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Abstract - The need for planning the scheduling 
of the user’s jobs has emerged as an important 
challenge in the field of cloud computing. It is 
mainly due to several reasons, including ever-
increasing advancements of information technology 
and an increase of applications and user needs for 
these applications with high quality, as well as, 
the popularity of cloud computing among user 
and rapidly growth of them during recent years.  
This research presents the Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES), an 
evolutionary algorithm in the field of optimization 
for tasks scheduling in the cloud computing 
environment. The findings indicate that presented 
algorithm, led to a reduction in execution time of 
all tasks, compared to SPT, LPT, RLPT, GA and 
PSO algorithms.

Keywords: Cloud Computing, Task Scheduling, 
Virtual Machines (VMs), Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES)

1- Introduction

Nowadays, the internet and other associated 
technologies have turned out to be an 

integral part of human life, so that the need 
for information security, accessibility, easy 
information transportation, rapid processing of 
information, thwarting time-wasting and cost 
saving measures are so important and essential. 
Accordingly, a novel technology was devised, 
called cloud computing. The cloud computing 
is considered as a computational model which 
provides the clients with software, information, 
and resources upon any demand and need. The 
cloud computing can be defined as a utilization 
of computerized technologies and information 
via the internet. Indeed, the users can pay 
the charge and have access to the required 
information and resources (pay-as-per-use) 
offered by cloud computing using the internet 
or the network. The scheduling problem must be 
regarded as an important problem in the scope 
of cloud computing. So that, the cloud service 
providers can benefit the resources and clients 
should be able to access the needed application 
by paying a low fee [1].  Another issue which 
deserves attention is related to the execution 
mode of tasks, as the execution sequence of some 
tasks is important and in some cases, a single 
resource is capable of executing a specific task.

In fact, scheduling in cloud computing can 
be explained as follows: First, a client submits a 
request/job to get a service, and upon the arrival 
of the client’s request, the service/resource 
provider triggers the scheduling of that request. 
That is, the resources are allocated to the jobs in 
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a manner that not only the efficient utilization of 
the computational resources is realized, but also 
the equality is established between the execution 
of applications. As a job consists of multiple 
tasks, the task scheduling notion in the context 
of cloud computing is highly sophisticated and 
complex [1]. Therefore, scholars have conducted 
numerous researches with the main focus on cloud 
computing and its task scheduling aspect. Our 
main objective of accomplishing this research is 
to present a method for reducing the response time 
of the task and increasing the processing power 
of cloud computing using Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES) [1]. 
As we reviewed the available literature on task 
scheduling algorithms in the cloud computing, 
we noticed that numerous algorithms have been 
presented by methods, such as particle swarm 
optimization (PSO) [15], Genetic algorithm [12-
13], Fuzzy [14] and Simulated Annealing [16] and 
other heuristic and hybrid algorithms. However, 
we should point out that to date no study has been 
carried out in the field of using CMA-ES for task 
scheduling in cloud computing environment. 

CMA-ES is an optimized evolutionary 
algorithm which samples a normal distribution 
and generates a new population. This evolutionary 
algorithm estimates a covariance matrix and 
means vector regarding the population. The 
various updating rules generate an adapted 
covariance matrix in each generation which 
plays an important role in the quality of the new 
population and result of the evolution direction. 
Hence, it is essential to study how the matrix being 
updated. On the other hand, nonparametric inter-
class scatter matrix resulting from Fisher’s linear 
discriminant (Fisher’s classification method) [2] 
generates a pattern consisted of individuals with 
a high and low performance in the population. 
Then, it draws a vector from each group to the 
nearest neighbor k. This kind of vector points 
to a direction from which the individuals with 
low performance are led toward the proper 
performance. Consequently, this direction can 
be useful for better propelling of the population 
toward the optimal target [2].   

The rest of this paper is organized as follows: 
Section 2 gives a brief outline of Literature 
Review on task scheduling problem. Section 3 
introduces our algorithm for task scheduling in 
a cloud environment. Section 4 describes the 
simulation results. Finally, we conclude the paper 
in section 5.

2- Literature Review

In [1] an improved cost-based algorithm 
was presented for task scheduling process. This 
algorithm was suggested for efficient mapping 
of the tasks to the available resources in a cloud 
environment. Two main phases of the proposed 
algorithm involve using improved Bee Nest 
Algorithm for giving priority to the tasks and 
utilization of an algorithm for tasks grouping by 
their given priority. The scheduling mentioned 
above algorithm computes the fee paid for taking 
the resources and the efficiency of the calculations 
accomplished for completion of workflow tasks. 
A significant enhancement was observed during 
the investigation of the ratio of the paid fee 
for allocation of the resources to the efficient 
communication fee for the accomplishment of 
the workflow task.

