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Abstract An attempt has been made to study the multi-

dimensional instability of dust-ion-acoustic (DIA) solitary

waves (SWs) in magnetized multi-ion plasmas containing

opposite polarity ions, opposite polarity dusts and non-

thermal electrons. First of all, we have derived Zakharov-

Kuznetsov (ZK) equation to study the DIA SWs in this

case using reductive perturbation method as well as its

solution. Small-k perturbation technique was employed to

find out the instability criterion and growth rate of such a

wave which can give a guideline in understanding the

space and laboratory plasmas, situated in the D-region of

the Earth’s ionosphere, mesosphere, and solar photosphere,

as well as the microelectronics plasma processing reactors.

Keywords Non-thermal electrons � Multi-ions � Plasma

instability � Perturbation

Introduction

Very recently many authors have studied the nonlinear

propagation of ion-acoustic (IA) solitary waves (SWs)

[1–4] dust-ion-acoustic (DIA) SWs [5–9], dust-acoustic

(DA) SWs [10–14] in a multi-ion plasmas, as negative ions

can be found in space [15, 16] and laboratory [17–19] as

well as positive ions. In multi-ion plasmas, there exist fast

and slow mode. In fast mode, positive and negative ions

oscillate out of phase (180�) where as positive and negative
ions oscillate in phase. In the case of low temperature

plasmas, both in space (the Earth’s ionosphere, planetary

rings, interstellar clouds, planetary atmospheres, interstel-

lar media, protostellar disks, interstellar and circumstellar

clouds, asteroid zones, cometary tails and nebula) and

laboratory (plasma processing and plasma crystal) some

micron or sub-micron sized dust particles might be present.

Due to the size effect on secondary emission [20], the dust

particles can have the opposite polarity. Larger particles

are found to be negatively charged and smaller ones are

positively charged [20]. These opposite polarity ions and

opposite polarity dusts [10–14] can significantly modify the

basic properties of linear and nonlinear DIA SWs and DA

SWs. The anomalous dissipation in complex plasmas,

which originates from the dust charging process, makes

possible the existence of a new kind of shock wave

[21–25]. When the dissipation is weak or absent at the

characteristic dynamical time scales of the system, the

balance between nonlinearity and dissipation is weak at the

characteristic dynamical time scales of the system, the

balance between nonlinearity and dissipation effects can

result in the formation of a symmetrical SWs.

The non-thermal particle distributions turn out to be a

characteristic feature in space plasmas, as in auroral zone

[26]. The observation of non-thermal electrons made by the

Swedish Viking satellite [27] and Freja satellite [28] have

shown electrostatic solitary structures in the magneto-

sphere with density depression. This non-thermal electron

populations might be distributed isotropically in velocities

or possess a net streaming motion. Cairns et al. [29] con-

sidered the influence of non-thermal electrons on the

existence conditions of ion-acoustic (IA) solitary struc-

tures. The presence of non-thermal electrons allows for the

existence of both positive and negative density

& M. M. Haider

masum.phy@gmail.com

O. Rahman

armanphy203@gmail.com

1 Department of Physics, Mawlana Bhashani Science and

Technology University, Santosh, Tangail 1902, Bangladesh

123

J Theor Appl Phys (2016) 10:297–305

DOI 10.1007/s40094-016-0229-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s40094-016-0229-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40094-016-0229-5&amp;domain=pdf


perturbations. The non-thermal electron distribution of

Cairns et al. [29] is a more general class of the electron

distribution including a population of fast or energetic

electrons. The non-thermal electron ne can be written as

ne ¼ 1� 4a
1þ 3a

wð1� wÞ
� �

ew; ð1Þ

where a is a parameter determining the fast particles pre-

sent in this plasma model and w is the wave potential.

