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Abstract
The energy states of shallow donor impurity in GaAs/AlGaAs quantum dot heterostructure with Gaussian potential have 
been calculated by the shifted 1/N expansion method. The effects of the impurity on the ground state energy and average 
statistical energy have been investigated. The present calculations show that the donor impurity modifies significantly the 
electron energy levels of spherical quantum dot and thermal properties. In addition, we have also displayed the variations of 
the heat capacity and entropy of donor impurity in quantum dot with the radius, confining potential depth, dimension and 
temperature. The comparison shows that our results are in very good agreement with the theoretical reported work.
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Introduction

Nanoscience is a very interesting and technologically rel-
evant area of condensed matter physics. With the develop-
ment of modern technology, it is now possible to produce 
semiconductor nanostructures with different reduced dimen-
sions like: zero-dimensional (0D), one-dimensional (1D) 
and two-dimensional (2D) systems. The zero-dimensional 
systems are called quantum dots (QDs). Quantum dot (QD) 
is a conducting land of ultra-small system in the area of elec-
tronics and optoelectronics. The carriers in QD are confined 
in all three dimensions; therefore, energy is discrete as in the 
natural atoms. New potential application in optoelectronics 
will be discovered by changing the electronic and optical 
properties of QDs which may be controlled by an appropri-
ate selection of the sample geometry and material param-
eters, so the size and shape of quantum dots can be exper-
imentally tuned over a wide range [1–7]. The physics of 
shallow donor impurity states in QDs is an interesting sub-
ject, so many theoretical and experimental studies of impu-
rity-related properties in low-dimensional heterostructure 
have been reported in the last decade. This is because their 
presence can dramatically alter the performance of QDs and 

their optical and transport (electrical) properties. The bind-
ing energy of the hydrogenic impurity in the quantum dot 
is extensively studied [8–13]. Most of the theoretical works 
carried out on shallow donors in spherical quantum dots 
employ variational approaches [14], or alternatively, per-
turbation method limited to the strong confinement regime 
[15], while the exact solution has been obtained for centered 
impurities [16]. Zhu et al. [17, 18] solved the finite potential 
well for impurity in the center of spherical quantum dot and 
obtained the exact solution by using the method of series 
expansion. Bose et al. [19] obtained the binding energy of a 
shallow hydrogenic impurity in a spherical quantum dot with 
a parabolic potential shape by perturbation method. Using 
variational and fractional-dimensional space approaches, 
Porras-Montenegro et al. [20] have calculated the binding 
energy for shallow donor impurities in rectangular quantum 
dots for both finite and infinite potential confinement. A 
computational scheme yields to exact energies of a spheri-
cal nanocrystallite with a shallow donor impurity located 
anywhere inside are presented by Movilla and Planelles [21]. 
Different authors have solved the Schrodinger equation of 
the quantum dot with Gaussian confinement potential model 
[22–27]. For example, Gharaati and Khordad [28] used a 
modified Gaussian potential to calculate energy levels for 
spherical quantum dot within effective mass approximation. 
Boda et al. [29] investigated the Gaussian confinement of 
hydrogenic donor impurity by a very simple variational wave 
function. The method of 1/N expansion has been developed, 
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which was proposed by Sukhatme and Imbo [30, 31] to cal-
culate the spectra of an electron and a donor in QD. Elsaid 
[32, 33] had studied the quantum dot Hamiltonian by this 
method in different works. Al-Hayek used 1/N expansion to 
calculate energy and binding energy of donor impurity in 
quantum dot with Gaussian Confinement. The 1/N method 
is a powerful tool to solve Schrodinger equation for spheri-
cal symmetric potentials, and it is used in different branches 
of theoretical physics. The method gives accurate results of 
energy eigenvalues calculations of the system without deal-
ing with trail wave functions. The 1/N expansion method is 
applicable to the entire range of the magnetic field strength, 
while the perturbation theory is limited to a weak range only.