Loshchilov et. Al. [2] presented time-cost 
balancing algorithm whose performance was 
studied by considering the cloud computing 
properties. For instance, the compression of 
workflow is carried out for reducing the execution 
time and cost by the input information provided 
by the user for the system during each login 
session. Another cost improvement algorithm 
for scheduling the workflow in hybrid clouds 
was presented in [3] which possesses two main 
phases, including tasks selection and resource 
selection from the public cloud, and finally the 
development of hybrid cloud. While the scheduler 
decides which task leads to the reduction in 
execution time using resources of public cloud, 
it should be noted that efficiency determination 
and execution costs play an important role during 
a new scheduling. 

Paper [4] presented a genetic algorithm-based 
dynamic load balancing strategy. The speed of 
scheduling increases and switching between 
processors decreases, the tasks for execution 
are chosen, and in an advanced mode, the tasks’ 
attributes are identified. The compatibility 
threshold contributes to the balancing of dynamic 
load of the processors. In [5], a fuzzy genetic 
optimization algorithm was recommended for 
scheduling the job to improve the resources in 
Hadoop framework (Apache Hadoop). A series of 
revisions was applied to the scheduling algorithm, 
and it estimates the execution time of the tasks 
for establishing a better load balance among the 
nodes of the cloud. However, selection of task 
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vector has a great impact on the prognosticated 
effectiveness.

Paper [6] suggested a particle swarm 
optimization algorithm (PSO) for task scheduling 
in cloud environment which minimizes the 
processing time. This algorithm has a more rapid 
convergence with a greater set of tasks. The lack 
of PSO variety leads to the false convergence. 
Therefore, the hybrid PSO along with various 
options are adopted for preventing from any false 
convergence during tasks scheduling. The present 
paper is focused on minimizing the finish time of 
jobs and maximizing the resources exploitation.  

The main objective of a study carried out 
by [7] was to find an economic and optimal 
solution to the load distribution problem and to 
come up with planning for a proper allocation 
of energy resources cycled between thermal and 
wind generators which are available for service 
demand. Since the random behavior of wind 
speed and wind energy can be expressed using 
Probability Density Function (PDF). As a result, 
the scholars intended to minimize the expenses 
of the energy offered by conventional thermal 
generators and wind generators via presenting 
a framework by CMA-ES. To demonstrate the 
effectiveness and feasibility of the presented 
framework, they conducted various case study 
researches for these two thermal and wind 
generator systems. It should be declared that 
the security is highly crucial and vital for the 
workflow of various applications with bulky 
data and their execution and distribution over the 
infrastructure requires a longer time.

In [8], a secure and cost aware scheduling 
algorithm was introduced for heterogeneous 
jobs of workflow in a cloud environment. The 
suggested algorithm utilizes PSD-based Meta-
heuristic optimization method for minimizing the 
total cost of workflow execution, whereas it takes 
into account the timeout constraint and risk rate. 
Different experiments were conducted using real 
world two workflow applications in CloudSim 
Simulation Framework, and the obtained 
results proved the effectiveness and practicality 
of the algorithm. Nowadays, as the cloud 
computing is employed as the infrastructure for 
distribution and execution of sophisticated and 
more heterogeneous applications, the scientists 
encounter with various conflicting and competing 
goals, such as decreasing the jobs computation 
time and economic expenses associated with the 
cloud platform. 

In [9], a well-known scheduling algorithm, 
called HEFT was presented for dealing with 
multiple and conflicting goals of planning 
and workflow scheduling. To assess the novel 
algorithm regarding performance and cost, it 
was used for scheduling of artificial intelligence 
software and in the real world it was used in 
computations related to the Federal Clouds 
Infrastructure.

In [17] they have introduced an Optimized 
Task Scheduling Algorithm which adapts the 
advantages of various other existing algorithms 
according to the situation while considering the 
distribution and scalability characteristics of 
cloud resources.

Rezaque et al. [18] presented an algorithm for 
effective job scheduling. This algorithm provides 
a schedule of dividable task considering the 
network bandwidth which allows the allocation 
of workflow on the basis of availability of 
the network bandwidth. The proposed task 
scheduling algorithm utilizes a non-linear 
programming model for scheduling the dividable 
task which allocated a proper number of tasks to 
each virtual machine. Finally with regard to the 
afore-mentioned allocation mode, they devised 
an algorithm of scheduling for the dividable load 
considering the network bandwidth.

