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Abstract — One of the most important and 
valuable goal of software development life cycle 
is software cost estimation or SCE. There have 
been proposed so many models using heuristic and 
meta-heuristic algorithms to do machine learning 
process for SCE. COCOMO81 is one of the most 
popular models for SCE proposed by Barry 
Boehm in 1981. However COCOMO81 is an old 
estimation model, it has been widely used for the 
purpose of cost estimation in its new forms. In this 
paper, the Imperialism Competition Algorithm 
(ICA) has been employed to tune the COCOMO81 
parameters. Experimental results show that in the 
separated COCOMO81 dataset, ICA can estimate 
the COCOMO81 model parameters such that 
the performance parameters are significantly 
improved. The proposed hybrid model is flexible 
enough to tune the parameters for any data sets in 
form of COCOMO81.

Keywords - DCOCOMO81, software cost 
estimation, accuracy, meta-heuristic, imperialism 
competition algorithm.

I. INTRODUCTION

Managing software plan and development 
process is one of the most challenging issues 

in the field of software development scheduling 
so that, time and human resources handling are 
those of the most important role which is called 
cost estimation. In fact SCE has an impressive 
and remarkable role in software development 
life cycle. From the beginning of the 1940s that 
the software systems concepts are introduced, 
SCE was also a vital and challenging process. 
Also the accuracy is very important for software 
developers and costumers because it is very useful 
in generating some proposals, making contracts, 
scheduling and controlling [1]. So that the 
accuracy of SCE process needed to be improved. 
There for, overestimating or underestimating 
the cost of software application can cause some 
destructive effects on the whole project lifecycle. 
Because accuracy is very important, in the last 
three decades there have been proposed many 
models for SCE although it is in its infancy. In 
this paper the words cost estimation and effort 
estimation are used interchangeably. Studying 
the previously done research works show that 
although there are some good results but they 
are not as acceptable as it should be[2],[3]. One 
of the methods which is  recently very popular 
in improving the accuracy of SCE is  using 
some heuristic and meta- heuristic optimization 
algorithms. All these algorithms tries to optimize 
the process of SCE. It will be discussed in section 
three.

In this experimental research work the ICA 
meta-heuristic optimization algorithm has 
been used to minimize the MMRE of SCE on 
COCOMO81 software cost estimation model. 
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The rest of this paper is organized as follow. 
Section two presents related works. In section 
three firstly the COCOMO81 is briefly introduced 
and then the ICA is presented. In section four, 
the proposed model is described in details and 
performance analysis is presented in section five. 
And finally in section six, conclusion and future 
works are presented.

 
II. Related work

Artificial intelligence techniques have been 
used vastly in the last few years to optimize so 
many problems in the vast majority of all kinds of 
sciences, especially computer science. Although 
these intelligent techniques seem to have so many 
particular advantages, but recent studies mostly 
focus on using hybrid techniques to benefit all the 
advantages together. There have been significant 
efforts put in to the researches on SCE models 
using heuristic and meta-heuristic methods. In 
this kind of techniques, once the algorithm has 
been started, it must be firstly trained by some 
examples, specially some large historical project 
datasets are needed in this phase of the algorithm 
to train it accurately. Then the model iterates on 
its training part of the algorithm with the training 
data prepared for, and automatically tune the 
problem specified parameters and finally depends 
on some ending conditions like maximum 
number of iteration or convergence of the model 
parameters to an optimized point or achieving 
to a predefined goal or even some user defined 
hybrid conditions, the model finishes its training 
part. Now it’s the time to present some new 
data as test data to the algorithm, to predict the 
corresponding target. This part of the algorithm 
is known as test part.

GA-LR and GA-NLR hybrid models have 
been proposed for the SCE and carried out on the 
NASA60 Dataset with 60 projects, COCOMO81 
Dataset with 63 projects, and on NASA93 with 
93 projects. The degree of MMRE on NASA60 
Dataset is respectively 0.48 and 0.43 in GA-
LR model in the training and testing; the same 
factor is respectively 0.42 and 0.2 in the GA-
NLR model [4]. The degree of MMRE on 
COCOMO81 Dataset is respectively 0.46 and 
0.35 in the training and testing steps in GA-LR 
model; this factor is respectively 0.44 and 0.37 in 
the GA-NLR model. The results show that hybrid 
models have a lower accuracy value of MMRE 
in comparison with GA, Linear Regression (LR) 