Sayed et al. [9] have studied dust-ion-acoustic (DIA)

solitary structures in unmagnetized plasmas containing

positive and negative ions with positive and negative dust

and Maxwellian distributed electrons. This mode is only

valid if a complete depletion of the background electrons

and ions is possible, and both positive and negative dust

fluids are cold. However, in real dusty plasma, the effect of

finite ion temperature cannot be neglected and the electron

behavior can be strongly modified by non-linear potential

of the localized DIA structures by generating a population

of fast energetic electrons [30]. Gill et al. [1] have studied

double layered IA SWs containing positive and negative

ions of two different temperatures and non-thermal elec-

trons by deriving K-dV and mK-dV equations. Mannan

et al. [3] have studied nonplanar (cylindrical and spherical)

Gardner solitons and double layers (DLs) in an unmagne-

tized plasma composed of positive and negative ions, and

non-thermal electrons. Mamun and Shukla [4] have studied

the effects of the non-thermal distribution of electrons as

well as the polarity of the net dust-charge number density

on nonplanar DIA SWs. It is found from the different

observations that most of the plasmas in reality are mag-

netized, and it can change its characteristics according to

the wave direction.

Haider [5] studied the DIA SWs by deriving K-dV

equation, associated with a plasma system containing

opposite polarity ions, opposite polarity dusts and non-

thermal electrons where restoring forces are provided by

the plasma thermal pressure of electrons and the inertia is

due to the ion mass. But the instability criterion and growth

rate is steel unknown. To do this, Zakharov-Kuznetsov

(ZK) equation has derived employing reductive perturba-

tion method [31] and using its constant instability criterion

and growth rate has been studied by small-k perturbation

technique in a magnetized dusty plasma consisting of ions

with opposite polarity (negatively andy positively

charged), dusts with opposite polarity (negatively and

positively charged) and non-thermal electrons following

Cairn distribution [29]. The manuscript is organized as

follows. The basic equations are given in Sect. 2. The

Zakharov-Kuznetsov (ZK) equation in Sect. 3. The soli-

tary-wave solution of the ZK equation is obtained in Sect.

4. Instability criterion with growth rate is in Sect. 5 and a

brief discussion is finally given in Sect. 6.

Basic equations

The propagation of DIA SWs have been studied, in the

present work, in a collisionless magnetized dusty plasma

consist of

(i) opposite polarity (negatively and positively

charged) mobile ions,

(ii) opposite polarity stationary dust, and

(iii) non-thermal electrons.

It is also considered that there is an external static magnetic

field B0 acting along the z-direction (B0 ¼ k̂B0), where k̂ is

the unit vector along the z-direction which is very strong

that the electrons and dusts are moving along the magnetic

field direction very fast, i.e. the response of electrons and

dusts look like as that in the unmagnetized plasma. The

nonlinear dynamics of the DIA SWs propagating in such a

multi-component dusty plasma is governed by

ons

ot
þr � ðnsusÞ ¼ 0 ð2Þ

oun
ot

þ ðun � rÞun ¼ r/� xcnun � k̂ ð3Þ

oup
ot

þ ðup � rÞup ¼ �br/þ bxcnup � k̂ ð4Þ

52/ ¼ l0ne þ nn � lpnp � jld ð5Þ

where ns (nn/np) is the ion number density (negative/posi-

tive) normalized by its equilibrium value ns0, un (up) is the

negative (positive) ion fluid speed normalized by

Cn ¼ ðkBTe=mnÞ1=2, with kB is the Boltzmann constant, Te
is the temperature of electrons and mn being the rest mass

of negative ions. / is the DIA wave potential normalized

by kBTe=e, with e being the magnitude of the charge of an

electron. xcn is the negative ion cyclotron frequency

ðeB0=mncÞ normalized by plasma frequency xpn ¼
ð4pnn0e2=mnÞ1=2 with c being the speed of light. The time