3- Proposed Algorithm

We assume that there exist i tasks and j virtual 
machines in the suggested system. Pij denotes 
the processing time of i-th task on the j-th 
Virtual Machine (VM) and Si1i2j represents the 
preparation time (communication cost) between 
i1 and i2 tasks on j-th virtual machine. You did 
not use Si1i2j!!!

Moreover, the main assumptions of the 
problem are as follows:

1- All tasks must be completed.
2- Each task can be executed and finished 

merely by one VM.
3- The start time of each task is equal to 

the sum of finish time (completion time) of the 
previous task and preparation time of the virtual 
machine.

4- The finish time of each task is equal to the 
sum of the start time of the task and its processing 
time.

5- The processing time of each task and 
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preparation time are randomly determined.
6- The allocation of virtual machines to the 

tasks is realized in a random manner, so there is a 
probability of idle state for some VMs during the 
distribution of tasks.

If it is supposed that the number of tasks is 
equal to 100 (I=100) and the number of VMs 
is equal to 20 (J=20). First, a 100×20 matrix 
of random integers was generated. The matrix 
represents the processing time (Pij) of i-th task 
on the VMs (j=1,2,…,20). Then, 100×100×20 
matrix of random integers should be created on 
the various VMs for preparation time between 
various tasks. By using a random permutation of 
(I+J-1) length, the tasks will be distributed among 
the VMs. After that, the index of tasks related to 
each VM should be determined.

Thus, we will do as below:
1- Creation of matrix with such content: the 

first component of the matrix will be initialized 
by zero, and other components will be equal to 
separators index. Finally, one will be added to the 
matrix, that is:

From= [0 4 7 11] + 1=[1 5 8 12]     (1)

2- Creation of matrix with such content: the 
initial components include separators index, and 
the end component is equal to I+J. Finally, one 
unit subtracted from matrix content, that is: 

To= [4 7 11 14]-1= [3 6 10 13]           (2)

So, ‘From’ matrix is related to the first index 
of each VM and ‘To’ matrix is related to the last 
index of each VM.

So far, we applied the first and second 
assumptions. For the third and fourth assumptions 
following steps will be performed:

1- the start time of tasks
If it is the first task of a VM, its start time will 

be set to 0.

Start_Timei=0                         (3)

Else, its start time will be equal to the finish 
time (finish time) of the previous task plus 
preparation time between (i-1)-th and i-th tasks 
on the same VM:

Start_Timei= Finish_Timei-1+ Preparation _Timei-1

                 (4)

2- the finish time of each task is equal to the 
sum of the start time of that task and its processing 
time:

Finish_Timei=Start_Timei +Processing_Timei
                                                                (5)

3- VM finish time is equal to the finish time of 
the final task assigned to that VM:

VM_Finish_Time = (Finish time)final_task          (6)  

4- Finish time of all tasks submitted to a cloud 
system is equal to the maximum of VM finish 
time:

System_Finish_Time = max (VM_Finish_Time)
                                                                     (7)

Regarding the fact that, the main objective of 
the present research is the realization of reduction 
in System_Finish_Time using CMA-ES, so 
suggested model of the allocation mode of tasks 
to the VMs and system time calculations will be 
applied as an input to the algorithm. To utilize the 
CMA-ES, a series of initial configurations for the 
parameters is required which will be discussed in 
what follows. For performing the simulation of 
the CMA-ES, we used the Pseudocode presented 
in [10]. 

As we assumed that the number of tasks 
is equal to 100 and number of VMs is equal to 
20, thereby the length of random permutation is 
equal to 119.

1- We assumed that the maximum iteration 
number is equal to 250, the high and low limits 
of the values are equal to 30 and 2, respectively. 
Also, the values of Pc and Pσ , respectively, for 
updating of the anisotropic evolution path and 
isotropic evolution path are initialized by zero. 
The covariance matrix was assumed to be unique. 
Sigma is equal to multiply a random number and 
difference of low and high limits, which is used 
for updating the step size.

MaxIteration=250
Min=2
Max=30
Pσ=0    (8)
Pc=0
C=I
Sigma=rand(1)×(Max-Min)
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2- The population size (number of children) is 
calculated by the formula (9) [10]:

4 3log 10n                        (9)

Where n is equal to the length of random 
permutation (n=119) and λ is the number of the 
iteration.

3- The parent number (or scores for 
recombination) which is equal to the half of the 
population size is calculated by formula 10 (i.e. 
72 parents).

'
2                                      (10)

  
4- The parents’ weights are calculated using 

formula (11), then the result will be normalized 
using formula (13).

