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Abstract
In this work, the temperature dependence of extended X-ray absorption fine structure (EXAFS) of the body-centered cubic 
crystals was investigated based on the anharmonic correlated Einstein model using the classical statistical theory. The oscil-
lation of the anharmonic EXAFS spectra presented in terms of the cumulant expansion up to the fourth order. Here, the 
thermodynamic parameters of a system are derived from an anharmonic effective potential that has taken into account the 
influence of all nearest neighbors of absorbing and backscattering atoms. Analytical expressions of the first four EXAFS 
cumulants are obtained in simple forms of temperature or parallel mean-square relative displacement. The numerical results 
for crystalline molybdenum in the temperature range from 0 to 900 K are found to be in good agreement with those obtained 
using the other theoretical methods and experiments at various temperatures. The analytical results for the contributions of 
the cumulants to the amplitude reduction and phase shift of the EXAFS oscillation discover the role and meaning of high-
order cumulants in analyzing the temperature dependence of the EXAFS spectra.
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Introduction

The extended X-ray absorption fine structure (EXAFS) has 
been developed into a powerful technique and widely used 
for determining many structural parameters and dynamic 
properties of disordered materials. They are related to the 
local environment surrounding a specific atomic species 
such as the number, type, and position of the central-atom 
neighbors, and the relative vibrational amplitudes and 
force constants of the neighbor atoms [1–5]. The EXAFS 
oscillation for a single coordination shell has the form 
�(k) = A(k) sin�(k) , where A(k) and �(k) are the EXAFS 
amplitude and phase, respectively [6–9]. There is the fact 
that the atoms are not stationary, the position and interatomic 
distance of atoms are changed due to thermal vibrations at 
any temperature [6, 7]. The sensitivity of the EXAFS spectra 
to thermal vibrations was detected by Beni and Platzman 
(1976) [2] and discussed detail by Eisenberger and Brown 
(1979) [3]. These thermal vibrations cause thermal disorder 

and anharmonic effects on lattice vibrations and will smear 
out the EXAFS spectra [3, 6].

In a solid, the exhibiting local dynamic disorder of the 
atomic positions around a central atom has to be described 
in terms of the radial distribution function (RDF) [3–6], 
and the moments of RDF (or cumulants) are determined 
more stable and interpreted more naturally by Kubo [10]. 
The use of the cumulants in investigating the local disorder 
of the EXAFS spectra was introduced by Rehr [11] who 
showed that the Debye–Waller factor (DWF) in the EXAFS 
spectra has a natural cumulant expansion in powers of the 
photoelectron wavenumber [12]. The DWF was described 
detail in the cumulant expansion approach (ratio method) 
by Bunker [7] and exploited by Tranquada and Ingalls [13], 
which can be viewed as a result of averaging the single-
scattering EXAFS formula over many near-neighbor pairs 
with a given RDF by Crozier et al. [14]. An account of the 
DWF with the local disorder is especially crucial for achiev-
ing the correct EXAFS amplitudes, and an account of the 
anharmonicity is essential for a proper understanding of the 
EXAFS phase [7, 11]. Further, the importance of includ-
ing higher-order cumulants (the third and fourth cumulants) 
in the anharmonic EXAFS analysis has been recognized in 
many works [15–19]. In these works, the ratio method is 
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particularly appealing because it summarizes the relevant 
structural and dynamic information in a few parameters that 
are easily obtained from the experimental EXAFS spectra 
[8, 9, 20, 21].

Unfortunately, the dynamical matrix or even the local 
spring constants are not known in most cases of interest, 
and hence in practice, one must often rely on simpler, phe-
nomenological approximations [11]. Two such methods are 
the correlated Debye (CD) and correlated Einstein (CE) 
models that were modified by Beni & Platzman (1976) [2] 
and Sevillano et al. (1979) [22] from the conventional Debye 
and Einstein models, respectively. These models are based 
on the expansion of the anharmonic EXAFS oscillation as 
a series of cumulants and have achieved effective certain 
[14]. However, the applicability of them for tridimensional 
systems was discussed by Miyanaga and Fujikawa [23–25] 
who showed that simple approximation of these models 
gives rather poor results not only for the third- and fourth-
order cumulants but also for the anharmonic correction of 
the second-order cumulant.