and Non-Linear Regression (NLR) models. PSO-
FCM and PSO-LA hybrid models have been 
proposed for the SCE using NASA60 Dataset. 
Estimating effort using PSO [5] Parameters which 
influence effort estimation have been investigated 
using PSO. Evaluation was conducted on 
KEMERER Dataset with 15 projects. The  results 
show that the value of MMRE in the proposed 
model equals 56.57; it is 245.39 in the COCOMO 
model. GA and Scatter Search (SS) hybrid 
model was evaluated on NASA60 and NASA93 
Datasets [6]. The value of MMRE in the hybrid 
model for NASA60 and NASA93 Datasets is 
respectively 7.56 and 23.85. The value of MMRE 
in GA model on NASA60 and NASA93 Datasets 
is respectively 19.63 and 36.51. The value of 
MMRE in SS model is respectively 15.21, 29.15 
on NASA60 and NASA93 Datasets. The results 
show that the hybrid model has reduced the value 
of MMRE to respectively about 3.92 and 2.46 on 
NASA60 and NASA93 Datasets compared with 
COCOMO81[7].

GA and Artificial Immune System (AIS) 
hybrid model has been assessed on NASA60 
Dataset [8]. The value of MMRE in AIS, GA, and 
the hybrid models is respectively 18.20, 15.14 
and 12.44.

A hybrid of Firefly Algorithm (FA) and GA 
model is proposed for SCE using NASA93 
Dataset. Using elitism operation GA attempts to 
find the best answer for effort factors, evaluate 
it in fitness function and present a solution with 
the lowest value of error as the final answer. The 
results show that the value of MMRE is 58.80 
in the COCOMO model and respectively 38.31 
and 30.34 in GA and FA models; it equals 22.53 
in the hybrid model. Comparisons show that 
the hybrid model has increased the efficacy of 
estimation accuracy to about 2.88% compared 
with COCOMO model. The Liner Regression 
(LR), Artificial Neural Network (ANN), SVR 
and (KNN) K Nearest Neighbors techniques 
have been utilized for SCE [8].Also prediction 
accuracy on the tested data is respectively 60%, 
95%, 80% and 60% in LR, ANN, SVR and KNN 
models. 

III. Constructive Cost Model (COCOMO) and 
Imperialism Competition Algorithm (ICA)

In this section firstly a brief description 
of Constructive Cost model (COCOMO) is 
presented and then the Imperialism Competition 
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Algorithm (ICA) is explained. 

1. COCOMO
The Constructive Cost Model (COCOMO) 

is an algorithmic software cost estimation 
model developed by Barry W. Boehm (1981) 
[9]. The model uses a basic regression formula 
with parameters that are derived from historical 
project data and current project characteristics. 
COCOMO consists of a hierarchy of three levels 
[10]. The first level, Basic COCOMO is good for 
quick, early, rough order of magnitude estimates 
of software costs, but its accuracy is limited due 
to its lack of factors to account for difference in 
project attributes or cost drivers. Intermediate 
COCOMO takes these Cost Drivers into account 
and Detailed COCOMO additionally accounts 
for the influence of individual project phases 
[11]. Basic COCOMO computes software 
development effort as a function of program 
size which is expressed in estimated thousands 
of source lines of code [12]. COCOMO applies 
to Organic, Semi-detached and Embedded sorts 
of projects to classify complexity of the system. 
A brief description of these modes is given in 
Table1. 

Table 1: Three Types of software projects in COCOMO
Software
project

Project size

Organic Less than
50 KLOC

Semidetached 50 – 300
KLOC

Embedded Over 300
KLOC

 

                             
In the basic COCOMO equations, the 

parameters effort Applied, development time 
and people required are of interest. Intermediate 
COCOMO computes software development 
effort as function of program size and a set of 
cost drivers that include subjective assessment 
of product, hardware, personnel and project 
attributes. The product of all effort multipliers 
results in an effort adjustment factor (EAF). The 
COCOMOI model takes the form of Eq. (1).

𝐸𝐸𝑓𝑓𝑓𝑓𝑜𝑜𝑟𝑟𝑡𝑡 𝑎𝑎 ∗ 𝑆𝑆𝑖𝑖𝑧𝑧𝑒𝑒𝑏𝑏  𝐸𝐸𝑀𝑀𝑖𝑖
𝑖𝑖

 

 

      Eq. (1)

Where a and b are two factors that can be set 

depending on the details of the developing 

company and 𝐸𝐸𝑀𝑀𝑖𝑖  is a set of effort multipliers, 

see Table 2.

