
 Journal of Advances in Computer Engineering and Technology, 4(1) 2018

Formal Process Algebraic Modeling and
Verification of Service Composition Based on

BPMN
Zahra Baatmaanghelich1, Ali Rezaee2, Sahar Adabi3

Received (2017-03-01)
Accepted (2017-10-30)

Abstract — One of areas with the greatest needs
having available information at the right moment
and with high accuracy is healthcare. The right
information at right time saves lives. Healthcare is
a vital domain which needs high processing power
for high amounts of data. Due to the critical and
the special characteristics of these systems, formal
methods are used for specification, description, and
verification. The goal of this research is to turn a
business process graphical diagram into a formally
based model. In this work, BPMN has been
extended to add time and probability information
and then has been transferred to probabilistic real-
time CSP area. This mapping can be employed
as a basic model for modeling different system
characteristics. This mapping, then, is modeled
using a case study in pervasive healthcare domain
and verified in a model checking tool.

Index Terms — Formal methods, CSP, BPMN,
Pervasive healthcare, Model checking.

I. INTRODUCTION

Service oriented computation (SOC) appeared
in 1990 decade. SOC organizes programs and

software infrastructures in the form of a set of
interacting services relying on service oriented
architecture (SOA). SOA is an architecture which
provides publishing, discovering and using
services via other programs or services. Its aim is
to achieve platform independent service oriented
computation based on standards and loosely
coupled components [1].

The actual capacity of service-oriented
architecture can only be achieved by composing
services into powerful programs. In addition to
service, what is needed for service composition
is full and accurate details of service behavior
while working with more complex and larger
collection of services which describes service
role as a part of the package. Web services are
the best technology for implementing SOA and
its strategic goals. Web service is a well-defined
abstraction of a set of computing activities which
includes some resources to meet a customer or a
business process requirement [1].

 There are two ways to describe the arrangement
of business process activities: Orchestration
and Choreography. Orchestration represents an
executable business process which is described
and controlled from a central unique point and
orchestrates interaction of different services.
While in the choreography, each participant
describes its contribution to the composition.
Choreography represents a description of the
observable behavior of each participant in
the composition includes exchanging public
messages, transactions rules and an agreement

1,3 - Department of Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran
(alirezaee.uni@gmail.com)

2 Journal of Advances in Computer Engineering and Technology, 4(1) 2018

on one or two or more endpoints in a business
process [1]. Business processes choreography
can be designed using standard notations and
tools like BPMN and activity diagram.

We have chosen health care domain to be our
business process diagram (BPD) case study. The
main challenge in healthcare domain is how to
provide better services to people while the financial
and human resources are limited and human
population is increasing [2]. Pervasive healthcare
is the solution of many current problems and has
a bright future for healthcare services. Pervasive
healthcare is defined as healthcare services for
everywhere every time while increases service
quality. The more expanded definition includes
prevention, health checkups, and maintenance,
monitoring short-term (home health monitoring),
long-term monitoring (nursing home), personal
health monitoring, diagnosis and management
of disease outbreaks, emergency, patient transfer
and treatment [3]. Because there are many
challenges in today’s health care arena and also
the clear vision of the future, we’ve chosen our
business process case study from this domain. In
this research, we’ve extended BPMN diagram
to add time and have derived a mapping from
BPD to Probabilistic Real-time CSP, to be a basic
formal model for software development. A brief
and a comprehensive description of BPMN can
be found in [4] and [5,6] respectively.

II. RELATED WORKS

Lanz [7] introduced time patterns for
comparing and evaluating PIAS (Process-Aware
Information Systems) systems and defined these
patterns formally. Kallel [8] had a review on
modeling and verifying time properties solutions
in business processes, and extracted main
challenges of this field. El-Hichami [9] presented
a user-friendly graphical interface to enable
business process experts to the early validity
of dynamic behaviors and design constraints.
Also, formal semantics and verification solution
is presented. Guisheng Fan [10] presented a
describing formal language to model different
components of service composition and has
used it to analyze system reliability, he verified
his method by PetriNet. Rezaee [11] introduced
a Fuzzy Inference Cloud Service (FICS) and
modeled it using CSP formal language, Also,
he did four tests on his model: consistency,

deadlock, divergence and goal reachability.
Rodano [12] expressed characteristics of a good
architecture and its evaluation methods as general
rules of a natural language, then converted that
general rules to a logical formal notation which
is domain and tool independent. In [13], the
author described workflow patterns of service
composition, analyzed their characteristic and
performance PetriNet to the (max,+) algebra.
And provided rules for mapping workflows in
PetriNet to the (max,+) algebra. Dumez [14]
presented a solution for specification, verification,
and implementation of model-driven composite
services. He used formal methods specially
formal description language, LOTOS, to verify
composite service in the specification phase.