Additionally, many theoretical approaches have been 
used to calculate and evaluate the contribution of thermal 
vibrations to the anharmonic EXAFS spectra. The quantum 
approaches [24–33] took into account the quantum effects 
at low temperatures and the anharmonic effects at high 
temperatures. However, they still have some limitations as 
the results of the EXAFS cumulants not being expressed in 
explicit forms. These limitations lead to complexity in deter-
mining thermodynamic parameters from the analysis of the 
anharmonic EXAFS spectra. It is because this work needs 
many computational steps with various parameters. The 
classical approach using a classical approximation based on 
the force constants of an effective potential was proposed by 
Stern et al. [34], in which the parameters of the interatomic 
potential of the system are unknown. This method can cal-
culate the temperature dependence of the EXAFS cumulants 
up to the fourth order and obtain results in simple forms. It 
works well at high temperatures, and it was used effectively 
for analyzing anharmonic EXAFS spectra of some crystals 
[21, 35–37].

For many-atom systems, the EXAFS cumulants are often 
connected to the force constants of a one-dimensional model 
of the effective pair potential by the analytical expressions 
similar to those for two-atom systems [12, 25]. However, the 
connection between the EXAFS cumulants and the thermo-
dynamic parameters of many-atom systems remains a matter 
of great interest [11, 25], especially regarding the meaning 
of effective potential [38, 39]. The sensitivity of the EXAFS 
cumulants with the nature of the bonding potential of atoms 
was suggested by Rehr et al. [40]. Then, the anharmonic 
effective (AE) potential is derived from the first shell near-
neighbor contribution approach and the anharmonic effects. 
It was instituted by Hung and Rehr [12] who proposed an 

anharmonic correlated Einstein (ACE) model based on the 
AE potential using the first-order thermodynamic perturba-
tion theory [17].

Recently, the anharmonic correlated Debye (ACD) model 
based on the correlated Debye model [2] and many-body 
perturbation approach [41] using the AE potential proposed 
by Hung et al. [33]. It was successfully applied to investi-
gate the anharmonic EXAFS spectra for body-centered cubic 
(BCC) crystals [42] and face-centered cubic (FCC) crys-
tals [43–45]. Still, the analytical expressions of the EXAFS 
cumulants are not in explicit forms, so the analysis of the 
anharmonic EXAFS spectra requires much computational 
effort. The ACE model [12] using the quantum statisti-
cal theory (henceforth cited as the QACE model), it was 
successfully applied to calculate and evaluate the EXAFS 
spectra for various crystal structures [46–51], but it only 
extends the EXAFS cumulants up to the third order and has 
not yet analyzed the anharmonic EXAFS spectra. The ACE 
model [12] using the classical statistical theory [34] (hence-
forth cited as the CACE model), it was efficiently used to 
investigate and evaluate the anharmonic EXAFS spectra for 
hexagonal close-packed (HCP) crystals by Hung et al. [38] 
and diamond (DIA) crystals by Tien et al. [39]. Still, it has 
not been used to investigate for BCC crystals and consid-
ered the contribution of the cumulants to the anharmonic 
EXAFS amplitude and phase. Meanwhile, the experimental 
EXAFS spectra of BCC crystals were analyzed using the 
cumulant expansion approach up to the fourth order [36]. 
Therefore, the development of a CACE model to efficiently 
calculate and analyze the temperature dependence of the 
EXAFS spectra of BCC crystals, which will be a necessary 
addition to the EXAFS technique.

The purpose of this work is to develop a more suitable 
calculation model based on the CACE model for the anhar-
monic EXAFS data analysis of the first coordination shell 
of BCC crystals. In this work, the AE potential is expanded 
up to the fourth order instead of lower orders, and the Morse 
potential characterizes the interaction between a pair of 
atoms. The temperature dependence of the first four cumu-
lants and the EXAFS amplitude and phase is calculated and 
described in simple forms. Our numerical results for crystal-
line molybdenum (Mo) are found to be in good agreement 
with those obtained using the QACE model [51], the ACD 
model [42] and experiments [36] at various temperatures. 
From evaluating the contribution of the cumulants to the 
amplitude reduction and phase shift of the EXAFS oscilla-
tion, we discovered the role and meaning of the cumulants 
in analyzing the anharmonic EXAFS spectra.

This article is organized as follows. The theoretical model 
and basic formulae of the EXAFS oscillation are introduced 
in second section. Third section calculates the anharmonic 
effective potential and the first four cumulants of the EXAFS 
spectra of BCC crystals based on the CACE model. The 
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numerical results for Mo compared with those other theoreti-
cal methods and experiments are discussed in fourth section. 
Final section gives the main conclusions about this work.