variable (t) is normalized by xpn
�1, the space variables are

normalized by Debye radius kD ¼ ðkBTe=4pnn0e2Þ1=2.
At equilibrium we have

np0 þ jnd0 ¼ ne0 þ nn0

where, jnd0 ¼ ndþ � nd� with ndþ being the positive dust

number density and nd� being the number density of

negative dust. j ¼ 1 for the condition ndþ [ nd� and j ¼
�1 for the condition ndþ\nd�, i.e. the value of j depen-

dents on net charge of dust grain and b is the mass ratio of

negative ion to positive ion (mn=mp). We can also write

l0 ¼ lp þ jld � 1 ð6Þ

where, l0 ¼ ne0=nn0, lp ¼ np0=nn0 and ld ¼ nd0=nn0.
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Derivation of ZK equations

To derive a dynamical equation for the nonlinear propa-

gation of the electrostatic waves in a dusty plasma, under

consideration, have to employed in Eqs. (1–5). To do so,

the following stretched coordinates [31–37] are introduced

X ¼ �1=2x

Y ¼ �1=2y

Z ¼ �1=2ðz� V0tÞ
s ¼ �3=2t

9>>>=
>>>;

ð7Þ

where � is a smallness parameter (0\�\1) measuring the

weakness of the dispersion and V0 is the Mach number (the

phase speed normalized by Cn). ns, us and / can be

expanded about their equilibrium values in a power series

of �, viz.,

ns ¼ 1þ �n
ð1Þ
s þ �2n

ð2Þ
s þ � � �

usx ¼ �3=2u
ð1Þ
sx þ �2u

ð2Þ
sx þ � � �

usy ¼ �3=2u
ð1Þ
sy þ �2u

ð2Þ
sy þ � � �

usz ¼ �u
ð1Þ
sz þ �2u

ð2Þ
sz þ � � �

/ ¼ �/ð1Þ þ �2/ð2Þ þ � � �

9>>>>>>>=
>>>>>>>;

ð8Þ

where s represents the species (n for negative ions and p for

positive ions).

Using the stretched coordinates and Eq. (8) into Eqs. (2–

5) and (1), one can develop equations in various powers of

�. To the lowest order of � is

u
ð1Þ
sx ¼ � 1

xcn

o/ð1Þ

oY
; uð1Þsy ¼ 1

xcn

o/ð1Þ

oX

u
ð1Þ
nz ¼ � 1

V0

/ð1Þ; uð1Þpz ¼ b
V0

/ð1Þ

n
ð1Þ
n ¼ � 1

V2
0

/ð1Þ; nð1Þp ¼ 1

V2
0

/ð1Þ

9>>>>>>>=
>>>>>>>;

