimum value of 
the base DE algorithm. To confirm the results, the 
boxplot of these 30 runs is shown in Fig. 14.

 

 

Fig. 14. Boxplot of the 40-generating unit system

As shown in Fig.14, the proposed method has 
the least variance. 

 
Fig. 15 shows the convergence curve of the 

optimization algorithms for this system. Fig. 
15 shows that the proposed algorithm, despite 
considering the valve point, still achieves the 
optimal solution in a fewer number of iterations.

 

 

Fig. 15. Convergence curve of the 40-generating unit 
system
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V. CONCLUSIONS

In this paper, we propose a new hybrid 
algorithm that combines the differential 
evolution algorithm and our proposed formula. 
Optimization algorithms usually include two 
phases of exploration and exploitation. The 
differential evolution algorithm performs well in 
the exploration phase, but the exploitation phase 
is weak. In fact, for the greater effectiveness of 
the exploitation phase, we added a formula to the 
differential evolution algorithm. To evaluate the 
proposed algorithm in terms of exploration and 
exploitation, 19 test functions including seven 
unimodal test functions to evaluate algorithm 
exploitation, six multimodal test functions to 
evaluate algorithm exploration, and six composite 
test functions to evaluate the escape from local 
optimal of the algorithm, were used. The results 
showed that our proposed algorithm has good 
performance and competitive performance 
compared to other famous and novel optimization 
algorithms. Also, to evaluate the algorithm in 
unknown search spaces, the proposed algorithm 
was applied to several well-known engineering 
design problems which result show the high 
performance of the proposed algorithm in solving 
problems with unknown searching spaces.

TABLE XII RESULTS FOR 40-GENERATING UNIT SYSTEM CONSIDERING VALVE-POINT EFFECT (LOAD 
DEMAND = 10500 MW) 

algorithm min max std avg 
Proposed 6.440254870576086e+06 6.443429084201531e+06 9.267728034246223e+02 6.441317109662098e+06 

DE 6.442694793383291e+06 6.447102496675514e+06 1.065898382895214e+03 6.445087632008978e+06 

GWO 6.476249343497660e+06 6.543482225889794e+06 1.673905935216343e+04 6.502739076335037e+06 

MVO 6.483471202451115e+06 6.708437170758968e+06 5.021813748181564e+04 6.551313544530138e+06 

HS 6.521737675525253e+06 6.598121250377092e+06 1.741968228283060e+04 6.553795292600089e+06 

GA 6.520351087295961e+06 6.607557728287661e+06 2.079250768996690e+04 6.575688950935189e+06 

PSO 6.568017575171378e+06 6.681006511252836e+06 2.706445836273727e+04 6.629674343475549e+06 

ALO 6.553449946566720e+06 6.773381467996010e+06 5.714175478709766e+04 6.638563252619594e+06 

SSA 6.528102734684937e+06 7.006878873392217e+06 1.282970249264827e+05 6.692945654985365e+06 

WOA 6.569189111112373e+06 7.139375955368181e+06 1.502834340571168e+05 6.764319869304523e+06 

BA 6.695914132028671e+06 7.433198314429556e+06 1.592634081638326e+05 7.045047474057742e+06 

FA 7.200410107332142e+06 7.521353119082810e+06 8.116620401192234e+04 7.364066493960878e+06 

GSA 7.504839165329872e+06 7.814783285308058e+06 7.927095429937584e+04 7.653910624228362e+06 
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