Basic formulae of the anharmonic EXAFS 
oscillation

For the distribution of identical atoms and including non-
Gaussian disorder, the K-edge EXAFS oscillation of poly-
crystalline materials is described within the framework of 
single-scattering and plane-wave approximations by [7, 13, 
14] 

where k is the photoelectron wave number, �(k) is the elec-
tron mean free path, N is the coordination number, F(k) is 
the atomic backscattering amplitude, �(k) is the net phase 
shift, the angular brackets 〈 〉 are the thermal average, 
S2
0
(k) is an amplitude reduction factor due to the many-

body effects, and r depends on the temperature T  and is the 
instantaneous distance between the absorber atom and one 
neighboring atom.

The normalized K-edge EXAFS oscillation k2�(k) of Mo 
is shown in Fig. 1. It can be seen the anharmonic effects 
caused by thermal vibrations that significantly influence the 
EXAFS oscillation. The influence of these effects increases 
the amplitude reduction and phase shift of the EXAFS oscil-
lation. At the higher temperature, the stronger the influence 
on the anharmonic EXAFS amplitude and phase is [11, 13, 
14].

Using the cumulant expansion approach in powers of k 
[7, 11, 14] to expand the asymmetric terms in the brackets 
of Eq. (1) in a Taylor series about R and rewrites the thermal 

(1)�(k) =
NS2

0
(k)

k
F(k)Im

{⟨
e−2r∕�(k)

r2
e2ikr

⟩
ei�(k)

}
,

average in terms of cumulants [8, 52], if the small-terms 
yield from the mean free path (which implies a complex 
k) are neglected and approximated expansion to the fourth 
cumulant, the result can be obtained as

where r0 is the equilibrium distance between the absorbing 
and backscattering atoms, and the coefficients �(n) depend 
on the temperature T  and are the cumulants.

The analysis of the temperature dependence of the 
EXAFS spectra involves the EXAFS cumulants, in which 
the even-order cumulants contribute primarily to the EXAFS 
amplitude, and the odd-order cumulants contribute mainly 
to the EXAFS phase. A usual EXAFS analysis uses the first 
four cumulants that are given by [8, 11, 14, 53] 

where the second cumulant �2 is the parallel mean-square 
relative displacement (MSRD) of the effective path length 
associated with a given multiple-scattering (MS) path, and 
the average distance between central and backscattering 
atom is R = ⟨r⟩ = 1

N

∞

∫
0

�(T , r)rdr with �(T , r) is true RDF 

[8].
Replacing Eq. (2) with Eq. (1), we obtain the formalism 

of the K-edge EXAFS function, including the anharmonic 
effects as

Then, the temperature T and wavenumber k dependence 
of the amplitude A(k, T) and phase �(k, T) is deduced from 
Eq. (7) as follows:

(2)

⟨
e
−2r∕�

r2
e2ikr

⟩
≈

e
−2R∕�

R2
exp

{
2ikr0 + 2k�(1) − 2k2�2

−4ik�2
(
1

R
+

1

�

)
−

4i

3
k
3�(3) +

2

3
k
4�(4)

}
,

(3)�(1) = ⟨r⟩ − r0,

(4)�(2) ≡ �2 =
⟨
(r − R)2

⟩
,

(5)�(3) =
⟨
(r − R)3

⟩
,

(6)�(4) =
⟨
(r − R)4

⟩
− 3

(
�2
)2
,

(7)

�(k) ≅
NS

2
0
(k)e−2R∕�

kR2
F(k) exp

{
−2k2�2 +

2k4

3
�(4)

}

sin

{
2kr0 + 2k�(1) − 4k�2

(
1

R
+

1

�

)
−

4k3

3
�(3) + �(k)

}
.

(8)

A(k, T) =
NS2

0
(k)e−2R(T)∕�(k)

kR2(T)
F(k) × exp

{
−2k2�2(T) +

2k4

3
�(4)(T)

}
,

Fig. 1  The normalized K-edge EXAFS oscillation k2�(k) of Mo 
measured at 573 K [36]
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Thus, the anharmonic EXAFS spectra can be analyzed 
based on the temperature dependence of the first four cumu-
lants via Eqs. (8) and (9). It indicates that the lack of precise 
EXAFS cumulants is one of the most significant limitations 
to accurate structural determinations (for example, the coor-
dination number and interatomic distances) from the experi-
mental EXAFS data [31, 32]. The structural parameters of 
materials can be obtained by analyzing the experimental 
EXAFS data with well-established procedures [26, 53]. As 
can be seen from Eqs. (8) and (9), the anharmonicity of the 
potential yields additional terms in the anharmonic EXAFS 
amplitude and phase [3, 5, 11]. If ignoring these terms, it 
can lead to non-negligible errors in the structural parameters 
[11–14].