ð9Þ

Equating the coefficients of � from Poissons equation, we

get

0 ¼ l0 /ð1Þ � 4a
1þ 3a

/ð1Þ
� �

þ nð1Þn � lpn
ð1Þ
p ð10Þ

Using the value of n
ð1Þ
n and n

ð1Þ
p from Eq. (9) into Eq. (10),

we can get the linear dispersion relation

V0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ blpÞð1þ 3aÞ

l0ð1� aÞ

s
ð11Þ

Again, following the same procedure, one can obtain the

next higher order continuity equation and the z- component

of momentum equation as

on
ð1Þ
s

os
� V0

on
ð2Þ
s

oZ
þ ou

ð2Þ
sx

oX
þ ou

ð2Þ
sy

oY
þ ou

ð2Þ
sz

oZ

þ o

oZ
nð1Þs uð1Þsz

h i
¼ 0 ð12Þ

ou
ð1Þ
nz

os
� V0

ou
ð2Þ
nz

oZ
þ uð1Þnz

ou
ð1Þ
nz

oZ
� o/ð2Þ

oZ
¼ 0 ð13Þ

ou
ð1Þ
pz

os
� V0

ou
ð2Þ
pz

oZ
þ uð1Þpz

ou
ð1Þ
pz

oZ
þ b

o/ð2Þ

oZ
¼ 0 ð14Þ

To the next higher order of �, i.e., equating the coefficients

of �2, we can express x� and y�components of the

momentum equations for both negative and positive ions,

and Poisson’s equation as

uð2Þnx ¼ � V0

x2
cn

o2/ð1Þ

oZoX
; uð2Þny ¼ � V0

x2
cn

o2/ð1Þ

oYoZ
ð15Þ

uð2Þpx ¼ V0

bx2
cn

o2/ð1Þ

oZoX
; uð2Þpy ¼ V0

bx2
cn

o2/ð1Þ

oYoZ
ð16Þ

o2

oX2
þ o2

oY2
þ o2

oZ2

� �
/ð1Þ � l0

1� a
1þ 3a

� �
/ð2Þ

� l0
2

/ð1Þ
h i2

þlpn
ð2Þ
p � nð2Þn ¼ 0

ð17Þ

Now, using (9–17), we can readily obtain

o/ð1Þ

os
þ AB/ð1Þ o/

ð1Þ

oZ
þ 1

2
A

o

oZ

o2

oZ2

�

þD
o2

oX2
þ o2

oY2

� ��
/ð1Þ ¼ 0

ð18Þ

where

A ¼ V0

l0

1þ 3a
1� a

� �

B ¼ 3

2

ðblp � 1Þ
V4
0

� l0
2

D ¼ 1þ 1

x2
cn

1þ
lp
b

� �
ð19Þ

SW solution of the ZK equation

To study the properties of the solitary waves propagating in

a direction making an angle d with the Z-axis, i.e., with the

external magnetic field and lying in the (Z–X) plane, we

first rotate the coordinate axes (X, Z) through an angle d,
keeping the Y-axis fixed. Thus, we transform our inde-

pendent variables to
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q ¼ X cos d� Z sin d;

n ¼ X sin dþ Z cos d;

g ¼ Y :

9>=
>; ð20Þ

This transformation of these independent variables allows

us to write the ZK equation in the form

o/ð1Þ

ot
þ d1/

ð1Þ o/
ð1Þ

on
þ d2

o3/ð1Þ

on3
þ d3/

ð1Þ o/
ð1Þ

oq

þ d4
o3/ð1Þ

oq3
þ d5

o3/ð1Þ

on2oq
þ d6

o3/ð1Þ

onoq2

þ d7
o3/ð1Þ

onog2
þ d8

o3/ð1Þ

oqog2
¼ 0 ð21Þ

where

d1 ¼ AB cos d

d2 ¼
1

2
Aðcos3 dþ D sin2 d cos dÞ

d3 ¼ �AB sin d

d4 ¼ � 1

2
Aðsin3 dþ D sin d cos2 dÞ

d5 ¼ A D

�
sin d cos2 d� 1

2
sin3 d

�
� 3

2
sin d cos2 d

� �

d6 ¼ �A D

�
sin2 d cos d� 1

2
cos3 d

�
� 3

2
sin2 d cos d

� �

d7 ¼
1

2
AD cos d

d8 ¼ � 1

2
AD sin d ð22Þ

We now look for a steady state solution of this ZK equation

in the form

/ð1Þ ¼ /0ðZÞ ð23Þ

where

Z ¼ n� u0t

in which u0 is a constant speed normalized by the ion-

acoustic speed ðCiÞ. Using this transformation we can write

this ZK equation in steady state form as

� u0
d/0

dZ
þ d1/0

d/0

dZ
þ d2

d3/0

dZ3
¼ 0 ð24Þ

Now, using the appropriate boundary conditions, viz.,

/ð1Þ ! 0, ðd/ð1Þ=dZÞ ! 0, ðd2/ð1Þ=dZ2Þ ! 0 as

Z ! �1, the SWs solution of this equation is given by

/0ðZÞ ¼ /msech
2ðjZÞ ð25Þ

where /m ¼ 3u0=d1 is the amplitude and j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0=4d2