In this work, we investigate the thermodynamic proper-
ties of a semiconductor GaAs Gaussian quantum dot and 
show the effect of donor impurity, quantum dot radius (R), 
confining potential depth ( V0 ), dimension (N) and tempera-
ture (T) on the heat capacity and entropy of a single elec-
tron in spherical QD in the presence of donor impurity with 
Gaussian confinement potential. The shifted 1/N expansion 
method has been used to solve QD Hamiltonian to obtain 
the eigenenergies as a necessary input data to calculate the 
physical properties of the QD. The rest of paper is organ-
ized as follows: The Hamiltonian of donor impurity in QD 
with Gaussian potential and the shifted 1/N solution method 
are presented in “Theory and method of calculation” sec-
tion. In “Results” section, the results of energy and thermal 
quantities like heat capacity 

(
Cv

)
 and entropy (S) have been 

displayed and discussed, while the final “Conclusions” sec-
tion is devoted to the conclusion.

Theory and method of calculation

The standard Hamiltonian of an electron in the presence of 
a hydrogenic donor located at the center of quantum dot can 
be written as follows:

where V0 is potential well depth, R is quantum dot radius 
(the range of the confinement potential), r is electron posi-
tion coordinate, r = (x, y) for the 2D and r = (x, y, z) for the 
3D. Coulomb attractive interaction between the donor elec-
tron and the hydrogenic nucleus is represented by the sec-
ond term in Hamiltonian. z = 0 when the donor impurity is 
absented, and z = 1 as donor impurity is presented. Gaussian 
confining potential can be treated as parabolic potential plus 
a perturbation because the deviation of Gaussian confining 
from the parabolic potential is small enough. The solution of 
donor impurity Hamiltonian, Eq. (1), with Gaussian poten-
tial cannot be obtained in analytic closed form. In this paper, 
we intend to solve the Hamiltonian by using the shifted 1/N 

(1)Ĥ = −
�2

2m∗
∇2 −

ze2

𝜖r
− V0e

−r2∕2R2

expansion method. The technique is efficient and accurate. 
The radial part Schrodinger equation in N-dimensional space 
can be expressed as:

where

and m∗ is electron effective mass, ϵ is the dielectric constant 
of the GaAs material, ℏ is the reduced Planck Constant, and 
N is number of spatial dimensions. The term l(l + N − 2)ℏ2 
is the eigenvalue of the square of the N-dimensional orbital 
angular momentum and l = |m| where m is the magnetic 
quantum number ( m = 0,∓1,±2,………) which labels the 
QD energy states. The first derivative term in N-dimensional 
Schrodinger equation, Eq. (2) can be removed by appropriate 
substitution:

and the total QD wave function,

Equation (3) will take the following form:

where k̄ = N + 2l − a , and a is suitable shift parameter that 
can be determined later. To calculate the energy eigenval-
ues, E(n, l) , we will expand Schrodinger equation in terms 
of parameter ( ̄k ) and shift parameter ( a ). The complete 
mathematical steps that lead to the QD energy eigenvalues 
expressions in terms of powers of 1/k̄ are given in previous 
works [11–14], and it will not be repeated. The energy eigen-
values, E(n, l) , in powers of 1

/
k̄ (up to the third order) are 

given by:E(n, l) = E0 + E1 + E2 + E3 . All the energy terms 
are determined in terms of the quantum numbers, the roots, 
and the potential derivatives.

The shift parameter a can be determined by making the 
term, E1 , vanish, namely ( E1 = 0) . This condition, in fact, 
guarantees that 1/N method gives exact energy results for both, 
harmonic oscillator and hydrogen Hamiltonians [30, 31],

where � is the harmonic frequency parameter given by:
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For fixed quantum numbers: nr and l and confinement 
potential V0 , the root r0 is determined from the following 
relation:

Having determined r0 , we can compute, a and every identi-
fied parameter, which complete all necessary steps to calculate 
the energy spectra of the QD Hamiltonian.