Model of calculating the anharmonic EXAFS 
cumulants

Anharmonic effective potential in the ACE model

In order to determine the thermodynamic parameters of a 
system, it is necessary to specify its AE potential and force 
constants [12, 38, 39]. One considers a monatomic system 
with an AE potential (ignored the constant contribution) is 
extended up to the fourth order:

where x = r − r0 is the deviation of the interatomic dis-
tance from the potential minimum position, k0 is the effec-
tive force constant, and k3 and k4 are local force constants 
giving the asymmetry of potential due to the inclusion of 
anharmonicity.

The Morse potential is assumed to describe the intera-
tomic interaction model for the potential energy of a dia-
tomic molecule [54]. It is given in terms of the function by

where x is the same previously defined value, � describes 
the width of the potential, and D is the dissociation energy.

Applying the Morse potential to calculate the interaction 
energy between each pair of atoms in cubic metals, which 
was proposed by Girifalco and Weizer [55]. In the present 
procedure, we expand the Morse potential to the fourth 
order:

(9)

�(k, T) = 2kr
0
+ 2k�(1)(T) − 4k�2(T)

{
1

R(T)
+

1

�(k)

}

−
4k

3

3
�(3)(T) + �(k).

(10)Veff(x) =
1

2
k0x

2 − k3x
3 + k4x

4,

(11)V(x) = D
(
e−2�x − 2e−�x

)
,

In the relative vibrations of absorbing (A) and backscatter-
ing (B) atoms, including the effect of correlation and taking 
into account only the nearest-neighbor interactions, the AE 
potential [12] is given by

where Mi is a mass of the i th atom, � = MAMB∕
(
MA +MB

)
 

is the reduced mass of the absorber and backscatterer with 
masses MA and MB, respectively, R̂ is a unit vector, the sum i 
is the over absorbers ( i = A ) and backscatterers ( i = B ), and 
the sum j is over the nearest neighbors.

As can be seen on the right side of Eq. (13), the first term 
concerns only the pair interaction potential of the absorbing 
and backscattering atoms. And the second describes the con-
tribution of their nearest-neighbor atoms to the pair interaction 
potential and depends on the crystal structure.

The model of the BCC crystal structures of Mo is illustrated 
in Fig. 2. It can be seen that each atom is bonded with other 
surrounding eight atoms and are arranged in a variation. For 
the monatomic crystals, all atoms are the same, so their mass 
is equal and has a value of Mi = m . Applying Eq. (13) to these 
crystals, the AE potential is written as

Using the Morse potential in Eq. (12) to calculate the AE 
potential according to Eq. (14) and ignoring the overall con-
stant, we obtain the result as

(12)V(x) ≅ −D + D�2x2 − D�3x3 +
7

12
D�4x4.

(13)Veff = V(x) +
∑

i=A,B

∑

j≠A,B

V

(
𝜇

Mi

xR̂ABR̂ij

)
,

(14)

Veff(x) = V(x) + V(0) + 2V
(
−
1

2
x
)
+ 6V

(
−
1

6
x
)
+ 6V

(
1

6
x
)
.

(15)Veff(x) =
11

6
D�2x2 −

3

4
D�3x3 +

1715

2592
�4x4.

Fig. 2  Model of the BCC crystals
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Comparing Eq. (10) with Eq. (15), we deduce the local 
force constants k0 , k3, and k4 as follows:

The thermal vibrations of atoms are characterized by the 
correlated Einstein frequency ωE and temperature θE that are 
calculated from the effective force constant k0 in the follow-
ing forms:

where kB is the Boltzmann constant, ℏ is the reduced Planck 
constant.

Consequently, the correlated Einstein frequency �E and 
temperature �E , and local the force constants k0, k3 , and k4 are 
expressed in terms of the Morse potential parameters.