p
is

the inverse of the width of the solitary waves. As u0 [ 0, it

is clear from (11), (19), and (22) that depending on the sign

of B, the solitary waves will be associated with either

positive potential ð/m [ 0Þ or negative potential ð/m\0Þ.
Therefore, there exists solitary waves associated with

positive (negative) potential when B[ 0 ðB\0Þ. Figure 1

represents the variation of the phase speed V0 of DIA SWs

with lp and ld for positive as well as negatively charged

stationary dust particles. This figure indicates that the phase

speed is larger for negatively charged dust (upper surface)

than for positively charged dust (lower surface). It is also

found from this figure that the phase speed decreases with

increasing the number density of both positive ions and

dust particles in our present dusty plasma system. Fig-

ures 2,3 represent the variations of the potential /m of DIA

SWs with various parameters. From Fig. 2, it has been

found that the SWs associated with negative potential only

for propagation angle (d ! 0�–90�) and it associated with

positive potential for the propagation angle (d ! 90�–
180�). That means below the propagation angle 90� the

solitary wave structure associates with dip shape and above

this value the solitary wave structure associates with hump

shape. Figure 3 indicates that the potential of the SW

decreases with increasing the number density of both

positive ions and dust particles but the potential is larger

for negatively charged dust (upper surface) than for posi-

tively charged dust particles. Figures 4 and 5 show the

variation of the width of SWs with propagation angle d, lp
and ld respectively. From Fig. 4, it has been found that for

lower limit of the angle ð0�–50�Þ the width increases with

it and decreases for higher limits of the angle ð50�–90�Þ for
both positively and negatively charged dust particles. It is

also clear from this figure that the external magnetic field

leads to a decrease in the potential width, i.e., a stronger

2

3

4

5

0.2

0.4

0.6

0.8

1.0

1.4

1.6

1.8

2.0

V0

Fig. 1 Variation of of the phase velocity V0 of DIA SW with lp and
ld for a ¼ 0:1, b ¼ 1, j ¼ 1 (lower surface) and j ¼ �1 (upper

surface)
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magnetic field leads to steeper and thus narrower soliton

profiles. Similar observations are found in the work of

Haider [5] and the work of Sabetkar and Dorranian

[11, 12, 14] while studying the DIA and DA SWs with the

presence of magnetic field. The width of the SWs is lower

for positive dust grains than for negative dust grains, thus

the positive dust grains makes the soliton profile more

steeper. Figure 5 shows how the width changes with lp and
ld and this figure indicate that the width decreases with

increasing the value of both the number density of positive

ions and dust particles as found in the work of Haider [5].

From the above analysis we have seen that the magnetic

field has an effect only on the width of the SW but it has no

effect on the amplitude of the waves.

Instability analysis

We now study the instability of the obliquely propagating

SWs, discussed in the previous section, by the method of

small-k perturbation expansion technique [33–38]. We first

assume that

/ð1ÞðZ; f; g; sÞ ¼ /0ðZÞ þ wðZ; f; g; sÞ ð26Þ

where /0ðZÞ is defined by (25), and for a long-wavelength

plane wave perturbation in a direction with direction

cosines ðlf; lg; lnÞ, wðZ; f; g; sÞ is given by

wðZ; f; g; sÞ ¼ uðZÞe�ixsþikðlffþlggþlnZÞ ð27Þ

in which l2f þ l2g þ l2n ¼ 1, and for small k, uðZÞ and x can

be expanded as

uðZÞ ¼ u0ðZÞ þ ku1ðZÞ þ k2u2ðZÞ þ � � � ð28Þ

x ¼ kx1 þ k2x2 þ � � � ð29Þ

Now, substituting (26) into (21), and linearizing with

respect to w, we can express the linearized ZK equation in

the form

50 100 150

2

1

1

2

Fig. 2 Variation of the potential /m of DIA SW with d for u0 ¼ 0:1,
b ¼ 1, lp ¼ 2, ld ¼ 0:2, a ¼ 0:1 for j ¼ 1 (solid curve) and j ¼ �1

