
 Journal of Advances in Computer Engineering and Technology, 3(3) 2017

 Task Scheduling Algorithm using Covariance
Matrix Adaptation Evolution Strategy (CMA-ES)

in Cloud Computing
Ghazaleh Emadi1, Amir Masoud Rahmani2, Hamed Shah Hosseini3

Received (2017-03-03)
Accepted (2017-07-12)

Abstract - The need for planning the scheduling
of the user’s jobs has emerged as an important
challenge in the field of cloud computing. It is
mainly due to several reasons, including ever-
increasing advancements of information technology
and an increase of applications and user needs for
these applications with high quality, as well as,
the popularity of cloud computing among user
and rapidly growth of them during recent years.
This research presents the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), an
evolutionary algorithm in the field of optimization
for tasks scheduling in the cloud computing
environment. The findings indicate that presented
algorithm, led to a reduction in execution time of
all tasks, compared to SPT, LPT, RLPT, GA and
PSO algorithms.

Keywords: Cloud Computing, Task Scheduling,
Virtual Machines (VMs), Covariance Matrix
Adaptation Evolution Strategy (CMA-ES)

1- Introduction

Nowadays, the internet and other associated
technologies have turned out to be an

integral part of human life, so that the need
for information security, accessibility, easy
information transportation, rapid processing of
information, thwarting time-wasting and cost
saving measures are so important and essential.
Accordingly, a novel technology was devised,
called cloud computing. The cloud computing
is considered as a computational model which
provides the clients with software, information,
and resources upon any demand and need. The
cloud computing can be defined as a utilization
of computerized technologies and information
via the internet. Indeed, the users can pay
the charge and have access to the required
information and resources (pay-as-per-use)
offered by cloud computing using the internet
or the network. The scheduling problem must be
regarded as an important problem in the scope
of cloud computing. So that, the cloud service
providers can benefit the resources and clients
should be able to access the needed application
by paying a low fee [1]. Another issue which
deserves attention is related to the execution
mode of tasks, as the execution sequence of some
tasks is important and in some cases, a single
resource is capable of executing a specific task.

In fact, scheduling in cloud computing can
be explained as follows: First, a client submits a
request/job to get a service, and upon the arrival
of the client’s request, the service/resource
provider triggers the scheduling of that request.
That is, the resources are allocated to the jobs in

1- Science and Research Branch, Islamic Azad University,
Tehran, Iran.
2- Department of Computer Engineering Science and
Research Branch, Islamic Azad University, Tehran, Iran.
(rahmani74@yahoo.com)
3- Science and Research Branch, Islamic Azad University,
Tehran, Iran.

136 Journal of Advances in Computer Engineering and Technology, 3(3) 2017

a manner that not only the efficient utilization of
the computational resources is realized, but also
the equality is established between the execution
of applications. As a job consists of multiple
tasks, the task scheduling notion in the context
of cloud computing is highly sophisticated and
complex [1]. Therefore, scholars have conducted
numerous researches with the main focus on cloud
computing and its task scheduling aspect. Our
main objective of accomplishing this research is
to present a method for reducing the response time
of the task and increasing the processing power
of cloud computing using Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [1].
As we reviewed the available literature on task
scheduling algorithms in the cloud computing,
we noticed that numerous algorithms have been
presented by methods, such as particle swarm
optimization (PSO) [15], Genetic algorithm [12-
13], Fuzzy [14] and Simulated Annealing [16] and
other heuristic and hybrid algorithms. However,
we should point out that to date no study has been
carried out in the field of using CMA-ES for task
scheduling in cloud computing environment.