Temperature dependence of EXAFS cumulants 
within a classical statistical theory

The EXAFS cumulants are explicitly related to low-order 
moments of effective RDF [8, 23]. Hence we can express the 
first four cumulants from Eqs. (3) to (6) in terms of moments 
⟨xn⟩ (k = 1, 2, 3, and 4) as follows:

Using the effective anharmonic potential in Eq. (10) within 
the classical statistical theory and assuming that anharmonic-
ity can be treated as a small perturbation, we determine the 
moments about the mean ⟨xn⟩ by evaluating the thermal aver-
age in the third-order approximation [34]:

To obtain the temperature dependence of the first four 
EXAFS cumulants from Eqs. (18) to (21), we use Eq. (16) to 
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3
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3

4
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calculate the moments ⟨xn⟩ according to Eq. (22), the obtained 
expressions of the cumulants in the lowest orders are

The truncation of the series in Eq. (22) serves as a con-
vergence cutoff, while including enough terms to obtain 
the second lowest-order expressions for the moments 
accurately. Because kBT∕D << 1 , the respective expres-
sions obtained from Eqs. (23)–(26) in the lowest order as 
follows:

Thus, the temperature dependence of the first four 
EXAFS cumulants σ(1) and σ2, σ(3), and σ(4) is propor-
tional to T, T2, and T3, respectively, as can be seen from 
Eqs. (27) to (30). It also shows that the EXAFS cumulants 

are expressed in simple forms of parallel MSRD. These 
calculated results by the CACE model are similar to those 
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obtained using the QACE [51] and ACD [33, 42] models 
at high temperatures.

Assuming quantities F(k), �(k), S2
0
(k) ,  and �(k) 

in Eq. (7) to be the same at temperatures T1 and T2 [8, 
21, 56], we deduce the logarithm of amplitude ratio 
M
(
k, T1, T2

)
= ln

[
A
(
k, T2

)/
A
(
k, T1

)]
 and the phase dif-

ference Δ�
(
k, T1, T2

)
= �

(
k, T2

)
−�

(
k, T1

)
 between tem-

peratures T2 and T1 from Eqs. (8) and (9) in the following 
forms:

w h e r e  t h e  t e r m 
−2

{[
R(T2) − R(T1)

]/
�(k) + ln

[
R(T2)∕R(T1)

]}
 w a s 

neglected in Eq. (8) because it is insignificant compared to 
other terms in the equation, and the calculation of Eq. (9) 
used approximation 1∕R(T) ≪ 1∕r0 with assuming 𝜎(1) ≪ r0 
and R(T) = r0 + �(1) are derived from Eq. (3).

As can be seen from Eqs. (27)–(30), the EXAFS cumu-
lants at 0 K are all zero, so if we take T1 = 0K and reset 
T2 = T  , the Eqs. (31) and (32) are rewritten as

Replacing the EXAFS cumulants in Eqs. (33) and (34) 
with the expressions determined by Eqs.  (27)–(30), we 
obtain the following results:

(31)M
(
k, T1, T2

)
≈ −2k2

{
�2
(
T2
)
− �2

(
T1
)}

+
2k4

3

{
�(4)

(
T2
)
− �(4)

(
T1
)}

,

(32)Δ�
(
k, T1, T2

)
≈ 2k

{
�(1)

(
T2
)
− �(1)

(
T1
)}

− 4k

{
1

r0
+

1

�

}{
�2
(
T2
)
− �2

(
T1
)}

−
4k3

3

{
�(3)

(
T2
)
− �(3)

(
T1
)}

.

(33)M(k, T) = −2k2�2(T) +
2k4

3
�(4)(T),

(34)

Δ�(k, T) = 2k�(1)(T) − 4k

{
1

r0
+

1

�

}
�2(T) −

4k3

3
�(3)(T).

(35)M(k, T) = −
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409k3
B
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Thus, the logarithm of amplitude ratio and the phase dif-
ference of the EXAFS oscillation are expressed in simple 
forms of temperature via the analytical expressions of the 
cumulants, as seen in Eqs. (35) and (36). These obtained 
results show that the cumulants are very useful for the quan-
titative treatment of the anharmonic EXAFS spectra.