' 'log( 0.5) logi i     for i=1,…,m    (11)

'                                  (12)

'

'

1

i
i

j
j

                           (13)

5- The variance-effectiveness (number of 
useful solutions) calculated by formula (14), is 
equal to the square of the total weights plus the 
total squares of the weights.

2 2

1 1
( )eff i i

i i
          (14)

 
6- Setting the control parameters for step size 

by formulas (15) and (16)
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      16)

7- Configuring the strategy parameters 
(adaptation) in covariance matrix by formulas 
(17), (18) and

4
4 2
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c
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n n

                   (17)

1 2
2

( 1.3) eff

c
n                    (18)
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( 2) 2

eff eff

eff
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n

                                                             (19)                    

After performing the above-mentioned 
phases, we applied the cost function and the 
proposed model as an input to CMA-ES. Then, by 
creating a loop starting from one to the maximum 
number of the iteration, and the creation of a step 
size for children and multiplying it by sigma, 
and applying the product on the current parents, 
a new population will be generated. Now, the 
new population will be considered as a suggested 
permutation. 

We have considered the task scheduling in 
cloud computing environment as a permutation. 
So,   operators are as follows: 1) swap, 2) reversion 
and 3) insertion and these three operators were 
also applied to our algorithm. Now, we will apply 
the result of these operators to the proposed model 
to estimate the cost. So far, a phase of the step 
size was traversed.  Hence, the above-mentioned 
phases will be iterated λ times.

After that, two formulas (20) and (21) will 
be used for selection and recombination of the 
individuals for generation of a new population, 
and then we perform the simulation.

:
1 1

1, 0i i i iw
i i

y y where   (20)

:
1

i iw
i

m m y x                (21)
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For updating the step size, two formulas 
(22) and (23) are used.   refers to the updating 
of isotropic evolution path and    denotes the 
updating of Sigma. The action of updating of the 
covariance matrix is carried out by two formulas 
(24) and (25).   is related to the updating of the 
anisotropic evolution path, and the updating 
of covariance matrix will be accomplished 
according to the formula (25).

1
2(1 ) (2 ) eff wp c p c c C y

                                                                   (22)

|| ||exp( ( 1))
|| (0, ) ||

c p
d E N I

     (23)

(1 ) (2 )c c c c c eff w
p c p h c c y   (24)

1 1 : :
1

(1 ) ( ( ) )T T
c c i i i

i
C c c C c p p h C c y y

                                                                     (25)

The above actions will be executed by a 
specified maximum iteration number and finally, 
the best method for allocating the tasks to the 
VMs to with the minimum cost will be obtained.

4- Simulation and Results

Please 1) define your Simulation tool and 2) 
how to create conditions of DAG?

Figure 1 illustrates the start, processing and 
the finish time of all tasks in the assigned VMs. 
Furthermore, the total execution time of the 
submitted tasks to the VMs and total execution 
time of the tasks in a cloud computing system are 
also presented.

As shown in figure 1, the finish time of some 
VMs is so longer, and another VMs are in idle 
state, and the remaining VMs have a shorter 
finish time. For example, during the whole 
execution time of the tasks in a cloud computing 
system, only one task was assigned to 8-th and 
13-th VMs. While, in the same system, the 14-th 

VM was always busy during the task execution 
process. For overcoming this problem, CMA-
ES is used. Considering figure 2, we were able 
to overcome the idle state problem of some VMs 
and prevent the occurrence of long busy time 
for others via balancing the load among various 
VMs. Likewise, the tasks execution time of the 
whole system was reduced from 297 to 95. 

 

Figure 1: How tasks executed in the allocated machines 
along with execution time in the initial population

Figure 2: How tasks executed in the allocated machines 
along with execution time in the final population

Figure 3 depicts the cost reduction (the 
total System_Finish_Time) during consecutive 
iterations, and such reduction is more noticeable 
after 27-th iteration. 
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Figure (3): The best expenditure (the lowest time) during 
the iteration of simulation

For investing the performance of the proposed 
algorithm, we focused on the obtained results by 
modifying and manipulating the number of tasks 
and virtual machines. The number of tasks was 
varying between 60 to 180 and the number of 
virtual machines was set to 10, 20 and 30. With 
regard to figure (4), the tasks will be distributed 
among more machines, with increase in the 
number of virtual machines, and to the same ratio 
the time of task execution will decrease in the 
entire system.

For scrutinizing the performance of the 
suggested algorithm, the corresponding results 
will be compared to the non-preemptive Shortest 
Processing Time (SPT), Longest Processing 
Time (LPT) algorithms.