CMA-ES is an optimized evolutionary
algorithm which samples a normal distribution
and generates a new population. This evolutionary
algorithm estimates a covariance matrix and
means vector regarding the population. The
various updating rules generate an adapted
covariance matrix in each generation which
plays an important role in the quality of the new
population and result of the evolution direction.
Hence, it is essential to study how the matrix being
updated. On the other hand, nonparametric inter-
class scatter matrix resulting from Fisher’s linear
discriminant (Fisher’s classification method) [2]
generates a pattern consisted of individuals with
a high and low performance in the population.
Then, it draws a vector from each group to the
nearest neighbor k. This kind of vector points
to a direction from which the individuals with
low performance are led toward the proper
performance. Consequently, this direction can
be useful for better propelling of the population
toward the optimal target [2].

The rest of this paper is organized as follows:
Section 2 gives a brief outline of Literature
Review on task scheduling problem. Section 3
introduces our algorithm for task scheduling in
a cloud environment. Section 4 describes the
simulation results. Finally, we conclude the paper
in section 5.

2- Literature Review

In [1] an improved cost-based algorithm
was presented for task scheduling process. This
algorithm was suggested for efficient mapping
of the tasks to the available resources in a cloud
environment. Two main phases of the proposed
algorithm involve using improved Bee Nest
Algorithm for giving priority to the tasks and
utilization of an algorithm for tasks grouping by
their given priority. The scheduling mentioned
above algorithm computes the fee paid for taking
the resources and the efficiency of the calculations
accomplished for completion of workflow tasks.
A significant enhancement was observed during
the investigation of the ratio of the paid fee
for allocation of the resources to the efficient
communication fee for the accomplishment of
the workflow task.

Loshchilov et. Al. [2] presented time-cost
balancing algorithm whose performance was
studied by considering the cloud computing
properties. For instance, the compression of
workflow is carried out for reducing the execution
time and cost by the input information provided
by the user for the system during each login
session. Another cost improvement algorithm
for scheduling the workflow in hybrid clouds
was presented in [3] which possesses two main
phases, including tasks selection and resource
selection from the public cloud, and finally the
development of hybrid cloud. While the scheduler
decides which task leads to the reduction in
execution time using resources of public cloud,
it should be noted that efficiency determination
and execution costs play an important role during
a new scheduling.

Paper [4] presented a genetic algorithm-based
dynamic load balancing strategy. The speed of
scheduling increases and switching between
processors decreases, the tasks for execution
are chosen, and in an advanced mode, the tasks’
attributes are identified. The compatibility
threshold contributes to the balancing of dynamic
load of the processors. In [5], a fuzzy genetic
optimization algorithm was recommended for
scheduling the job to improve the resources in
Hadoop framework (Apache Hadoop). A series of
revisions was applied to the scheduling algorithm,
and it estimates the execution time of the tasks
for establishing a better load balance among the
nodes of the cloud. However, selection of task

Journal of Advances in Computer Engineering and Technology, 3(3) 2017 137

vector has a great impact on the prognosticated
effectiveness.

Paper [6] suggested a particle swarm
optimization algorithm (PSO) for task scheduling
in cloud environment which minimizes the
processing time. This algorithm has a more rapid
convergence with a greater set of tasks. The lack
of PSO variety leads to the false convergence.
Therefore, the hybrid PSO along with various
options are adopted for preventing from any false
convergence during tasks scheduling. The present
paper is focused on minimizing the finish time of
jobs and maximizing the resources exploitation.

The main objective of a study carried out
by [7] was to find an economic and optimal
solution to the load distribution problem and to
come up with planning for a proper allocation
of energy resources cycled between thermal and
wind generators which are available for service
demand. Since the random behavior of wind
speed and wind energy can be expressed using
Probability Density Function (PDF). As a result,
the scholars intended to minimize the expenses
of the energy offered by conventional thermal
generators and wind generators via presenting
a framework by CMA-ES. To demonstrate the
effectiveness and feasibility of the presented
framework, they conducted various case study
researches for these two thermal and wind
generator systems. It should be declared that
the security is highly crucial and vital for the
workflow of various applications with bulky
data and their execution and distribution over the
infrastructure requires a longer time.