Numerical results and discussions

In order to discuss the advancement of the present CACE 
model in this work for calculating and analyzing the tem-
perature dependence of the EXAFS spectra, we apply the 
formulae in “Basic formulae of the anharmonic EXAFS 
oscillation” section and the analytical expressions in “Model 
of calculating the anharmonic EXAFS cumulants” section to 
numerical calculations for Mo. Firstly, we calculate the local 
force constants, the correlated Einstein frequency and tem-
perature, and the position dependence of the Morse potential 
and the AE potential. Our results are compared with those 
obtained using the QACE model [51] and experiment [36]. 
Then, we calculate the temperature dependence of the first 
four EXAFS cumulants in the range from 0 to 900 K. Our 
results are compared with those obtained using the QACE 
[51] and ACD [42] models. Our results are also compared 
with the experimental values at seven different temperatures 
between 293 and 573 K. They were measured in transmis-
sion using the EXAFS spectrometer by Pirog et al. [36] at 
the Synchrotron Radiation Siberian Center, Russia. Lastly, 
we analyze the logarithm of amplitude ratio and the phase 
difference of the anharmonic EXAFS oscillation between 
temperatures 573 K and 0 K in the wavenumber range from 
0 to 20 Å−1. From the obtained results, we evaluate the 

(36)

Δ�(k, T) =
81kB

242D�
kT −

(
1

r0
+

1

�

)
12kB

11D�2
kT −

162k2
B

1331D2�3
k3T2.

Table 1  The thermodynamic 
parameters k

0
, k

3
, k

4
, �

E
 , and 

�
E
 of Mo obtained using the 

CACE model, the QACE model 
[51], and experiment [36]

a This work
b Reference [51]
c Reference [36]

Method k
0
 (eV Å−2) k

3
 (eV Å−3) k

4
 (eV Å−4) �

E
 ( ×  1013 Hz) �

E
 (K)

CACE  modela 6.7 2.1 2.7 3.7 279.5
QACE  modelb 6.7 2.1 3.7 279.5
Experimentc 7.5 3.0 2.2 3.9 297.7
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development and effectiveness of the CACE model for ana-
lyzing the temperature dependence of the EXAFS spectra.

The thermodynamic parameters k0, k3, k4, �E , and �E 
for Mo are calculated by Eqs. (16) and (17) and given in 
Table 1, where the Morse potential parameters D = 0.8032 
eV and � = 1.5079 Å−1 derived from the experimental val-
ues of energy of vaporization [55]. Our results are compared 
with those obtained using the QACE model [51] and experi-
ment [36]. The correlated Einstein frequency �E and tem-
perature �E in Ref. [36] are deduced from the effective force 
constant k0 . As can be seen in Table 1, the values of thermo-
dynamic parameters are no significant difference, especially 
for the correlated Einstein frequency �E , and temperature �E.

Figure 3a shows the position dependence of the Morse 
potential V(x) of Mo. It can be seen that our calculated result 
using Eq. (12) agrees well with the results obtained using 
Eq. (11) with the experimental values of the Morse poten-
tial parameters [36] D = 0.75 eV and � = 1.44 Å−1, espe-
cially in the vicinity of the equilibrium bond lengths. In this 
comparison, our result also agrees more than the calculated 
result using the QACE model [51], as seen in Fig. 3a, which 
indicates that an approximate expansion of the Morse poten-
tial up to the fourth order is necessary. Figure 3b shows the 

position dependence of the AE potential Veff(x) of Mo. It can 
be seen that in comparison with the obtained result using 
Eq. (10) with the experimental values of the local force 
constants [36], our calculated results using Eq. (15) are in 
better agreement than the obtained result using the QACE 
model [51] that only takes into account the first two terms 
in Eq. (10). Additionally, as can be seen from Ref. [42], the 
ACD model also uses the Morse potential and AE potential 
that is derived from the same calculation model and param-
eter values as in the CACE model, so our results are similar 
to those obtained using the ACD model.

Thus, these comparison results show that the high-order 
terms cause the asymmetry of the AE potential, in which the 
fourth-order term contributes significantly to the anharmo-
nicity composition.

Figure  4 shows the temperature dependence of the 
(a) first cumulant �(1)(T) and (b) second cumulant �2(T) 
of Mo calculated by Eqs. (27) and (28), respectively. At 
temperatures above �E ≈ 279.5 K, our calculated results 
using the CACE model indicate good agreement with 
those obtained using the QACE [51] model, the ACD 
[42] model, and experiment [36], as seen in Fig. 4. Here, 
the experimental values of Ref. [36] for the first cumulant 

Fig. 3  Position dependence of 
a the Morse potential and b the 
AE potential of Mo obtained 
using the CACE model (solid 
blue lines), the QACE model 
[51] (dashed-dotted green 
lines), and experiment [36] (full 
red squares)