Table 2: Overview of the COCOMOI Multipliers
EMi Description Impact 
acap Analysts 

capability 
 
 
Positive Impact: 
Increasing these 
factors results 
in a decreased 
effort 
Convex relation 

pcap Programmers 
capability 

aexp Applications 
experience 

modp Modern 
programming 
practices 

tool Use of 
software 
tools 

vexp Virtual 
machine 
experience 

lexp Language 
experience 

sced Schedule 
constrain 

stor Main 
memory 
constrain 

 
 
Negative 
Impact: 
Decreasing 
these factors 
results in an 
increased effort 

data Data base 
size 

time Time 
constrain for 
cpu 

turn Turnaround 
time 

virt Machine 
volatility 

cplx Process 
complexity 

rely Required 
software 
reliability 

 

2. Imperialist Competitive Algorithm
One of the most interesting evolutionary 

algorithm which recently has been proposed 
for solving optimization problems is Imperialist 
Competitive Algorithm or in short, ICA[13], [14]. 
This algorithm is a Socio Politically Inspired 
Optimization Strategy which has been devised by 
the inspiration of social and political history of 
human. Like all the other evolutionary algorithms, 
ICA also begins with a number of random initial 
populations which are called countries. Some of 
the best elements of the population are selected 
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as the imperialist, and the others are supposed to 
be the colonies [15]. Assimilation policies and 
colonial rivalries are two main policies of this 
algorithm. At the beginning of the algorithm an 
array of the optimization variables is created 
which is known as a country or in some cases 
it is known as the screw. Each country itself has 
some unique features such as economics, culture, 
politics, language, and etc. The production vector 
of these features or characteristics is as the Eq. 
(2) in which pn is the nth characteristics of the 
country.

Country = [p1,p2 ,...,pn]                     Eq. (2)

In optimization problems the main goal is to 
find the best country. So the first thing to find is to 
determine the cost of all the countries using Eq. (3). 
Those countries which have the best set of parameters 
should be selected as imperialist. According to the 
calculated cost, only a certain number of countries are 
considered as colonies and the others are supposed to 
be empires. In the first stage, based on the Eq. (4) the 
power of imperialist is defined as the total cost of its 
own colonial state plus a percentage of the average 
cost of colonies. For each imperialist, total power T. 
Cn is related to the first stage.

  Cost=f (country)= f(p1,p2 ,….,pn)           Eq. (3) 

  T.Cn= Cost(imperialist)+ξ*mean{Cost (colonies 
of impire_n )}                    

              Eq. (4)

Depends on its power, each imperialist 
controls a number of countries. The main part 
of this algorithm is composed of assimilation 
policy and colonial competition. Regarding to 
absorption or assimilation policy, the imperialists 
countries try to destroy these nations using 
methods such as imposing their language and 
characteristics of their country on the colonies, 
abolishing the language and culture of the colony. 
In this strategy, this policy is done moving the 
colonies to the imperialist according to the Eq. 
(5) and Eq. (6).

X~U (0,β*d)                                 Eq. (5)    

θ~U (-γ,γ)                                     Eq. (6)

It can be understood from Figure 1 that a 
colony can move directly toward its emperor or 

indirectly as seen in Figure 2.

 

Figure 1: a colony moving towards its colonial in a direct 
line.

 

Figure 2: a colony moving towards its colonial with a 
deviation θ

In Eq. (5), if d is considered to be the distance 
between a colony country and its’ colonizer then 
the colony movement toward the location of 
imperialist would be x. Of course each colony 
can move through angle of θ which is called 
time angle and is estimated with respect to Eq. 
(6). Although, the movement of x and angle θ is 
determined randomly. Normally, the θ angle is 
uniformly in the interval [-γ,γ] and x momentum 
is estimated uniformly in the interval [0, β*d]. 
Values of γ and β are known as algorithm 
parameters in ICA. During the algorithm, if a 
colony gets more power than its colonizer, then 
the colonizer would be replaced by that colony. In 
each iteration step of the algorithm, competition 
is confirmed among the colonists. Model of ICA 
is shown in Figure (3).

