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Abstract The dynamic structures of ion acoustic waves

in an unmagnetized plasma with q-nonextensive electrons

and positrons are investigated applying the bifurcation

theory of planar dynamical systems through direct

approach. Model equations are transformed to a planar

dynamical system using a traveling wave transformation.

Using the bifurcations of planar dynamical system, the

existence of solitary and periodic waves is shown. We have

obtained new analytical forms for solitary and periodic

waves depending on parameters p; q; r and v. Considering

an external periodic perturbation, the chaotic behavior of

nonlinear ion acoustic waves is presented. Depending upon

different regimes of the nonextensive parameter q, the

effect of q is shown on chaotic motions of ion acoustic

waves with fixed values of other parameters p; r and v. It is

seen that the unperturbed system has the solitary and

periodic wave solutions, but the perturbed dynamical sys-

tem has chaotic motions for same values of parameters

p; q; r and v.

Keywords Solitary wave � Periodic wave � Chaotic
behavior � Bifurcation theory

Introduction

The nineteenth century and half of twentieth century can

be viewed as the triumph of linear physics, which started

with Maxwell’s equations, based on a linear formalism

emphasizing a superposition principle. But the physicists

had noticed the importance of nonlinear phenomena which

appeared in the momentum balance equation of electro-

hydrodynamics, gravitational theory, etc. The importance

of an intrinsic analysis of nonlinear phenomena has been

gradually understood, and led to two concepts, the strange

attractor and the soliton. Both are related to astonishing

properties of nonlinear systems, the strange attractor is

linked to the idea of chaos [1] in a system with small

number of degree of freedom, while the solitons appear in

the systems with the large number of degree of freedom.

The study of interesting solitonic structures, periodic

solution, and chaotic structures [2–5] in plasma dynamics

is very important and curious. Therefore, the investigation

of various structures like solitonic, periodic, quasi-peri-

odic, and chaotic in nonlinear plasma dynamics is a

growing research field of plasma physics. Some of the

nonlinear evolution equations like Kortewg-de Vries

(KdV), Kortewg-de Vries Burgers (KdVB), etc., arisen

from many physical fields are completely integrable [6, 7].

It is known that a completely integrable nonlinear system

possesses some nice properties like the Lax pair, N-soliton

solutions, infinite conservation laws, Painlev property and

bi-Hamiltonian structure. However, there often exist var-

ious perturbations in many real physical processes [8–10].

The addition of a perturbation or forcing term to an

integrable equation can lead to chaotic dynamics [1],

while deterministic chaos is one of the most interesting

nonlinear phenomena. In the present paper, we want to

study dramatic changes of structures from periodic to
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chaotic or solitonic to chaotic of ion acoustic waves in

electron–positron–ion plasmas through direct approach.

Indeed electrons are often accelerated to energies of tens

of MeV by the electric field induced during the disruptive

instability in tokamaks [11]. The resulting beam of runway

electrons can carry up to about half of the original plasma

current. At these high energies, electron–positron pairs can

be created in collisions between the runaway electrons and

background plasma ions and electrons. Helander and Ward

[12] estimated the number of such pairs and discussed the

fate of the positrons created in this way. The experiments

[13–16] have established the possibility of creating a

nonrelativistic electron–positron plasma in the laboratory.

There are at least two schemes in which the nonrelativistic

electron–positron plasma can be produced in the labora-

tory. In one scheme, a relativistic electron beam impinges

on a high-Z target, where positrons are produced copi-

ously. The relativistic pair plasma is then trapped in a

magnetic mirror and is expected to cool rapidly by radi-

ation [17]. In another scheme, positrons are accumulated

from a radioactive source [15]. The production of pure

positron plasmas [13, 15, 18] now makes it possible to

perform laboratory experiments on electron–positron

plasmas. A natural extension of this research is to learn

how to accumulate and store sufficient numbers of posi-

trons so that they behave as a collective, many-body

system. Surko et al. [15] have developed a method to

accumulate and store positrons in an electrostatic trap

using a tungsten moderator and inelastic collisions with

nitrogen gas. The resulting positron gas fulfills the

requirements on density n and temperature T for it to act

collectively as a classical, single-component positron

plasma. The electron–positron plasmas occur in many

astrophysical environments such as the inner regions of

the accretion disks surrounding black holes [19], the center

of our galaxy [20], the early universe [21], the polar

regions of neutron stars [22], active galactic nuclei [23], or

pulsar magnetosphere [24], and in solar atmosphere [25]

together with small number of ions. These types of three-

component e–p–i plasmas can also be found in the labo-

ratory plasma, for example, during the propagation of a

short relativistic strong laser pulse in matter, and photo

production of pairs due to the photon scattering by nuclei

can lead to the formation of e–p–i plasmas [26, 27].