Fig. 4  Temperature depend-
ence of the a first and b second 
cumulants of Mo obtained using 
the CACE model (solid blue 
lines), the QACE [51] (dashed-
dotted green lines), the ACD 
model [42] (dotted magenta 
lines), and experiment [36] (full 
red diamonds)
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are derived from the experimental values of parallel 
MSRD and using Eq. (27) (this procedure is the same as 
in Refs. [42, 51]). At 293 K, the obtained results using the 
CACE, QACE, and ACD models are �(1) ≃ 3.5 × 10−3 Å 
and  �2 ≃ 3.8 × 10−3   Å 2,  �(1) ≃ 3.8 × 10−3   Å  and 
�2 ≃ 4.1 × 10−3  Å2 [51], and �(1) ≃ 3.9 × 10−3  Å and 
�2 ≃ 4.1 × 10−3 Å2 [42], respectively, while the experimen-
tal values are �(1) ≈ 3.5 × 10−3 Å and �2 ≈ 3.7 × 10−3 Å2 
[36].

Figure 5 shows the temperature dependence of the (a) 
third cumulant �(3)(T) and (b) fourth cumulant �(4)(T) of 
Mo calculated by Eqs. (29) and (30), respectively. Our 
calculated results using the CACE model indicate good 
agreement with those obtained using the QACE model 
[51] (only for the third cumulant), the ACD model 
[42], and experiment [36] as seen in Fig. 5, especially 
at temperatures not too low. The applicable limits of the 
CACE model for the third and fourth cumulants in the 
low-temperature region have been discussed in detail 
in Ref. [39]. At 293 K, the obtained results using the 
CACE, QACE, and ACD models are �(3) ≃ 2.6 × 10−5 Å3 
and �(4) ≃ 2.3 × 10−7  Å4, �(3) ≃ 2.7 × 10−5  Å3 [51], 
and  �(3) ≃ 2.4 × 10−5  Å 3 and  �(4) ≃ 2.7 × 10−7  Å 4 
[42], respectively, while the experimental values are 
�(3) ≈ 2.5 × 10−5  Å3 and �(4) ≈ 2.2 × 10−7  Å4 [36]. If 
replacing the local force constants in the expressions of 
the EXAFS cumulants obtained from Refs. [42, 51] by the 
corresponding constants that are expressed in terms of the 
Morse potential parameters from Eq. (16). Our obtained 
results for the first three cumulants are the same as the 
corresponding results calculated from the QACE [51] and 
ACD [42] models in the high-temperature limit. And our 
obtained result for the fourth cumulant is slightly smaller 
than the result calculated from the ACD model.

Additionally, the ACD model describes the lattice 
vibrations of atoms by the phonons that have the frequen-
cies varying from 0 to the correlated Debye frequency �D 
and depending on the wavenumber, and propagate with 

the speed of sound [33, 45], so the ACD model can easily 
treat the acoustic phonons. In contrast, the ACE model 
(including the QACE and CACE models) describes these 
vibrations by phonons that have the same correlated Ein-
stein frequency �E and do not depend on the wavenumber 
and can interact with the electromagnetic waves [12, 51], 
so the ACE model can easily treat the optical phonons. 
The origin of this discrepancy is the presence in lattice 
crystals of the acoustic phonon branches that cannot be 
mimicked by a unique correlated Einstein frequency �E 
[57, 58]. Consequently, the ACD model can work better 
than the ACE model for the monatomic cubic crystals that 
have multiple acoustic phonons and less complex phonon 
density of states (PDOS), such as BCC and FCC crys-
tals, neither is usually adequate for heterogeneous sys-
tems. Conversely, the ACE model can be very useful for 
the ionic crystals that have multiple optical phonons and 
complex PDOS, such as oxides and salts [59, 60]. As can 
be seen from the obtained results in Figs. 4 and 5 for Mo, 
The ACD, QACE, and CACE models all work effectively, 
in which the ACD model seems to be the best, the QACE 
model only calculates for the first three cumulants, and 
the CACE model only works well in the high-temperature 
region. However, the difference between these models is 
insignificant for high-order cumulants and in the high-tem-
perature region because the values of high-order cumu-
lants are quite small, and the influence of quantum effects 
is insignificant at high temperatures.

Thus, the temperature dependence of the first four 
EXAFS cumulants calculated using the present CACE 
model, which has satisfied all of their fundamental prop-
erties in comparison with other theoretical models and 
experiments at temperatures above the correlated Einstein 
temperature. This result shows the influence of anharmonic 
effects on the classical limit via thermal vibration contribu-
tions at high temperatures. It is because the anharmonicity 
in the EXAFS spectra appears from about room temperature.