In [8], a secure and cost aware scheduling
algorithm was introduced for heterogeneous
jobs of workflow in a cloud environment. The
suggested algorithm utilizes PSD-based Meta-
heuristic optimization method for minimizing the
total cost of workflow execution, whereas it takes
into account the timeout constraint and risk rate.
Different experiments were conducted using real
world two workflow applications in CloudSim
Simulation Framework, and the obtained
results proved the effectiveness and practicality
of the algorithm. Nowadays, as the cloud
computing is employed as the infrastructure for
distribution and execution of sophisticated and
more heterogeneous applications, the scientists
encounter with various conflicting and competing
goals, such as decreasing the jobs computation
time and economic expenses associated with the
cloud platform.

In [9], a well-known scheduling algorithm,
called HEFT was presented for dealing with
multiple and conflicting goals of planning
and workflow scheduling. To assess the novel
algorithm regarding performance and cost, it
was used for scheduling of artificial intelligence
software and in the real world it was used in
computations related to the Federal Clouds
Infrastructure.

In [17] they have introduced an Optimized
Task Scheduling Algorithm which adapts the
advantages of various other existing algorithms
according to the situation while considering the
distribution and scalability characteristics of
cloud resources.

Rezaque et al. [18] presented an algorithm for
effective job scheduling. This algorithm provides
a schedule of dividable task considering the
network bandwidth which allows the allocation
of workflow on the basis of availability of
the network bandwidth. The proposed task
scheduling algorithm utilizes a non-linear
programming model for scheduling the dividable
task which allocated a proper number of tasks to
each virtual machine. Finally with regard to the
afore-mentioned allocation mode, they devised
an algorithm of scheduling for the dividable load
considering the network bandwidth.

3- Proposed Algorithm

We assume that there exist i tasks and j virtual
machines in the suggested system. Pij denotes
the processing time of i-th task on the j-th
Virtual Machine (VM) and Si1i2j represents the
preparation time (communication cost) between
i1 and i2 tasks on j-th virtual machine. You did
not use Si1i2j!!!

Moreover, the main assumptions of the
problem are as follows:

1- All tasks must be completed.
2- Each task can be executed and finished

merely by one VM.
3- The start time of each task is equal to

the sum of finish time (completion time) of the
previous task and preparation time of the virtual
machine.

4- The finish time of each task is equal to the
sum of the start time of the task and its processing
time.

5- The processing time of each task and

138 Journal of Advances in Computer Engineering and Technology, 3(3) 2017

preparation time are randomly determined.
6- The allocation of virtual machines to the

tasks is realized in a random manner, so there is a
probability of idle state for some VMs during the
distribution of tasks.

If it is supposed that the number of tasks is
equal to 100 (I=100) and the number of VMs
is equal to 20 (J=20). First, a 100×20 matrix
of random integers was generated. The matrix
represents the processing time (Pij) of i-th task
on the VMs (j=1,2,…,20). Then, 100×100×20
matrix of random integers should be created on
the various VMs for preparation time between
various tasks. By using a random permutation of
(I+J-1) length, the tasks will be distributed among
the VMs. After that, the index of tasks related to
each VM should be determined.

Thus, we will do as below:
1- Creation of matrix with such content: the

first component of the matrix will be initialized
by zero, and other components will be equal to
separators index. Finally, one will be added to the
matrix, that is:

From= [0 4 7 11] + 1=[1 5 8 12] (1)

2- Creation of matrix with such content: the
initial components include separators index, and
the end component is equal to I+J. Finally, one
unit subtracted from matrix content, that is:

To= [4 7 11 14]-1= [3 6 10 13] (2)

So, ‘From’ matrix is related to the first index
of each VM and ‘To’ matrix is related to the last
index of each VM.

So far, we applied the first and second
assumptions. For the third and fourth assumptions
following steps will be performed:

1- the start time of tasks
If it is the first task of a VM, its start time will

be set to 0.