According to Eq. (7) if a colonizer or an 
imperialist has some power less than the others, 
it may lose one of its colonies. Based on this 
relation T. C_n  is the total power of each 
imperialist and N. T. C_n  is the normalized 
total cost. Possible appointment of a new colony 
to each of the colonizers is proportional to the 
colonial power and possible takeover by empire 
is n and it is equal to (p_(p_n )) that achieved 
from Eq. (8). If somehow, an imperialism doesn’t 
have any colonies left, it must become the colony 
of another colonizer.
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Figure 3: Imperialistic Competition

Initially, the competition between colonizers 
to seize colonies is specified by T. C_n and then 
it is   normalized by the Eq. (7) [6].

N. T. Cn   = T. Cn –max{ T. Ci}            Eq. (7)

                                      Eq. (8)

The process of colonial division among 
empires is based on the probabilistic situation 
and is represented as a vector P in the Eq. (9).

P= [ 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 … 𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑚𝑚𝑝𝑝  ]        Eq. (9)

In the Eq. (10), size of vector R is equal to 
the size of vector P and the elements are some 
random number s uniformly distributed in the 
interval [0,1].

R=[r1,r2,r3,…,rnimp]; r1,r2,r3,…,rnimp ≈U(0,1)
      

                                                                 Eq. (10)

According to the Eq. (11), vector D is formed 
by subtracting the values of vector P from vector 
R.

   D=P-R=[ 𝑝𝑝𝑝𝑝 -𝑟𝑟 𝑝𝑝𝑝𝑝 -𝑟𝑟 𝑝𝑝𝑝𝑝 -𝑟𝑟 ,…, 𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑚𝑚𝑝𝑝 -𝑟𝑟𝑛𝑛𝑖𝑖𝑚𝑚𝑝𝑝  ]

      Eq. (11)

Using vector D, the weakest colony is selected 
and is granted to the colonial which is the highest 
index in that vector. ICA process iterates until the 
number of colonizers reach number one. In this 
case, all the countries are colonies of one colonizer 
and the algorithm ends. Of course, there are other 
conditions for the algorithm such as performing 
a certain number of iterations of the algorithm or 
finding the best answers possible.

IV. Proposed model

It is clear that, software cost estimation is 
one of the most important and principal topics 
in software planning and management and there 
are lots of methods for SCE that were mentioned 
before.  Here,  a meta-heuristic algorithm called 
Imperialism Competition Algorithm has been 
used to optimize the process of SCE. In this 
research work, the COCOMO81 dataset has 
been utilized which stores the information of 63 
software projects in the real word and also for 
each of these projects 17 features are presented. 
As mentioned in  Eq. (1), it is clear that the 
amounts of effort is strictly dependent on project 
size and its production by values of fifteen 
features of each of the projects.

First of all, it should be considered that these 
projects have been classified in three classes: 
organic, semi-detached and embedded projects 
so firstly they have been classified.

1. Performance metrics
There are lots of performance metrics to 

evaluate an estimation strategy, but here two 
of them are selected which are very important 
and popular: mean magnitude of relative error 
(MMRE) and percentage of prediction (PRED) 
which are computed as follows Eq. (12), Eq. 
(13), Eq. (14), Eq. (15):

RE= 𝑎𝑎𝑐𝑐𝑡𝑡 − 𝑒𝑒𝑠𝑠𝑡𝑡  
 𝑎𝑎𝑐𝑐𝑡𝑡                                  Eq. (12)

MRE= 𝑎𝑎𝑐𝑐𝑡𝑡 𝑖𝑖 − 𝑒𝑒𝑠𝑠𝑡𝑡 𝑖𝑖 
 𝑎𝑎𝑐𝑐𝑡𝑡 𝑖𝑖    *100 

 

                Eq. (13)

MMRE=𝑛𝑛  𝑀𝑀𝑅𝑅𝐸𝐸𝑖𝑖𝑛𝑛
𝑖𝑖   , i=1,2,…,n 

 
    Eq. (14)
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PRED(x)= 𝐴𝐴
𝑁𝑁 

 
                                    Eq. (15)

Where A is the number of estimated projects 
with MRE less than or equal to x, and N is the 
total number of estimated projects. In software 
estimation methods, an acceptable value for x 
is 0.25, and the proposed models are compared 
based on this level. MMRE which is known as 
the total number of errors must be minimized 
whereas PRED (0.25) must be maximized.

2. Training process
In the training stage of the algorithm, the 

proposed estimation model, is constructed based 
on adjusting weights for features using ICA 
optimization strategy. And the COCOMO81 
dataset which has seventeen features, is used as 
the input to the algorithm. In this dataset, the 
dependent variable is effort, which is the last 
feature in COCOMO81 dataset and the first 
fifteen features are independent variables. The 
sixteenth variable is the size of the project.