The heat capacity and entropy

To calculate the heat capacity of the system, we have evaluated 
the mean energy from the statistical energy expression:

Then heat capacity can be calculated from Eq. (10) by tak-
ing the temperature derivative of the mean energy:

The entropy ( S ) can be calculated by equation:

where:
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Results

In this work, the effective atomic units are used so that all 
energies of QD system made from GaAs/AlGaAs hetero-
structure are measured in units of donor effective Rydberg 
(RD) and all distances are measured in units of donor effec-
tive Bohr radius (aD). The eigenenergies of the donor 
impurity in three-dimensional (3D) spherical quantum dot 
obtained by 1/N expansion method against different compu-
tation methods are listed in Table 1 for V0 = 400RD and dot 
radius R = 1∕

√
2aD . The analytic expression for the ener-

gies E(n, l) yields accurate results for a wide range values of 
states: (n, l ) in comparison with all computational methods 
that had been implemented to solve the Schrodinger equa-
tion for QD system. The tabulated results clearly show the 
accuracy of 1/N expansion against various computational 
methods: diagonalizing, Numerov integration algorithm and 
Hypervirial-Pade methods.

In Fig. 1, we plot the computed ground state energy 
E(1, 0) results of this work against the radius of 3D QD (R) 
for both with impurity and without impurity. The energy 
with impurity and without impurity has a similar depend-
ence on (R). As the QD radius (R) decreases, the state energy 
of the QD increases monotonically. The electron wave func-
tion is mainly distributed inside the well region of the QD, 
so the existence of impurity leads to the increase in the 
energy. In this case, the Coulomb attractive energy enhances, 
since the separation distance between the electron and the 
impurity, which is located at the center of the QD, becomes 
small. For example, the QD ground state energy changes 
from E ≈ −35RD to E ≈ −40RD at QD radius R = 1aD [34]. 
The impurity modifies the energy levels of QDs and it affects 
their electronic and optical properties.

In Fig. 2, we show the behavior of average statistical 
energy of 3D QD with and without donor impurity as a 

Table 1  Eigenenergy states in 
units R

D
 for 3D quantum dot 

(spherical QD) without impurity 
and V

0
= 400R

D
 , dot radius 

R = 1∕
√
2a

D
 , calculated by 

various computational methods

Energy 
spectra

Diagonalization 
techniques [35]

Numerov integration 
algorithm [35, 36]

Hypervirial-Pade 
method [37]

Present work [1/N]

1s − 341.895 − 341.892 − 341.8952 − 341.895
1p − 304.463 − 304.463 − 304.4628 − 304.463
2s − 269.644 − 269.640 − 269.6445 − 269.644
1d − 268.110 − 268.111 − 268.1107 − 268.111
2p − 234.446 − 235.450 − 235.4500 − 235.451
1f − 232.849 − 232.895 − 232.8753 − 232.878
3s − 203.983 − 203.979 − 203.9835 − 203.997
2d − 202.427 − 202.431 − 202.4313 − 202.432
1g − 198.700 − 198.798 − 198.7983 − 198.798
3p − 173.156 − 173.244 − 173.2443 − 173.257
2f − 167.797 − 170.639 − 170.6393 − 170.640
4s − 145.372 − 145.373 − 145.3779 − 145.431
3d − 145.741 − 143.809 − 143.8091 − 143.821
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function of temperature (T). We observe that the average 
thermodynamic energy increases with increasing tempera-
ture (T). The reason for this behavior is due to the significant 
increment in the thermal and the confinement energy contri-
butions. The behavior of the average energy in QD depends 
on the density of states because the energy levels are discrete; 
consequently, the thermodynamic properties will depend on 
the energy-level distribution and temperature (T) of the occu-
pation probability of the states. The donor impurity increases 
the average energy due to its negative Coulomb contribution 
between the electron and the nucleus of the donor impurity.