Start_Timei=0 (3)

Else, its start time will be equal to the finish
time (finish time) of the previous task plus
preparation time between (i-1)-th and i-th tasks
on the same VM:

Start_Timei= Finish_Timei-1+ Preparation _Timei-1

 (4)

2- the finish time of each task is equal to the
sum of the start time of that task and its processing
time:

Finish_Timei=Start_Timei +Processing_Timei
 (5)

3- VM finish time is equal to the finish time of
the final task assigned to that VM:

VM_Finish_Time = (Finish time)final_task (6)

4- Finish time of all tasks submitted to a cloud
system is equal to the maximum of VM finish
time:

System_Finish_Time = max (VM_Finish_Time)
 (7)

Regarding the fact that, the main objective of
the present research is the realization of reduction
in System_Finish_Time using CMA-ES, so
suggested model of the allocation mode of tasks
to the VMs and system time calculations will be
applied as an input to the algorithm. To utilize the
CMA-ES, a series of initial configurations for the
parameters is required which will be discussed in
what follows. For performing the simulation of
the CMA-ES, we used the Pseudocode presented
in [10].

As we assumed that the number of tasks
is equal to 100 and number of VMs is equal to
20, thereby the length of random permutation is
equal to 119.

1- We assumed that the maximum iteration
number is equal to 250, the high and low limits
of the values are equal to 30 and 2, respectively.
Also, the values of Pc and Pσ , respectively, for
updating of the anisotropic evolution path and
isotropic evolution path are initialized by zero.
The covariance matrix was assumed to be unique.
Sigma is equal to multiply a random number and
difference of low and high limits, which is used
for updating the step size.

MaxIteration=250
Min=2
Max=30
Pσ=0 (8)
Pc=0
C=I
Sigma=rand(1)×(Max-Min)

Journal of Advances in Computer Engineering and Technology, 3(3) 2017 139

2- The population size (number of children) is
calculated by the formula (9) [10]:

4 3log 10n (9)

Where n is equal to the length of random
permutation (n=119) and λ is the number of the
iteration.

3- The parent number (or scores for
recombination) which is equal to the half of the
population size is calculated by formula 10 (i.e.
72 parents).

'
2 (10)

4- The parents’ weights are calculated using

formula (11), then the result will be normalized
using formula (13).

' 'log(0.5) logi i for i=1,…,m (11)

' (12)

'

'

1

i
i

j
j

 (13)

5- The variance-effectiveness (number of
useful solutions) calculated by formula (14), is
equal to the square of the total weights plus the
total squares of the weights.

2 2

1 1
()eff i i

i i
 (14)

6- Setting the control parameters for step size

by formulas (15) and (16)

2
5

eff

eff

c
n (15)

11 2max(0, 1)
1

effd c
n

 16)

7- Configuring the strategy parameters
(adaptation) in covariance matrix by formulas
(17), (18) and

4
4 2

eff
c

eff

nc
n n

 (17)

1 2
2

(1.3) eff

c
n (18)

1 2

2 1min(1 ,) 2
(2) 2

eff eff

eff

c c with
n

 (19)

After performing the above-mentioned
phases, we applied the cost function and the
proposed model as an input to CMA-ES. Then, by
creating a loop starting from one to the maximum
number of the iteration, and the creation of a step
size for children and multiplying it by sigma,
and applying the product on the current parents,
a new population will be generated. Now, the
new population will be considered as a suggested
permutation.

We have considered the task scheduling in
cloud computing environment as a permutation.
So, operators are as follows: 1) swap, 2) reversion
and 3) insertion and these three operators were
also applied to our algorithm. Now, we will apply
the result of these operators to the proposed model
to estimate the cost. So far, a phase of the step
size was traversed. Hence, the above-mentioned
phases will be iterated λ times.

After that, two formulas (20) and (21) will
be used for selection and recombination of the
individuals for generation of a new population,
and then we perform the simulation.