(dotted curve)

1 2 3
4

5

0.2
0.4

0.6
0.8 1.0

3

2

1

0

Fig. 3 Variation of the potential /m of DIA SW with lp and ld for

u0 ¼ 0:1, d ¼ 600, a ¼ 0:1, b ¼ 1 and j ¼ 1ð�1Þ lower (upper)

surface

20 40 60 80

20

40

60

80

100

Fig. 4 Variation of the width D of DIA SW with d for u0 ¼ 0:1,
a ¼ 0:1, b ¼ 1, lp ¼ 2, ld ¼ 0:2. The solid curve is for the value of

j ¼ 1 and dotted curve is for the value of j ¼ �1 with xcn ¼ 0:1 (red

curve), xcn ¼ 0:3 (green curve), xcn ¼ 0:5 (blue curve)

2

3

4

5

0.2

0.4

0.6
5

10

Fig. 5 Variation of the width D of DIA SW with lp and ld for

u0 ¼ 0:1, d ¼ 100, xcn ¼ 0:5, a ¼ 0:1, b ¼ 1, and j ¼ 1ð�1Þ lower

(upper) surface
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ow
os

� u0
ow
oZ þ d1/0

ow
oZ þ d1w

o/0

oZ þ d2
o3w

oZ3

þ d3/0

ow
of

þ d4
o3w

of3
þ d5

o3w

oZ2of
þ d6

o3w

oZof2

þ d7
o3w

oZog2
þ d8

o3w
ofog2

¼ 0 ð30Þ

Our main objective is to find x1 by solving the zeroth-,

first-, and second-order equations obtained from (27–30).