At the beginning of this stage, the projects are 
divided into two main categories: train data and 
test data using leave one out cross validation. The 
project which has been selected as a train data, 
is applied to the ICA. The ICA proposes some 
weights related to the optimization variables, 
in the range of [varmin, varmax], which is  
[-10,+10] here. And then according to the Eq 
(1), the estimated effort is calculated for each of 
projects. Then the RE and MRE are calculated. 
And finally as a result, the MMRE is returned to 
the ICA. As ICA is an optimization strategy and 
its main goal is to minimize the cost function, it 
tries to minimize the MMRE.

  
3. Testing process
The main goal of this stage is to evaluate 

the accuracy of the ICA strategy giving unseen 
projects to the ICA. In this stage of the algorithm, 
the separated test dataset  and the proposed 
weights for optimization variables are passed 
to the test function. Using Eq (1), the estimated 
effort is calculated for that test project and again 
the MRE and MMRE and also the PRED (0.25) 
are calculated. The results of this stage is the last 
result and can be used to evaluate the proposed 
model performance accuracy.

The flowchart of the proposed model is shown 
in Figure 4. The experimental results show that 

in contrast with COCOMO model, the MMRE is 
considerably decreased.

 

Figure 4: Flowchart of the proposed model

4. Leave one out cross validation (LOOCV)
In LOOCV scenario, one of the observations 

is randomly selected as the test data and the rest 
of the observations are considered as train data. 
These data sets are given to the optimization 
algorithm. This process continues till all the 
observations are selected as test data. Here there 
are 63 records or observations. One of the records 
is selected as test data and the rest of records as 
train one and then the optimization process is 
performed on the train data. Then, this process 
is continued till all the records are selected as 
test data. At the end of this process, an array 
with 63 members that are estimated efforts are 
constructed. So it can be easy to compare the 
results with the real efforts. This process always 
has deterministic results although the only 
problem is that the training time of the algorithm 
in this form of cross validation is so long. A 

summary of LOOCV is presented in figure 5.
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Figure 5: A summary of applying Leave One Out Cross 
Validation on COCOMO81 dataset

The pseudo code of the procedure is as 
follows:

for k =1 : sizeof(COCOMO81,1)
train_data and test_data sets are selected using 

LOOCV
     Problem Statement
     Algorithmic Parameter Setting
     Creation of Initial Empires
     Main Loop
         Assimilation
         Revolution
         New Cost Evaluation
         Empire Possession
         Computation of Total Cost for Empires
       [MMRE]=Mycost(x, train_data)//Cost function 

call
       [MMRE]=Mytest(a,b,test_data)//Test function 

Call
End 

Where a and b are the two optimization 
variables.

V. Experimental Results
In order to measure the estimation accuracy of 

the ICA model, COCOMO dataset consisting of 
63 records of real world software projects is used. 

The simulation of the proposed model is done in 
the simulated environment of MATLAB 2014a. 
To evaluate the proposed model, the initial values 
of ICA parameters have been given values shown 
in Table 3. Number of initial countries is set to 
180, empires number to 18, and also the parameter 
decades which is equal to the maximum iteration 
parameter in Genetic algorithm is set to 100. The 
lower bound and upper bound of the optimization 
variables are set to [-10, +10] interval. Parameter 
β gets the value of 2. Increasing the value of the 
parameter γ increases the search of imperialist 
environs and its decrease causes colonial move 
as much as possible, closer to the vector of 
connected colonials to colonies. The parameter 
zeta, which is a percentage of average cost of 
whole of the colonies in an imperialist, is set to 
0.03. The training and testing processes were 
completed using leave one out cross validation. 

 
Table 3- ICA parameters initialization.

Parameters values 
No. Population 180 
No. Imperials 18 

No. Decades (Iterations) 100 
Revolution rate 0.3 

Varmin -10 
Varmax  +10 

β 2 
γ Π/4 

Zeta 0.03 
Training LOOCV 
Testing LOOCV 

 

In this experimental study, the process of 
evaluating the accuracy of SCE is done in three 
experiences in which of them different data 
orders are used.