Indeed, electron–positron plasmas represent a large class

of equal-mass plasmas, a class of plasmas that may offer

plasma physical properties quite different from those of

conventional ion–electron plasmas. Clearly, the properties

of wave motions in an electron–positron–ion plasma

should be different from those in two-component electron–

positron plasmas. A great deal of attention has been paid

to study the electron–positron–ion plasmas during the last

three decades [28–34].

Out of the existence of electron–positron–ion plasmas in

various physical plasma situations, nonextensive electron–

positron–ion plasmas is the most studied research field due

to the limitation of proper implementation of Maxwell

distribution in long-range interactions in unmagnetized

collision less plasma where the nonequilibrium stationary

state exists. Space plasma observations clearly indicate the

presence of ion and electron populations that are far away

from their thermodynamic equilibrium [35–39]. A new

statistical approach, [40] namely nonextensive statistics or

Tsallis statistics based on the derivation of Boltzmann–

Gibbs–Shannon (BGS) entropic measure, [41] is proposed

to the study the cases where Maxwell distribution is con-

sidered inappropriate. This was first acknowledged by Reni

[40] and afterward proposed by Tsallis [41], where the

entropic index q characterized the degree of non exten-

sivity of the considered system. The parameter q that

underpins the generalized entropy of Tsallis is linked to the

underlying dynamics of the system and measures the

amount of its nonextensivity. In statistical mechanics and

thermodynamics, systems characterized by the property of

nonextensivity are systems for which the entropy of the

whole is different from the sum of the entropies of the

respective parts. In other words, the generalized entropy of

the whole is greater than the sum of the entropies of the

parts if q\1 (superextensivity), whereas the generalized

entropy of the system is smaller than the sum of the

entropies of the parts if q[ 1 (subextensivity). In accor-

dance with the evidences found earlier [40–52], the q-en-

tropy may provide a convenient frame for the analysis of

many astrophysical scenarios, such as stellar poly tropes,

solar neutrino problem, and peculiar velocity distribution

of galaxy cluster. To study all possible astrophysical sce-

narios, it is wise to follow the nonextensive distribution. As

electrons and positrons have the same mass but opposite

charge, it is expected that they will be described by a

similar distribution. Shahmansouri and Alinejad [53]

studied the effect of electron nonextensivity on oblique

propagation of arbitrary ion acoustic waves in a magne-

tized plasma. Shahmansouri and Astaraki [54] investigated

the transverse perturbation on three-dimensional ion

acoustic waves in electron–positron–ion plasma with high-

energy tail electron and positron distribution. Shahman-

souri and Alinejad [55] also investigated arbitrary ampli-

tude electron acoustic (EA) solitary waves in a magnetized

nonextensive plasma comprising cool fluid electrons, hot

nonextensive electrons, and immobile ions. Sabetkar and

Dorranian [56] studied the nonextensive effects on the

characteristics of dust-acoustic solitary waves in magne-

tized dusty plasma with two-temperature isothermal ions.

Recently, Samanta et al. [57] studied bifurcations of

dust-ion acoustic traveling waves in a magnetized dusty

plasma with a q-nonextensive electron velocity distribution
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using bifurcation theory of planar dynamical systems for

the first time in the literature. A number works [58–66] on

bifurcations of nonlinear waves in plasmas have been

reported through perturbative and nonperturbative approa-

ches. Saha and chatterjee [67] studied propagation and

interaction of dust-acoustic multi-soliton in dusty plasmas

with q-nonextensive electrons and ions. Very recently,

Saha et al. [2] investigated the dynamic behavior of ion

acoustic waves in electron–positron–ion magnetoplasmas

with superthermal electrons and positrons. Sahu et al. [3]

studied the quasi-periodic behavior in quantum plasmas

due to the presence of bohm potential. Zhen et al. [4]

studied dynamic behavior of the quantum ZK equation in

dense quantum magnetoplasma. Zhen et al. [5] also studied

soliton solution and chaotic motion of the extended ZK

equations in a magnetized dusty plasmas with Maxwellian

hot and cold ions.