zeroth-order equation can be written, after integration, as

½�u0 þ d1/0�u0ðZÞ þ d2
d2u0ðZÞ
dZ2

¼ C ð31Þ

where C is an integration constant. It is clear from (24) that

the homogeneous part of this equation has two linearly

independent solutions, namely

f ¼ d/0

dZ
; ð32Þ

g ¼ f

Z Z dZ

f 2
: ð33Þ

Therefore, the general solution of this zeroth-order equa-

tion can be written as

u0 ¼ C1f þ C2g� Cf

Z Z g

d2
dZ þ Cg

Z Z f

d2
dZ ð34Þ

where C1 and C2 are two integration constants, and d2 is

defined in (22). Now, evaluating all integrals, the general

solution of this zeroth-order equation, for u0 not tending to

�1 as Z ! �1, can finally be simplified to

u0ðZÞ ¼ C1f ð35Þ

The first-order equation, i.e.,, the equation with terms linear

in k, obtained from (27–30) and (35), can be expressed,

after integration, as

½�u0 þ d1/0�u1ðZÞ þ d2
d2u1ðZÞ
dZ2

¼ iC1ða1 þ b1 tanh
2 jZÞ/0 þ K

ð36Þ

where K is another integration constant, and a1 and b1 are

given by

a1 ¼ ðx1 þ lnu0Þ �
1

2
/ml1 þ 2j2l2

b1 ¼
1

2
/ml1 � 6j2l2

l1 ¼ d1ln þ d3lf; l2 ¼ 3d2ln þ d5lf

ð37Þ

Now, following the same procedure, the general solution

of this first-order equation, for u1ðZÞ not tending to �1 as

Z ! �1, can be written as

u1ðZÞ ¼ K1f þ
iC1

8d2j2
aZ þ 2

3
ð3a1 þ b1Þ/0

� �
ð38Þ

Where a ¼ a1 þ b1. The second-order equation, i.e., the

equation with terms involving k2 obtained from (30) after

substituting (27–29), can be written as

�u0
d

dZ þ d1
d

dZ w0 þ d2
d3

dZ3

� �
u2ðZÞ ¼ ix2u0ðZÞ

þ i½x1 þ lnu0�u1ðZÞ � il1w0u1ðZÞ

þ l3
du0ðZÞ
dZ � il2

d2u1ðZÞ
dZ2

ð39Þ

where

l3 ¼ 3d2l
2
n þ 2d5lfln þ d6l

2
f þ d7l

2
g ð40Þ

The solution of this second-order equation exists if the

right-hand side is orthogonal to a kernel of the operator

adjoint to the operator

� u0
d

dZ þ d1
d

dZ /0 þ d2
d3

dZ3
ð41Þ

This kernel, which must tend to zero as Z ! �1, is

/0 ¼ /msech
2ðjZÞ. Thus, we can write the following

equation determining x1:Z 1

�1
/0

�
ix2u0ðZÞ þ i½x1 þ lnu0�u1ðZÞ � il1/0u1ðZÞ

þ l3
du0ðZÞ
dZ � il2

d2u1ðZÞ
dZ2

�
dZ ¼ 0

ð42Þ

Now, substituting the expressions for u0ðZÞ and u1ðZÞ
given by (35) and (38), respectively, and then performing

the integration, we arrive at the following dispersion

relation:

x1 ¼ X� lnU0 þ ðX2 � !Þ1=2 ð43Þ

this equation is valid only for first order approximation,

i.e., x ¼ kx1, where

X ¼ 2

3
ð/ml1 � 2l2j

2Þ ð44Þ

! ¼ 16

45
ð/2

ml
2
1 � 3/ml1l2j

2 � 3l22j
4 þ 12d2l3j

4Þ ð45Þ

It is clear from the dispersion relation (43) that there is

always instability if ð!� X2Þ[ 0. Thus, using (19), (22),

(37), (40), (44), and (45), we can express the instability

criterion as

Si [ 0 ð46Þ
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with

Si ¼ l2g x2
cn þ Y sin2 d

� �
þ l2f x2

cn �
5

3
ðx2

cn þ YÞ tan2 d
� �

ð47Þ

Y ¼ 1þ
lp
b

ð48Þ

We have graphically obtained the parametric regimes

(values of d, xcn, lp, lf, and lg) for which the SWs become

stable and unstable. This is shown in Fig. 6, which indi-

cates that for the parameters above (below) the surface the

SWs become unstable (stable). This figure represents Si ¼
0 surface plot showing the variation of xcn with lg and lf
for lp ¼ 1, b ¼ 1 and d ¼ 10�. This figure shows that the

values of xcn increases with increasing the values of lf and

it decreases with increasing the values of lg.

If this instability criterion Si [ 0 is satisfied, the growth

rate C ¼ ð!� X2Þ1=2 of the unstable perturbation of these

SWs is given by

C ¼ 2ffiffiffiffiffi
15

p u0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

cn þ YÞSi
p
x2

cn þ Y sin2 d
ð49Þ

The Eq. (49) represents that the growth rate ðCÞ of the

unstable perturbation is a linear function of IA wave

speed u0, but a nonlinear function of propagating angle

ðdÞ, negative ion-cyclotron frequency ðxcnÞ, the ratio of

equilibrium positive ion density to negative number

density lp, the mass ratio of negative ion to positive ion b
and direction cosines (lf, and lg). To study instability/

stability and growth rate of SWs after ZK equation, some

perturbation techniques (ordinary, multi-scale about k ¼ 0

and k2 ¼ 5, small-k for k � cos a and k[ cos a)

discussed in the work of Allen and Rowlands [39, 40]

based on different cases. Using these techniques Williams

and Kourakis [41] studied stability analysis with growth

rate of solitary structures. The instability analysis using

small-k perturbation technique and process of obtaining

growth rate in present form is very suitable to understand,

because it express instability criterion and growth rate in

terms of basic plasma parameters like ratio of number

density, cyclotron frequency, direction cosine etc. which

are used to describe the concern plasma situation. Many

authentic authors have studied instability criterion as well

as growth rate using this perturbation technique

[36–38, 42] as it is a well established technique. The

nonlinear variations of C with d, xcn, lg, and lf are shown

in Figs. 7 and 8. Figure 7 shows how C changes with d
and xcn for u0 ¼ 0:1, lg ¼ 0:5, lf ¼ 0:5 and lp ¼ 2, and