III. FORMAL MODELING

CSP is a formal language which presents a
well-formed formal algebra which is used in
the industry to model and verify distributed and
concurrent systems. A CSP process is like a black
box includes several events. Process alphabet
is a collection of events which the process can
use. The process uses events and also channels to
interact other processes [11]. The following is the
brief description of expression (1):

STOP is the deadlock process which is not
able to progress. SKIP is an event to determine a
successful termination [hoar]. The process “b→P”
continues to wait until the environment performs
“b”. Once the event has occurred, the behavior
of “b→P” will be the behavior of the process
“P” [11]. “P□Q” determines deterministic choice
so that the environment decides to select “P” or
“Q”, sending a special initial event to one of the
processes. While in nondeterministic choice,
“P□Q”, the environment suggests a collection of
events to the process and the process decides to
accept or refuse events. In a non-deterministic
process, some internal decisions can lead to
unreliable behavior in future.

Processes communicate each other via
channels to path messages. “chin?x → P” means
an item is red from channel “chin”, placed to x
and then process behavior is the same as “P”.
“chout!x → P” means an item is placed on
channel “chout”, and then process behavior is the
same as “P” [11].

“P;Q” is the sequential composition which

Journal of Advances in Computer Engineering and Technology, 4(1) 2018 3

the combined process first behaves as “P”, if “P”
terminates successfully then behaves as “Q”. The
parallel lock-step synchronization of process
“P” and process “Q” is shown by “P||Q”, in
which “P” and “Q” processes must synchronize
on the events which are both in the alphabet
set of “P” and “Q” processes. The interleaving
composition indicated by “P|||Q” does not
perform synchronization based on common
alphabets, and instead “P” and “Q” processes can
communicate by using common channels [11].

“P ⊀ x Q” indicates a conditional process

which “x” is the condition and if evaluated to true
the process behaves as “P” otherwise behaves as
“Q”. More descriptions on CSP can be found in
[15] and [16].

IV. SUGGESTED MAPPING ALGORITHM

The aim is to specify a method that an
analyzer can analyze time constraints and time
criterions in the design phase. Analyzer takes
BPD of a system, models it to CSP according to
the mapping method we’ll explain here. If some
reformation needed, modified design will come
back to the analyzer to model it again. So, the
system will refine during a recursive process to
reach the desired quality.

1. Processes and Communications
For each pool consider a process: PoolName();.

For each lane in a pool, consider a process with
three sub-processes as: a main process “body”,
a receive process “r” and a send process “s”.
Process “body” follows the activities and events
seen in the lane, and receive process and send
process are responsible for exchanging messages
between outside of the body. Further, we will
explain “r” and “s” processes in detail.

Each activity in BPD can be mapped a simple
process as:

ActivityName() = activityname -> Skip;
To map the communications, we declare a

category for created processes in CSP: main
processes and subsidiary processes. And also a
category for CSP channels: external channels and
internal channels. Main processes include Pool,

Lane and any process in this level such as control
process. Subsidiary processes include sub-
processes in the main processes and also activity
processes. The structure of communication is the
major difference between these two categories
of processes. A subsidiary process doesn’t have
external channels or sometimes it doesn’t have
any channels like activity processes. A main
process has send/receive sub-processes and
communicates via external channels with other
main processes. In fact, s/r sub-processes are the
interfaces of a main process to the outside world.
While subsidiary processes don’t have interface.

In BPD, a control flow element crossed
over a lane border determines an external
communication (message passing). Generally, for
every two main processes which communicate
each other, we consider 4 channels conforming
figure (1). Having more than one reader or writer
for a channel can cause data items lost or conflict.
So, we separated the receiving channel and the
sending channel for each process to avoid data
confliction. We, also, separated channels for data
items and control items to avoid data traffics when
we need to send a control item immediately.

For message passing, we use a pattern as
follow. All messages sent or received from/to
body, are compound messages with three parts:
P.T.M. “P” represents destination process name
for out coming messages or source process
name for incoming messages. “T” represents
the type of message which can be D (data) or C
(control). “M” is the message itself and it is the
only thing that we see on the external channels.
The two previous parts will be extracted in the
“Send” interface layers or will be attached in the
“Receive” interface layers. The reason of using
this message structure is explained in the next
section.