The remaining part of the paper is organized as follows:

In ‘‘Basic equations’’ section, we consider basic equations.

In ‘‘Planar dynamical system and phase portraits’’ section,

we obtain a planar dynamical system and corresponding

phase portraits. New solitary and periodic wave solutions

are derived in ‘‘New solitary and periodic wave solutions’’

section. We present the chaotic behavior of the perturbed

system in ‘‘Chaos in the perturbed system’’ and ‘‘Conclu-

sions’’ sections are kept for conclusions.

Basic equations

In this work, we consider a three-component collisionless

unmagnetized plasma containing inertial ions, and q-

nonextensive velocity distributed electrons and positrons.

In equilibrium, the charge neutrality condition is ne0 ¼
np0 þ n0; where ne0; np0 and n0 are the unperturbed number

densities of electron, positron and ion, respectively. The

dynamics of nonlinear ion acoustic waves in such plasma is

described by the following normalized equations:

on

ot
þ oðnuÞ

ox
¼ 0; ð1Þ

ou

ot
þ u

ou

ox
¼ � o/

ox
; ð2Þ

o2/
ox2

¼ ne � np � n: ð3Þ

The density of the q-nonextensive electrons and positrons

are given by

ne ¼
1

1� p
f1þ ðq� 1Þ/g

1
q�1

þ1
2; ð4Þ

np ¼
p

1� p
f1� ðq� 1Þr/g

1
q�1

þ1
2; ð5Þ

where ne; np; and n are the number densities of electrons,

positrons and ions, respectively, normalized by their

unperturbed densities. In this case, u and / are the ion fluid

velocity and electrostatic potential, respectively, normal-

ized by the ion acoustic speed c ¼ ðTe=mÞ1=2, and Te=e,

where e is the electron charge and m is the mass of ions.

The time variable is normalized by inverse of ion plasma

frequency x�1 ¼ ðm=4pn0e2Þ1=2 and the space variable is

normalized by the Debye length ¼ ðTe=4pn0e2Þ1=2,
respectively. Here p ¼ np0=ne0, and r ¼ Te=Tp.

The state of a plasma is kinetically characterized by the

one-particle distribution function f ð x!; v!; tÞ. The quantity

f ð x!; v!; tÞd3xd3v gives, at each time t, the number of

particles in the volume element d3xd3v around the particle

position x! and velocity v!. In principle [46], this distri-

bution function verifies the q-nonextensive Boltzmann

transport equation or Vlasov equation

of

ot
þ v

of

ox
þ k

me

of

ov
¼ Cqðf Þ;

where Cq denotes the q-collisional term. Here, nonexten-

sivity effects can be incorporated only through the colli-

sional term under the consideration that the Cq is consistent

with the energy, momentum, and particle number conser-

vation laws. To generalize the usual Boltzmann–Gibbs

thermostatics according to the demand of thermodynamical

or statistical description of nonextensive systems, the

standard Boltzmann–Gibbs approach based on the exten-

sive entropy measure S ¼ �k
P

i pilnpi, where k is the

Boltzmann constant and pi denotes the probabilities of

microscopic configurations modified by Tsallis [41, 42] in

the following nonextensive form of entropy Sq ¼ k
1�
P

i
P
q
i

q�1
,

where q is a parameter quantifying the degree of nonex-

tensivity. Also Tsallis [41, 42] measure verifies

SqðAþ BÞ ¼ SqðAÞ þ SqðBÞ þ ð1� qÞSqðAÞSqðBÞ. In the

limit q ! 1, Sq reduces to the standard logarithmic mea-

sure and the usual additivity of the entropy is recovered.