:
1 1

1, 0i i i iw
i i

y y where (20)

:
1

i iw
i

m m y x (21)

Journal of Advances in Computer Engineering and Technology, 3(3) 2017 140

For updating the step size, two formulas
(22) and (23) are used. refers to the updating
of isotropic evolution path and denotes the
updating of Sigma. The action of updating of the
covariance matrix is carried out by two formulas
(24) and (25). is related to the updating of the
anisotropic evolution path, and the updating
of covariance matrix will be accomplished
according to the formula (25).

1
2(1) (2) eff wp c p c c C y

 (22)

|| ||exp((1))
|| (0,) ||

c p
d E N I

 (23)

(1) (2)c c c c c eff w
p c p h c c y (24)

1 1 : :
1

(1) (())T T
c c i i i

i
C c c C c p p h C c y y

 (25)

The above actions will be executed by a
specified maximum iteration number and finally,
the best method for allocating the tasks to the
VMs to with the minimum cost will be obtained.

4- Simulation and Results

Please 1) define your Simulation tool and 2)
how to create conditions of DAG?

Figure 1 illustrates the start, processing and
the finish time of all tasks in the assigned VMs.
Furthermore, the total execution time of the
submitted tasks to the VMs and total execution
time of the tasks in a cloud computing system are
also presented.

As shown in figure 1, the finish time of some
VMs is so longer, and another VMs are in idle
state, and the remaining VMs have a shorter
finish time. For example, during the whole
execution time of the tasks in a cloud computing
system, only one task was assigned to 8-th and
13-th VMs. While, in the same system, the 14-th

VM was always busy during the task execution
process. For overcoming this problem, CMA-
ES is used. Considering figure 2, we were able
to overcome the idle state problem of some VMs
and prevent the occurrence of long busy time
for others via balancing the load among various
VMs. Likewise, the tasks execution time of the
whole system was reduced from 297 to 95.

Figure 1: How tasks executed in the allocated machines
along with execution time in the initial population

Figure 2: How tasks executed in the allocated machines
along with execution time in the final population

Figure 3 depicts the cost reduction (the
total System_Finish_Time) during consecutive
iterations, and such reduction is more noticeable
after 27-th iteration.

Journal of Advances in Computer Engineering and Technology, 3(3) 2017 141

Figure (3): The best expenditure (the lowest time) during
the iteration of simulation

For investing the performance of the proposed
algorithm, we focused on the obtained results by
modifying and manipulating the number of tasks
and virtual machines. The number of tasks was
varying between 60 to 180 and the number of
virtual machines was set to 10, 20 and 30. With
regard to figure (4), the tasks will be distributed
among more machines, with increase in the
number of virtual machines, and to the same ratio
the time of task execution will decrease in the
entire system.

For scrutinizing the performance of the
suggested algorithm, the corresponding results
will be compared to the non-preemptive Shortest
Processing Time (SPT), Longest Processing
Time (LPT) algorithms.

For assessing the performance of proposed
algorithm, standards and metrics like parallelizing
rate, exploitation of VMs and throughput are used
by formulas (26) and (27):

Parallelizing Rate=

 (26)

Throughput =
The total number of completed tasks per time unit

Total time

 (27)

The rate of parallelizing and operational

power for the number of tasks and various virtual
machines are presented in table (1).

For comparing the performance of the

suggested algorithm with two non-preemptive
algorithms, the same conditions were assumed
in such a way that 100 tasks with a constant
processing time along with 20 VMs were
considered. Figures (5) and (7) illustrate that
how tasks executed in allocated VMs along with
their execution time for non-preemptive Shortest
Processing Time (SPT) and Longest Processing
Time (LPT) algorithms, respectively.