Figure 1: External Communicating channels

4 Journal of Advances in Computer Engineering and Technology, 4(1) 2018

2. Send and Receive Interfaces
An internal channel connects the body to

the send interface. Sending interface has been
mapped to PA_s() process which has two layers:

- The first layer contains Prepare_Send_
PA() process which takes messages from body,
extracts first part of messages and according to
that, distributes them between SendTo processes.

- In the Second layer, for each destination
process which receives a message from PA, there
is a SendTo process. SendTo process extracts
second part of a message, check if it is data or
control, and puts only the last part on the correct
external channel.

“Send” interface, PA_s(), is composed of
interleaved execution of all processes in these
two layers.

Receiving interface, PA_r(), has also two
layers. Layers ordered according to message flow
direction as bellow:

- In the First layer, for each incoming external
channel there is a listener process which listens
on that channel all the time in a loop, catches
message, puts it on Ch_IRCheck_PA internal
channel to pass it to the upper layer. As each
listener is responsible for a unique external
channel, it knows source and type of message so
concatenates them behind the message first.

- The second layer contains the PA_check()
process which takes over messages from listener
processes, pre-processes and checks messages if
needed, and finally delivers messages to the body.

“Receive” interface, PA_r(), is composed of
interleaved execution of all processes in these
two layers.

3. Branches
Generally, there are three categories of

branches in BPD according to the number of
active passes:

a. Parallel branch: All the paths will be
activated and no condition will be checked before
the branch. Mapping: For each path of the branch
consider a subsidiary process and compose all as
interleaved processes.

b. Exclusive branch: there will be one choice
and just one path will be activated according to the
run time data and conditions which resolve before
the branch. Mapping: when there are absolute
conditions use basic condition operations. In
the case of probabilistic choice, use the “pcase”
operation. To implement exclusive gate, there is

no constraint to have a process for each path.
c. Inclusive branch: One or some or all the

paths will be activated according to the run time
data and conditions which resolve before the
branch.

Mapping: since there is no operation to handle
multi-choice in CSP, we’ve used a heuristic
algorithm to implement inclusive branch.

4. Time Factor
To involve time factor to our process modeling,

we considered two aspects of time: run time of
activities and time constraints in the BPD.

First, we added an estimated time near each
activity in BPD (figure (2)). And then we mapped
it to CSP model by adding wait[t] operation at the
beginning of activity process.

To map time constraint elements like what
illustrated in figure (3), consider separate
processes for timer path and message path, and
combine the two processes using timeout[t]
operation.

For each exclusive event-based gateway
which events are timer and message:

 Create process Timer_Path();
 Create process Message_Path().
 Begin Message_Path() with reading from

channel;
Compose Timer_Path() and Message_Path()

using timeout[Timer_time] operation;

Figure 2: Activity Time

V. EVALUATING CSP EXPRESSIONS
PRODUCED BY SUGGESTED MAPPING

ALGORITHM

In the software architecture and formal
method library in the Islamic Azad University,
Science and Research Branch (Tehran), we’ve
done tests using PAT as an exhaustive search tool
on a machine with the following characteristics:
64 GB RAM, 2 processors with 32 cores. We
mapped all our BPD case study to the CSP
expressions and considered four verification tests
as:

Journal of Advances in Computer Engineering and Technology, 4(1) 2018 5

1. Goal Reachability test
2. Deadlock Free test
3. Divergence Free test
4. Time test
The aim of goal reachability test (figure (4)) is

to ensure that all the intended steps in a process
will be passed. To reach this aim we should
declare a global variable and increase it in every
step. At the end of process value of the variable
should be equal to the number of steps.

In the exhaustive search method, all the
possible paths will be checked not lead to
deadlock. If any paths found that leads to
deadlock, deadlock verification would not be
valid (figure (5)).

The aim of divergence free test (figure (6)) is
to evaluate the model not to have unpredictable
and uncontrollable behaviors. Getting into an
infinite loop or reaching different results from the
primary purpose and so on, will be checked in the
divergence free test.

For time test (figure (7)) we used a combination
of goal reach ability test and timeout operation.
We considered a deadline for the whole of the
system (deadline[] operation) as a new process
and performed the goal reachability test again.

Figure 4: Goal Reach Ability Test

Figure 5: Deadlock Free Test

Figure 6: Divergence Free Test

Figure 7: Time Test

Figure 3: Exclusive Event-Based Gateway

Journal of Advances in Computer Engineering and Technology, 4(1) 2018 6

VI. CONCLUSION

In this research, we’ve extended BPMN
diagram to add time and have derived a mapping
from BPD to Probabilistic Real-time CSP, to be
a basic formal model for software development.
People who need to evaluate their software
formally can use our method to model their
software in CSP. This is a basic model to modeling
different software characteristics. As mentioned
above, because of many challenges in today’s
healthcare arena and also the clear vision of the
future, we’ve chosen our business process case
study from this domain. To do that, we wrote a
CSP expression for each basic BPMN element and
built bigger processes and presented a structure
for communicating processes. We evaluated our
method on a case study in the healthcare domain.
We would like to extend it to include more details
of BPMN elements and mapping in the future. We
also would like to automate this mapping method
to escape the modeling of business processes
manually. Formal mathematical proofing of this
mapping method can be our future research too.