Advancing in this manner [45], one can get the following

q-distribution function

feðvÞ ¼ Cq 1þ ðq� 1Þ mev
2

2Te
� e/

Te

� �� � 1
q�1

:

The variables or parameters have their usual meaning. It

may be noted that feðvÞ is the particular distribution that

maximizes the Tsallis entropy and therefore conforms to

the laws of thermodynamics. The normalization constant

Cq is given by

Cq ¼ ne0
C
�

1
1�q

�

C
�

1
1�q

� 1
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
með1� qÞ

2pTe

s

for � 1\q\1;
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Cq ¼ ne0

	 1þ q

2


C
	

1
q�1

þ 1
2




C
�

1
q�1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meðq� 1Þ

2pTe

s

for q[ 1;

where the parameter q stands for the strength of nonex-

tensivity. It may be useful to note that q\� 1, the q-

distribution is unnormalizable. It should be noted that for

q[ 1, the q-distribution function exhibits a thermal cutoff

on the maximum value allowed for the velocity of the

particles, which is given by

vmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te

me

e/
Te

þ 1

q� 1

� �s

;

we get

neð/Þ ¼
Z 1

�1
feðvÞdv; for � 1\q\1;

neð/Þ ¼
Z þvmax

�vmax

feðvÞdv; for q[ 1:

The derivation of nonextensive distribution from the den-

sity function gives

ne ¼ ½1þ ðq� 1Þ/�
1þq

2ðq�1Þ:

In stead of gaussian profile one, q-nonextensive electrons

satisfy a power law distribution which reduces to the

Maxwellian distribution as q ! 1. It should be emphasized

that the physical state described by the q-distribution is not

the thermodynamic equilibrium. The nonextensive param-

eter q was proved to relate to the temperature gradient and

the potential energy of the system in terms of the formula

kBrTe þ ð1� qÞQr/ ¼ 0. Thus, the deviation of q from

unity qualifies the degree of the inhomogeneity of tem-

perature or the deviation from the equilibrium [69]. It is

shown clearly from the above formula that the nonexten-

sive parameter is q 6¼ 1 if and only if the temperature

gradient is rT 6¼ 0, which gives a clear physics of q 6¼ 1

with regard to the nature of nonisothermal configurations

of plasma systems with the Coulombian long-range inter-

actions. The above formula is a mathematical expression of

the nonextensive parameter q, and it gives a clearly phys-

ical meaning of q 6¼ 1 about temperature gradient and the

Coulombian force on an electron in the nonisothermal

plasma. IfrT ¼ 0, the system becomes isothermal, and we

have q ¼ 1, which corresponds to the thermal equilibrium

state for which B–G statistics has presented well descrip-

tion. While if rT 6¼ 0, then q 6¼ 1, which corresponds to

the case of Tsallis statistics. We therefore conclude that

Tsallis statistics can deal with the nonisothermal nature in

plasma systems with the Coulombian long-range interac-

tions [68, 69]. The physical meaning of nonextensive

parameter of electron (q) different from 1 can be explained

[69], respectively, by the relations, ð1� qÞer/ ¼ kBrTe.

Planar dynamical system and phase portraits

In this section, we transform our model equations into a

planar dynamical system. To do so, we introduce a new

variable n ¼ x� vt; where v is the velocity of the ion

acoustic traveling wave. Substituting the new variable n
into Eqs. (1) and (2) and using the initial condition u ¼
0; n ¼ 1 , and / ¼ 0, we can express the ion number

density as

n ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 2/

p : ð6Þ

Substituting Eqs. (4), (5), and (6) into Eq. (3) and con-

sidering the terms involving / up to third degree, we have

d2/

dn2
¼ a/þ b/2 þ c/3; ð7Þ

where a ¼ ðqþ1Þð1þprÞ
2ð1�pÞ � 1

v2
, b ¼ ðqþ1Þð3�qÞð1�pr2Þ

8ð1�pÞ � 3
2v4
, and

c ¼ ðqþ1Þð3�qÞð5�3qÞð1þpr3Þ
48ð1�pÞ � 5

2v6
.