0

50

100

150

200

250

300

350

400

450

500

60 80 100 120 140 160 180

30VM 20VM 10VM

Figure (4): tasks’ execution time of entire system for the number of tasks and various virtual machines

Journal of Advances in Computer Engineering and Technology, 3(3) 2017 142

Table (1): Rate of parallelizing and operational power for the number of tasks and various virtual machines

302010
24.141819.283418.298760
24.019118.274118.145980
23.973618.231518.0456100
23.928118.191217.9866120
23.861818.143217.9537140
23.782517.732117.7028160
23.719217.689117.5328180
23.687717.651117.4857200
0.06480.05260.050160
0.06440.05120.049380
0.06370.05080.0487100
0.06320.05040.0485120
0.06250.04970.0482140
0.06180.04920.0476160
0.06070.04860.0468180
0.06020.04790.0457200

Table 2:Comparison of parallelizing rate, throughput of proposed algorithm with that of SPT and LPT algorithms

Proposed LPTSPT

18.2315 18.1739 17.3548 Parallelizing Rate

0.0508 0.0478 0.0465 Throughput

95 115 124 Execution time of all tasks

Table3:Comparison of parallelizing rate, throughput of proposed algorithm with that of GA and PSO algorithms

Proposed PSOGA

18.2315 18.2157 17.1867 Parallelizing Rate

0.0508 0.0501 0.0497 Throughput

95 103 109 Execution time of all tasks

Journal of Advances in Computer Engineering and Technology, 3(3) 2017 143

Figure 5: How tasks executed in the allocated machines
along with execution time by SPT algorithm

Figure 6: How tasks executed in the allocated machines
along with execution time by LPT algorithm

Figure 7 shows that how tasks executed in the
allocated VMs along with execution time for the
proposed algorithm. It shows that the execution
time of all tasks in suggested algorithm is less than
that of non-preemptive SPT and LPT algorithms.

Figure 7: How tasks executed in the allocated machines
along with execution time by proposed algorithm

Tables 2 presents the results of comparing the
parallelizing rate and throughput of the proposed
algorithm with the non-preemptive SPT and LPT
algorithms. Table 2, shows that the parallelizing
rate and throughput of the suggested algorithm
are greater than two algorithms, SPT and LPT.
Also, the total execution time of all tasks of the
proposed algorithm is less than that of other
algorithms. The parallelizing rate, throughput
and execution time of all tasks associated with
the proposed algorithm is equal to 18.2315,
0.0508 and 95, respectively.

In what follows, for further investigations of
the proposed algorithm a comparison was made
between GA and PSO in terms of performance
and the obtained results of this comparison are
presented in table (3). It can be noted that, the
parallelizing and operational power rate of the
proposed algorithm is greater than that of PSO
and GA algorithms.

5- Conclusion

In this research, CMA-ES was presented as an
algorithm in the field of optimizing the response
time of the response to the user’s request in a
cloud computing environment and for simulating
the preparation time, the execution time of the
tasks were obtained randomly, then the VMs
were allocated to the tasks on the basis of each
task’s priority using the proposed model. It was
assumed that the model specifies the order of
tasks execution in each machine and it stores the
order in an array, we separated the tasks of various
machines using a separator. Then, the array was
taken into account as an initial population and
applied as an input to the CMA-ES. This strategy
estimates a covariance matrix and means vector
from the population. The various updating
rules fabricate an adapted covariance matrix in
each generation, which plays a vital role in the
quality of the new population and directing the
evolution. we commenced simulation, and we
were able to reduce the execution time of all
tasks of the system significantly. For appraising
the performance of the proposed algorithm, we
compared it with two non-preemptive algorithms,
including SPT and LPT algorithms.. While the
finish time of the proposed algorithm is equal
to 95. Generally speaking, the performance of
the proposed algorithm is better than of non-

Journal of Advances in Computer Engineering and Technology, 3(3) 2017 144

preemptive algorithms.
On the other hand, our further comparison

results indicated that the parallelizing and
operational power rate associated to the proposed
algorithm is greater than that of PSO and GA
algorithms.