Fig. 5  Temperature depend-
ence of the a third and b fourth 
cumulants of Mo obtained using 
the CACE model (solid blue 
lines), the QACE [51] (dashed-
dotted green line), the ACD 
model [42] (dotted magenta 
lines), and experiment [36] (full 
red squares)
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Figure   6  shows  the  wavenumber  depend-
ence of (a)  the logar i thm of amplitude rat io 
M(k) = ln

[
A(k, 293K)∕A(k, 0K)

]
 and (b) the phase differ-

ence Δ�(k) = �(k, 293K) −�(k, 0K) of Mo calculated by 
Eqs. (35) and (36), respectively. The logarithm of ampli-
tude ratio M(k) , including the contributions of terms that 
contain the second cumulant (henceforth denoted as M1(k) ) 
and fourth cumulant (henceforth denoted as M2(k) ), as seen 
via Eq. (35). As can be seen from Fig. 6a, our calculated 
result demonstrates that the contribution of M1(k) to the 
value of M(k) is mainly. Still, the contribution of the M2(k) 
is also significant and reduces the value of M(k) , especially 
at large wavenumbers (high energy photoelectrons). Our 
obtained result of the ratio M2(k)∕M(k) is about −3.2% at 
k = 10 Å−1 and about −14.1% at k = 20 Å−1. The phase 
difference Δ�(k) , including the contributions of terms that 
contain the first cumulant (henceforth denoted as Δ�1(k) ), 
the second cumulant (henceforth denoted as Δ�2(k) ), and 
the third cumulant (henceforth denoted as Δ�3(k) ) as seen 
via Eq. (36). As can be seen from Fig. 6b, our calculated 
result demonstrates that the contributions of Δ�1(k) and 
Δ�2(k) to the value of Δ�(k) are significant. Still, the con-
tribution of Δ�1(k) is opposite and only slightly larger 
than the contribution of Δ�2(k) , which makes them elimi-
nate each other and influence of Δ�3(k) on the value of 
Δ�(k) is greatest, especially at large wavenumbers. Our 
obtained result of the ratio Δ�3(k)

/
Δ�(k) is about 103.5% 

at k = 10 Å−1 and about 100.9 % at k = 20 Å−1.
Consequently, the contribution of M2(k) cannot be 

ignored in the calculation of the logarithm of ampli-
tude ratio M(k) in Eq.  (35). And the approximation 
Δ�(k) ≈ Δ�3(k) can be satisfactory with negligible 

errors in the calculation of the phase difference Δ�(k) in 
Eq. (36). It means that the influence of the fourth cumu-
lant needs to be taken into account, while the influence of 
the first and second cumulants can be ignored in analyz-
ing the anharmonic EXAFS spectra, especially at large 
wavenumbers.

Conclusions

The advantage of the present CACE model in comparison with 
other theoretical procedures is that the first four EXAFS cumu-
lants are expressed in simple forms of temperature or parallel 
MSRD. These results are useful not only for predicting results 
of other theoretical procedures but also for reducing measure-
ments of the experimental EXAFS data.

The contributions of the EXAFS cumulants to the anhar-
monic EXAFS oscillation are analyzed in detail. It discovers 
that the third cumulant plays an important role and has the 
greatest influence on the phase shift, and the fourth cumulant 
plays an indispensable role and significantly influences the 
amplitude reduction, especially at large wavenumbers. These 
evaluations are very useful for analyzing the anharmonic 
EXAFS spectra.

The present CACE model can be applied to analyze the 
anharmonic EXAFS spectra starting from about the corre-
lated Einstein temperature to just before the melting point. The 
good agreement of our numerical results for Mo with those 
obtained using the QACE model, ACD model, and experi-
ment at various temperatures, which shows the effectiveness 
of the present CACE model for calculating and analyzing the 
anharmonic EXAFS spectra. This calculation model not only 
applies well to BCC crystals but also can be extended to other 
crystal structures.

Fig. 6  Wavenumber dependence of a the logarithm of amplitude ratio 
and (b) the phase difference between temperatures 573 and 0 K of Mo 
obtained using the CACE model in the cases: calculating all of the 
terms in Eqs. (35) or (36) (solid blue lines) and calculating only one 

term that contains the first cumulant in Eq.  (36) (dotted cyan line), 
the second cumulant in Eqs.  (35) or (36) (dashed green lines), the 
third cumulant in Eq.  (36) (dashed-dotted red line), and the fourth 
cumulant in Eq. (35) (dotted magenta line)
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