Then, Eq. (7) is equivalent to the following planar

dynamical system:

d/
dn

¼ z;

dz

dn
¼ a/þ b/2 þ c/3:

8
><

>:
ð8Þ

It is important to note that a system of planar equations
d/
dn ¼ f1ð/; zÞ, dz

dn ¼ f2ð/; zÞ is called a Hamiltonian system

(in classical mechanics) if there exists a function Hð/; zÞ
such that f1 ¼ oH

oz
and f2 ¼ � oH

o/. A necessary and sufficient

condition for a planar system d/
dn ¼ f1ð/; zÞ, dz

dn ¼ f2ð/; zÞ to
be Hamiltonian is that of1

o/ þ
of2
oz

¼ 0.

The system (8) is a planar Hamiltonian system with

Hamiltonian function:

Hð/; zÞ ¼ z2

2
� a

/2

2
� b

/3

3
� c

/4

4
¼ h; say: ð9Þ

The system Eq. (8) is a planar dynamical system with

parameters q; p; r and v. It is clear that the phase orbits

defined by the vector fields of Eq. (8) will determine all

traveling wave solutions of Eq. (7). We will study the

bifurcations of phase portraits of Eq. (8) in the ð/; zÞ phase
plane depending on the parameters. A homoclinic orbit of

Eq. (8) gives a solitary wave solution of Eq. (7). Similarly,

a periodic orbit of Eq. (8) gives a periodic traveling wave

solution of Eq. (7).
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We study the bifurcation set and phase portraits of the

planar dynamical system (8). Clearly, on the ð/; zÞ phase

plane, the abscissas of equilibrium points of system (8) are

the zeros of f ð/Þ ¼ /ð/2 þ b
c
/þ a

c
Þ. Let Eið/i; 0Þ be an

equilibrium point of the dynamical system (8) where

f ð/iÞ ¼ 0: When b2 � 4ac[ 0; there exist three equilib-

rium points at E0ð/0; 0Þ, E1ð/1; 0Þ, and E2ð/2; 0Þ, where
/0 ¼ 0, /1 ¼ �bþ

ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p

2c
, and /2 ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p

2c
. IfMð/i; 0Þ

is the coefficient matrix of the linearized system of the

dynamical system (8) at an equilibrium point Eið/i; 0Þ,
then we get

J ¼ detMð/i; 0Þ ¼ �cf
0 ð/iÞ: ð10Þ

By the theory of planar dynamical systems [70, 71], it is

clear that the equilibrium point Eið/i; 0Þ of the planar

dynamical system 8 is a saddle point when J\ 0 and the

equilibrium point Eiðwi; 0Þ of the planar dynamical system

(8) is a center when J[ 0:

Applying the systematic analysis of parameters q; p; r;
and v, we have presented the phase portrait of the system

(8) in Figs. 1 and 2. In Fig. 1, we have presented the phase

portrait of the system (8) for q ¼ �0:8; p ¼ 0:5; r ¼ 0:6;

and v ¼ 1:6. Thus, the velocity of the ion acoustic traveling

wave is sonic. There are three equilibrium points of the

system (8) at E0ð/0; 0Þ; E1ð/1; 0Þ; and E2ð/2; 0Þ with

/2\0\/1. The equilibrium points E1ð/1; 0Þ, E2ð/2; 0Þ
are saddle points and E0ð/0; 0Þ is a center. There is a

homoclinic orbit at the equilibrium point E2ð/1; 0Þ
enclosing the center at E0ð/0; 0Þ which is surrounded by a

family of periodic orbits. In Fig. 2, we have shown the

phase portrait of the system (8) for q ¼ 0:1; p ¼ 0:5; r ¼
0:6 and v ¼ 1. In this case, there are three equilibrium

points of the system (8) at E0ð/0; 0Þ; E1ð/1; 0Þ; and

E2ð/2; 0Þ with /1\0\/2. The equilibrium points

E1ð/1; 0Þ, E2ð/2; 0Þ are centers and E0ð/0; 0Þ is a saddle

point. There is a pair of homoclinic orbits at the equilib-

rium point E0ð/1; 0Þ enclosing the centers at E1ð/1; 0Þ and
E2ð/2; 0Þ which are surrounded by a family of periodic

orbits.