REFERENCES
[1] Choudhary M., Peddoju S.K.,(2012). A Dynamic

Optimization Algorithm for Task scheduling in Cloud
Environment, International Journal of Engineering Research
and Applications (IJERA), Vol. 2, Issue 3, pp. 2564–2568.

[2] Loshchilov, Ilya, et al. “Maximum likelihood-
based online adaptation of hyper-parameters in CMA-ES.”
International Conference on Parallel Problem Solving from
Nature. Springer International Publishing, 2014.

[3] Mell P., Grance T., (2013). “The NIST Definition
of Cloud Computing”:http://productionscale.com/
blog/2011/8/7/the-nist-definition-of-cloud-computingdrft.
html, [Accessed: 20-Dec-2013].

[4] Jorge Peñarrubia1 , Facundo A. Gómez , Gurtina
Besla , Denis Erkal4 & Yin-Zhe Ma., (2015)., “A timing
constraint on the (total) mass of the Large Magellanic
Cloud”., Astrophysics of Galaxies.

[5] Agnetis.A, Billaut.Ch.J, Gawiejnowicz.S,
Pacciarelli.D, Soukhal.A, (2014). Multiagent Scheduling,
Models and Algorithms, Springer US .

[6] Liu.J, (2013). Job Scheduling Model for Cloud
Computing Based on Multi-Objective Genetic Algorithm,
International Journal of Computer Science Issues ISSN :
1694-0814 .

[7] Ghorbannia Delavar, A., Javanmard , M., Barzegar
Shabestari and Marjan Khosravi Talebi ., (2012). “RSDC
(RELIABLE SCHEDULING DISTRIBUTED IN CLOUD
COMPUTING)” in International Journal of Computer
Science, Engineering and Applications (IJCSEA) Vol.2,
No.3, June 2012.

[8] M. Dakshayini, Dr. H. S. Gurupras.ad. (2011). “An
Optimal Model for Priority based Service Scheduling Policy
for Cloud Computing Environment” International Journal
of Computer Applications (0975 – 8887) Volume 32– No.9.

[9] Shamsollah Ghanbari, Mohamed Othman. (2012).
“A Priority based Job Scheduling Algorithm in Cloud
Computing” International Conference on Advances Science
and Contemporary Engineering.

[10] Hansen, N. (2011). The CMA Evolution Strategy:
A Tutorial. June 28.

[11] Nagadevi.S, Satyapriya.K, Malathy.D. (2013). A
Survey on Economic cloud schedulers for optimized task
scheduling, International Journal of Advanced Engineering
Technology, Vol 5, pp: 58-62.

[12] Jafari Navimipour, Nima, Amir Masoud Rahmani,
Ahmad Habibizad Navin, and Mehdi Hosseinzadeh. “Job
scheduling in the Expert Cloud based on genetic algorithms.”
Kybernetes 43, no. 8 (2014): 1262-1275.

[13] Rahmani, Amir Masoud, and Mojtaba Rezvani.
“A novel genetic algorithm for static task scheduling in
distributed systems.” International Journal of Computer
Theory and Engineering 1.1 (2009): 1.

[14] Adabi, Sahar, Ali Movaghar, and Amir Masoud
Rahmani. “Bi-level fuzzy based advanced reservation of
Cloud workflow applications on distributed Grid resources.”
The Journal of Supercomputing 67.1 (2014): 175-218.

[15] Dashti, Seyed Ebrahim, and Amir Masoud
Rahmani. “Dynamic VMs placement for energy efficiency
by PSO in cloud computing.” Journal of Experimental &
Theoretical Artificial Intelligence 28.1-2 (2016): 97-112.

[16] Kazem, Ali Asghar Pourhaji, Amir Masoud
Rahmani, and Hamed Habibi Aghdam. “A modified
simulated annealing algorithm for static task scheduling
in grid computing.” Computer Science and Information
Technology, 2008. ICCSIT’08. International Conference on.
IEEE, 2008.