1. Original COCOMO81
In the first experience, the ICA was trained 

with the original COCOMO dataset without any 
changes using leave one out cross validation 
which is here called original COCOMO. In the 
proposed model, MMRE considered as the output 
of the fitness function so that the objective of the 
fitness function is to minimize the amount of 
MMRE Eq. (12), Eq. (13), Eq. (14) and Eq. (15). 
The results obtained from applying the proposed 
estimation model to original COCOMO dataset 
show that, the best MRE which is also the best 
cost, is about 0.3606 and MMRE is about 0.3903 
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and PRED is about 0.3651 .Eq. (15). 

The plot diagram of estimated and real efforts 
in this experience is shown in figure 6. As it is 
clear, the estimated values are very close to the 
real ones.

 
Figure 6: Effort estimation using original COCOMO dataset.

2. Separated COCOMO81
As it has been mentioned before, the 

projects in COCOMO dataset are divided into 
three categories:   organic, semi-detached 
and embedded. In the second experience, the 
COCOMO dataset has been divided into these 
three separated datasets, and for each of these 
datasets, the ICA was separately trained using 
leave one out cross validation and then test it 
with the test data. There are three sets of results 
obtained from each run that are presented in 
figures 8,9 and 10, but the final results, which can 
be seen in figure 7 are the mean of these three 
results and show that the best MRE is equal to 
0.2702 while the MMRE is bout 0.3370 and the 
PRED value is 0.3571.

 
Figure 7: Real Efforts vs Estimated Efforts on Separated 

COCOMO datasets.

In figure 8, the comparison of estimated 
efforts and real efforts on the organic dataset is 
presented. 

 
Figure 8: Real Efforts vs Estimated Efforts on organic dataset

In figure 9, the comparison of estimated efforts 
and real efforts on the semi-detached dataset is 
presented either.

Figure 9: Real Efforts vs Estimated Efforts on semi-detached 
dataset

In figure 10, the comparison of estimated 
efforts and real efforts on the embedded dataset 
is presented. 

 

Figure 10: Real Efforts vs Estimated Efforts on embedded 
dataset
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3. Ordered COCOMO81
And finally, in the third experience, the order 

of COCOMO dataset values has been changed, in 
such a way that all the organic projects come first 
and then the semi-detached projects are stored 
and finally all the embedded projects are placed. 
The difference between second experience 
and third one, which is now called ordered 
COCOMO, is that in the second experience, for 
each kind of projects, organic, semi-detached 
and embedded, the ICA ran separately but in the 
last experience, ICA ran just for one time on the 
ordered COCOMO dataset. Here just like the 
previous experiences, at the beginning of the 
process, the ICA was trained using leave one 
out cross validation on the ordered COCOMO 
dataset and then it was tested with the  test data. 
The results show that, the best MRE is about 
0.3621and MMRE is about 0.3941 and PRED is 
about 0.3492. See Figure 11.

 

Figure 11: Real Efforts vs Estimated Efforts on the  ordered 
COCOMO dataset

In figure 12 the results of all the projects 
experiences has been presented in one figure and 
also the result summary is shown in table 4 and 
table 5.

 

Figure 12: Estimated Efforts vs Real Efforts of all the 
experiences

A brief summary of applying ICA on different 
COCOMO datasets is shown in table4 and table5.

Table 4: The results of applying ICA on different COCOMO 
datasets

Criterion Original 
cocomo 

Separated 
cocomo Ordered cocomo 

a and b 2.79 1.08 4.2283 0.9955 2.7665 1.0909 
Best 
MRE 0.3606 0.2702 0.3621 

 

Table 5: Comparison of MMRE and PRED values of 
applying ICA on different Cocomo datasets.

Criterion Original 
cocomo 

Separated 
cocomo 

Ordered 
cocomo 

COCOM
O81 

MMRE 0.3903 0.2863 0.3941 0.3180 

PRED 0.3651 0.3571 0.3492 0.3492 

 

VI. Conclusion
In this paper, the ICA optimization strategy 

was employed to estimate the effort based on 
COCOMO81. ICA has been known as a very fast 
and flexible strategy and could properly estimate 
the effort values. The proposed model was 
constructed so that the parameters of COCOMO 
are optimized. The results of the proposed model 
through MMRE and PRED (0.25) criteria showed 
values close to the actual values. So that for the 
proposed model, MMRE and PRED (0.25) values 
were 0.2702 and 0.2863.  Comparing the obtained 
results from the proposed model and COCOMO 
showed that the proposed model has less MMRE 
value and more PRED value than COCOMO. 
Although MMRE and PRED were much better 
than COCOMO but for the future, this algorithm 
should change to have a lower amount of MMRE 
and upper value for PRED.
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