It is to be noted that for q[ 1 with fixed values of other

parameters (p ¼ 0:5;r ¼ 0:6 , and v ¼ 1), the type of the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

φ

z

Fig. 1 Phase portrait of Eq. (8)

for q ¼ �0:8; p ¼ 0:5;r ¼ 0:6
and v ¼ 1:6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

φ

z

Fig. 2 Phase portrait of Eq. (8)

for q ¼ 0:1; p ¼ 0:5;r ¼ 0:6 ,

and v ¼ 1
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phase portrait is same as Fig. 2. So the phase portrait for

q[ 1 is not presented.

New solitary and periodic wave solutions

In this section, we present solitary wave solutions and peri-

odic wave solutions with the help of the dynamical system (8)

and the Hamiltonian function (9). It is important to note that if

a phase portrait of a dynamical system has a homoclinic orbit

at an equilibrium point of the system, then the system has a

solitary wave solution corresponding to the homoclinic orbit

at that point. If a phase portrait of a dynamical system has a

family of periodic orbits about an equilibrium point of the

system, then the system has a family of periodic wave solu-

tions corresponding to the family of periodic orbits about that

point. It should be noted that snðXn; kÞ is the Jacobian elliptic
function [72] with the modulo k.

(1) The dynamical system (8) has a family of periodic

orbits about the equilibrium point E0ð/0; 0Þ in Fig. 1

described by Hð/; zÞ ¼ h, h 2 ðh2; 0Þ, where

h2 ¼ Hð/2; 0Þ. Corresponding to this family of

periodic orbits about E0ð/0; 0Þ, our system has a

family of periodic wave solutions:

/ðnÞ ¼ ðb1 � c1Þd1sn2ðXn; kÞ � c1ðb1 � d1Þ
ðb1 � c1Þsn2ðXn; kÞ � ðb1 � d1Þ

;

ð11Þ

with X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c

8
ðb1 � d1Þðc1 � a1Þ

p
,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1�d1Þðb1�c1Þ
ða1�c1Þðb1�d1Þ

q
, where a1; b1; c1 , and d1 are roots

of the equation hþ c
4
/4 þ b

3
/3 þ a

2
/2 ¼ 0, with

a1 [ b1 [ c1 [ d1, h 2 ðh2; 0Þ.

(2) The dynamical system (8) has a pair of homoclinic

orbits about the equilibrium point E0ð/0; 0Þ in Fig. 2

described by Hð/; zÞ ¼ 0. Corresponding to this pair

of homoclinic orbits at E0ð/0; 0Þ, our system has

both compressive and rarefactive solitary wave

solutions:

/ðnÞ ¼ � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
	
1� b2

9ac


r

sin 2
ffiffi
a
c

p
n

	 

þ b

6a

:
ð12Þ

It is important to note that one can obtain solitary wave

solution corresponding to the homoclinic orbit at E2ð/2; 0Þ
in Fig. 1. Similarly, one can obtain two families of periodic

wave solutions corresponding to two families of periodic

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

φ

z

Fig. 3 Phase portrait of the perturbed system (13) for q ¼
�0:01; p ¼ 0:5; r ¼ 0:6; v ¼ 1; f0 ¼ 1 and x ¼ 1 (initial condition

/ ¼ 0:23; z ¼ 0:1)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

φ

z

Fig. 4 Phase portrait of the perturbed system (13) for q ¼ 0:1 with

same values of other parameters as Fig. 3 (initial condition

/ ¼ 0:3; z ¼ 0:1)

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

φ

z

Fig. 5 Phase portrait of the perturbed system (13) for q ¼ 2 with

same values of other parameters as Fig. 3 (initial condition

/ ¼ 1; z ¼ 0:8)
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orbits about E1ð/1; 0Þ and E2ð/2; 0Þ in Fig. 2. In the work

[61], the authors derived compressive solitary wave solu-

tion involving sech2n corresponding to the homoclinic

orbit at the saddle point (see Fig. 4 in [61]) and periodic

wave solutions involving sec2n corresponding to the peri-

odic orbits about the center (see Fig. 2 in [61]) of the

dynamical system. But, in the present work, we obtain a

family of periodic wave solutions (11) involving Jacobian

elliptic function sn2ðXn; kÞ corresponding to the family of

periodic orbits about the center E0ð/0; 0Þ in Fig. 1. We also

obtain both compressive and rarefactive solitary wave

solutions (12) corresponding to the pair of homoclinic

orbits at the saddle point E0ð/0; 0Þ in Fig. 2.