Fig. 8 shows the variation of C with lg and lf for

u0 ¼ 0:2, d ¼ 10�, xcn ¼ 0:3 and lp ¼ 0:1. These fig-

ures represent that the growth rate ðCÞ of the unsta-

ble perturbation changes proportionally with direction

cosine (lg, lf) but inversely with d and xci.

Results and discussions

Here a magnetized dusty plasma system consisting of non-

thermal electrons, cold mobile positive as well as negative

ions, and opposite polarity stationary dust has been con-

sidered. The ZK equation by using the reductive pertur-

bation method has been derived. Then their multi-

dimensional instability by the small-k perturbation expan-

sion technique have analyzed. The results, which have been

found in this investigation may be pointed out as follows:
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Fig. 6 Plot of Si ¼ 0 surface plot (i.e., variation of xcn with ln and lg
for b ¼ 1, lp ¼ 1 and d ¼ 100) above which the solitary waves

become unstable and below which the SWs become stable
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Fig. 7 Showing the variation of growth rate C with d and xcn for

u0 ¼ 0:1, lp ¼ 1, ln ¼ 0:5, b ¼ 1 and lg ¼ 0:5
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(1) The effects of non-thermal negative ions have been

found to modify the nature of the DIA SWs

structures in a dusty plasma.

(2) The nonlinear DIA solitary wave structure associated

with positive as well as negative potential depending

on constant coefficient A and B.

(3) The phase velocity of the SWs becomes slower with

increasing the values of positive ions and with dust

grains. On the other hand phase velocity of the SWs

becomes faster with increasing the values of both a
and b. But the magnitude of phase velocity is larger

for negative dust grains than for positive dust grains.

(4) The magnitude of the external magnetic field B0 has

no effect on the solitary wave amplitude. However, it

has a direct effect on the width of the SWs, and it is

found that the width of the waves decreases as the

magnitude of magnetic field B0 increases, i.e. the

magnetic field makes the solitary structures more

spiky.

(5) The width of the SWs increase for the lower range of

d, i.e., from 0� to about 50�, but decrease for its

higher range, i.e., from about 50� to 90�. As

d ! 90�, the width goes to 0 and the amplitude

goes to 1. It is likely that for large angles the

assumption that the waves are electrostatic is no

longer valid, and one should look for fully electro-

magnetic structures.

(6) It has found that the values of a has no other effect

whether the SWs are stable or unstable. However,

stability strongly depend on the external magnetic

field and the propagation directions of both the

nonlinear wave and its perturbation mode.

(7) It has been found that the value of xcn for which the

SWs become unstable increases with increasing the

values of a and lp. On the other hand it decreases

with both of lf and lg.

(8) The growth rate C of the unstable perturbation

decreases with increasing the value of d and xcn and

it increases with both of lf and lg which is shown in

Figs. 7 and 8, respectively.

However, our theory is valid for small but finite amplitude

solitary waves long wavelength perturbations, but not for

large amplitude solitary waves and short wavelength per-

turbation modes. We, therefore, propose a more exact

theory for stability analysis of arbitrary amplitude SWs and

arbitrary wavelength perturbation modes, through a gen-

eralization of this work. The results which we obtained

may be useful for understanding the localized electrostatic

disturbances in some space (viz. auroral plasma, Saturns E-

and F-rings, etc.) [42–45] and laboratory [45–47] dusty

plasmas.
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