REFERENCES

[1] Quan Z. Sheng, Xiaoqiang Qiao, Athanasios V.
Vasilakos, Claudia Szabo, Scott Bourne, Xiaofei Xu,
2014, “Web services Composition: A decade’s overview”,
Elsevier, Information Sciences.

[2] Oana-Sorina Lupşe, Mihaela Marcella Vida,
Lăcrămioara Stoicu-Tivadar, 2012 , “Cloud Computing
and Interoperability in Healthcare Information Systems”,
INTELLI: The First International Conference on Intelligent
Systems and Applications.

[3] Upkar Varshney, 2005, “Pervasive Heaithcare:
Applicattions, Challenges and Wireless Solutions”,
Communications of the Association for Information
Systems, Volume 16, 57-72.

[4] Stephen A. White, 2016, “Process Modeling
Notations and Workflow Patterns”, IBM Corp..

[5] Jakob Freund, Bernd Rücker, 2014, “Real-Life
BPMN: Using BPMN 2.0 to Analyze, Improve, and
Automate Processes in Your Company”.

[6] Stephen A. White, 2016, “BPMN Modeling and
Reference Guide: Understanding and Using BPMN”, Future
Strategies Inc.

[7] Andreas Lanz, Manfred Reichert, Barbara Weber,
2015, “Process time patterns: A formal foundation”,
Elsevier, Information Systems.

[8] Saoussen Cheikhrouhou, Slim Kallel, Nawal
Guermouche, Mohamed Jmaiel, 2015, “The Temporal

Perspective in Business Process Modeling: An Evaluative
Survey and Research Challenges”, Service Oriented
Computing and Applications, Springer London, pp. 75-85.

[9] Outman El hichami, Mohammed Al achhab, Badr
Eddine El Mohajir, , 2014, “Towards Formal Verification of
Business Process using a Graphical Specification”, IEEE.

[10] Guisheng Fan, Huiqun Yu, Liqiong Chen, Dongmei
Liu, 2014, “Formal Modeling and Analyzing the Reliability
for Service Composition”, IEEE.

[11] Ali Rezaee, Amir Masoud Rahmani, Ali Movaghar,
Mohammad Teshnehlab, 2014, “Formal process algebraic
modeling, verification, and analysis of an abstract Fuzzy
Inference Cloud Service”, Springer Science, J Supercomput
67:345–383.

[12] Matthew Rodano, Kristin Giammarco, 2013,
“A Formal Method for Evaluation of a Modeled System
Architecture”, Computer Science 20, 210–215, Conference
Organized by Missouri University of Science and
Technology.

[13] W. Ait-Cheik-Bihi, A. Nait-Sidi-Moh, M.
Bakhouya, J. Gaber, M. Wack, 2012, “Performance Study
of Workflow Patterns-Based Web Service Composition”,
Elsevier.

[14] C. Dumez, M. Bakhouya, J. Gaber, M. Wack, P.
Lorenz, 2013, “Model-driven approach supporting formal
verification for web service composition protocols”, Elsevier
Ltd, Journal of Network and Computer Applications 36,
1102–1115.

[15] A.W. Roscoe, 2005, “The Theory and Practice of
Concurrency”.

[16] Hoare CAR, 2004, “Communicating sequential
processes”, Prentice Hall, Englewood Cliffs.

[17] Minggang Yu, Zhixue Wang, and Xiaoxing Niu,
2016 , “Verifying Service Choreography Model Based on
Description Logic”, Mathematical Problems in Engineering
Volume 2016.

[18] Boumaza Amel, Maamri Ramedane, 2016,
“From OWL-S to Timed Automata Network: Operational
Semantic”, Procedia Computer Science Volume 83, 409-
416.

[19] VineetPadmanabhan, Gopal N.Rai,.G.R.
Gangadharan, 2015, “Algebraic Modeling and Verification
of Web Service Composition”, Elsevier, Procedia Computer
Science, Volume 52, 675-679.

[20] Xi Wu, Huibiao Zhu, 2016, “Formalization and
analysis of the REST architecture from the process algebra
perspective”, Future Generation Computer Systems, Volume
56