Chaos in the perturbed system

In this section, we will discuss the chaotic behavior of the

following perturbed system:

d/
dn

¼ z;

dz

dn
¼ a/þ b/2 þ c/3 þ f0cosðxnÞ;

8
>><

>>:
ð13Þ

where f0cosðxnÞ is the external periodic perturbation, f0 is

strength of the external perturbation, and x is the fre-

quency. The difference between the system (8) and the

system (13) is that only external periodic perturbation is

added with the system (8). The system (13) depends on six

independent parameters q; p; r; v; f0; and x. An investiga-

tion of such a system for complete range of parametric

space or the influence of each parameter is complicated and

difficult. To simplify the analysis, all parameters are kept

as constants except q to be changed. In order to explore the

possible chaotic structure of the perturbed system (13), we

consider special values of the parameter q with fixed values

of p; r; v; f0; and x in three possible regimes

�1\q\0; 0\q\1 and q[ 1. We could in fact vary any

of the other parameters, but this does not give us any sig-

nificant different qualitative results.

In Figs. 3, 4, and 5, we have presented phase portraits of

the perturbed dynamical system (13) for different values of

q (�0:01 (see Fig. 3), 0.1 (see Fig. 4), 2 (see Fig. 5)) with

fixed values of other parameters p ¼ 0:5; r ¼ 0:6; f0 ¼
1;x ¼ 1; and v ¼ 1. In this case, the velocity of the per-

turbed traveling wave is sonic. It is clear that the perturbed

system (13) shows chaotic oscillations. Any periodic or

quasi-periodic behaviors are not observed in Figs. 3, 4, and

5 even if the external periodic perturbation is considered.

Furthermore, the developed chaotic motions occur (see

Figs. 3, 4, and 5) and the solutions ignore the periodic

motions and represent random sequences of uncorrelated
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Fig. 6 Plot of z versus n of the perturbed system (13) for same values

of parameters as Fig. 3
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Fig. 7 Plot of z versus n of the perturbed system (13) for same values

of parameters as Fig. 4
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Fig. 8 Plot of z versus n of the perturbed system (13) for same values

of parameters as Fig. 5
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oscillations. For different ranges of the nonextensive

parameter q, different developed chaotic motions(see

Figs. 3, 4, and 5) are presented with suitable initial con-

ditions. In Figs. 6, 7, and 8, we have plotted z vs. n for the

perturbed system (13) for different values of q (�0:01 (see

Fig. 6), 0.1 (see Fig. 7), 2 (see Fig. 8)) with same values of

other parameters as Fig. 3. In other words, the perturbed

system (13) shows chaotic behavior when electrons or

positrons evolve away from their Maxwell–Boltzmann

equilibrium. It is easily seen that chaotic behavior is visible

in the system (13) for different values of q.

Conclusions

We have addressed the dynamic structures of ion acoustic

waves in an unmagnetized plasma with q-nonextensive

electrons and positrons using the bifurcation theory of

planar dynamical systems through direct approach. We

have transformed the model equations into a planar

dynamical system using a traveling wave transformation.

Using the bifurcations of planar dynamical system, we

have presented the existence of solitary and periodic waves

through phase portrait analysis. We have derived new

analytical forms for solitary and periodic waves depending

on parameters q; p; r; and v. Considering an external

periodic perturbation, chaotic structure of ion acoustic

waves has been presented. Depending upon different

regimes of the nonextensive parameter q, we have shown

the effect of q on chaotic structures of ion acoustic waves

with fixed values of other parameters p; r and v. It has been

observed that the unperturbed system has the solitary and

periodic wave solutions, but the perturbed dynamical sys-

tem has chaotic structures for same values of parameters

q; p; r; and v. Our present study could be helpful in

understanding the solitary, periodic, and chaotic structures

of ion acoustic nonlinear waves in space plasmas [19–25]

as well as in laboratory plasmas [26, 27], where q-nonex-

tensive electrons and positrons are present.
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