For assessing the performance of proposed 
algorithm, standards and metrics like parallelizing 
rate, exploitation of VMs and throughput are used 
by formulas (26) and (27):

Parallelizing Rate=

                                                                  (26)

Throughput =
The total number of completed tasks per time unit

Total time

                                                                 (27)
 
The rate of parallelizing and operational 

power for the number of tasks and various virtual 
machines are presented in table (1).

 
For comparing the performance of the 

suggested algorithm with two non-preemptive 
algorithms, the same conditions were assumed 
in such a way that 100 tasks with a constant 
processing time along with 20 VMs were 
considered. Figures (5) and (7) illustrate that 
how tasks executed in allocated VMs along with 
their execution time for non-preemptive Shortest 
Processing Time (SPT) and Longest Processing 
Time (LPT) algorithms, respectively.
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Figure (4): tasks’ execution time of entire system for the number of tasks and various virtual machines
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Table (1): Rate of parallelizing and operational power for the number of tasks and various virtual machines

302010
24.141819.283418.298760
24.019118.274118.145980
23.973618.231518.0456100
23.928118.191217.9866120
23.861818.143217.9537140
23.782517.732117.7028160
23.719217.689117.5328180
23.687717.651117.4857200
0.06480.05260.050160
0.06440.05120.049380
0.06370.05080.0487100
0.06320.05040.0485120
0.06250.04970.0482140
0.06180.04920.0476160
0.06070.04860.0468180
0.06020.04790.0457200

Table 2:Comparison of parallelizing rate, throughput of proposed algorithm with that of SPT and LPT algorithms

Proposed LPTSPT 

18.2315 18.1739 17.3548 Parallelizing Rate 

0.0508 0.0478 0.0465 Throughput 

95 115 124 Execution time of all tasks 

Table3:Comparison of parallelizing rate, throughput of proposed algorithm with that of GA and PSO algorithms

Proposed PSOGA

18.2315 18.2157 17.1867 Parallelizing Rate 

0.0508 0.0501 0.0497 Throughput 

95 103 109 Execution time of all tasks 
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Figure 5: How tasks executed in the allocated machines 
along with execution time by SPT algorithm

 

Figure 6: How tasks executed in the allocated machines 
along with execution time by LPT algorithm

Figure 7 shows that how tasks executed in the 
allocated VMs along with execution time for the 
proposed algorithm. It shows that the execution 
time of all tasks in suggested algorithm is less than 
that of non-preemptive SPT and LPT algorithms.

 

Figure 7: How tasks executed in the allocated machines 
along with execution time by proposed algorithm

Tables 2 presents the results of comparing the 
parallelizing rate and throughput of the proposed 
algorithm with the non-preemptive SPT and LPT 
algorithms. Table 2, shows that the parallelizing 
rate and throughput of the suggested algorithm 
are greater than two algorithms, SPT and LPT. 
Also, the total execution time of all tasks of the 
proposed algorithm is less than that of other 
algorithms. The parallelizing rate, throughput 
and execution time of all tasks associated with 
the proposed algorithm is equal to 18.2315, 
0.0508 and 95, respectively.

In what follows, for further investigations of 
the proposed algorithm a comparison was made 
between GA and PSO in terms of performance 
and the obtained results of this comparison are 
presented in table (3). It can be noted that, the 
parallelizing and operational power rate of the 
proposed algorithm is greater than that of PSO 
and GA algorithms.

5- Conclusion

In this research, CMA-ES was presented as an 
algorithm in the field of optimizing the response 
time of the response to the user’s request in a 
cloud computing environment and for simulating 
the preparation time, the execution time of the 
tasks were obtained randomly, then the VMs 
were allocated to the tasks on the basis of each 
task’s priority using the proposed model. It was 
assumed that the model specifies the order of 
tasks execution in each machine and it stores the 
order in an array, we separated the tasks of various 
machines using a separator. Then, the array was 
taken into account as an initial population and 
applied as an input to the CMA-ES. This strategy 
estimates a covariance matrix and means vector 
from the population. The various updating 
rules fabricate an adapted covariance matrix in 
each generation, which plays a vital role in the 
quality of the new population and directing the 
evolution. we commenced simulation, and we 
were able to reduce the execution time of all 
tasks of the system significantly. For appraising 
the performance of the proposed algorithm, we 
compared it with two non-preemptive algorithms, 
including SPT and LPT algorithms.. While the 
finish time of the proposed algorithm is equal 
to 95. Generally speaking, the performance of 
the proposed algorithm is better than of non-



Journal of Advances in Computer Engineering and Technology, 3(3) 2017        144

preemptive algorithms. 
On the other hand, our further comparison 

results indicated that the parallelizing and 
operational power rate associated to the proposed 
algorithm is greater than that of PSO and GA 
algorithms.
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