In Fig. 3, we plot also the average statistical energy as a 
function of temperature for different number of eigenenergy 
bases (nmax) to assure that the calculated average energy is a 
converging quantity. For example, we can see at low tempera-
ture range, only small number of basis is needed. However, for 
high temperature, we need a large number of bases to achieve 

a numerically stable converging energy for the QD system. 
These results are in agreement with the corresponding ones 
given very recently in Figure 12 of Nammas’ work [38].

The donor impurity binding energy EB(n, l) in a given state 
is defined as usual, and the difference between energy of the 
QD Hamiltonian in the absence and presence of the donor 
impurity is: EB(n, l) = EB(n, l, z = 0) − EB(n, l, z = 1) . Fig-
ure 4 shows the effect of the temperature (T) on the average 
binding energy of QD. Due to the enhancement of the elec-
tron spatial probability density at low temperature (T), it is 
found that at low temperature (T) of 4 K the average binding 
energy is increased over that associated with temperature (T) 
near room 300 K. At low temperatures, the thermal energy of 
the system is less than the Coulomb interaction which means 
the increase in the binding energy, but as the temperature 
increases than 20 K, the kinetic energy (more thermal energy) 
will be more than the Coulomb interaction and that leads to 

Fig. 1  Ground state energy 
E(1, 0) in QD as a func-
tion of dot radius (R) for 
V0 = 50RD,N = 3D with impu-
rity and without impurity

no impurity

impurity

0 1 2 3 4 5 6
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45

40
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E
R D

Fig. 2  Average energy of 
QD as a function of tempera-
ture (T) with donor impurity 
and without impurity at 
R = 2aD,V0 = 100RD,N = 3D
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reduce the binding energy. The maximum value of the binding 
energy approaches to 3.625 RD at temperature equals 20 K.

Figure 5 shows the behavior of the heat capacity 
(
Cv

)
 for 

donor impurity QD versus the temperature (T). The mono-
tonic increase in the heat capacity 

(
Cv

)
 with temperature (T) 

is expected, but as the temperature (T) is increased from abso-
lute zero, the heat capacity 

(
Cv

)
 suddenly increases and then 

decreases giving a peak-like structure. The peak structure is the 
well-known Schottky anomaly of the heat capacity 

(
Cv

)
 , typi-

cal for a system where only two states are importance at low 
temperature (T) because the thermal energy gained by elec-
trons is enough for only the lowest two levels. The increase 
in heat capacity 

(
Cv

)
 with temperature (T) can be attributed 

to the increase in the thermal energy (Eth = kBT) for electrons 

which makes more and more states available for thermal exci-
tation. However, as the temperature (T) keeps increasing, the 
heat capacity finally saturates where all the energy levels are 
populated evenly (there no substantial change). The saturation 
value of the heat capacity 

(
Cv

)
 approaches at room temperature 

(300 K) is found to be about 0.825 K�.
In Fig. 6, we show the dependence of the thermal heat 

capacity 
(
Cv

)
 of donor impurity QD on the temperature 

(T) for different values of confinement potential depth (V0) 
while keeping R unchanged. As increases 

(
V0

)
(more con-

finement energy), the excitation energies for the low-lying 
excited states become large, so the environments thermal 
energy will not excite the system and that leads to a very 
low heat capacity (Cv).

Fig. 3  Average energy of 
QD as a function of tem-
perature (T) with donor 
impurity for different nmax at 
R = 2aD,V0 = 100RD,N = 3D

Fig. 4  3D average bind-
ing energy of donor impu-
rity in QD as a function of 
temperature (T) at constant 
R = 2aD,V0 = 100RD
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The heat capacity (Cv) of donor impurity QD as a func-
tion of temperature (T) for different values of QD radius ( R ) 
is presented in Fig. 7. It is important to note that no direct 
sequence of the location of the Schottky temperature with 
the QD parameters V0 and R is noticed. Figure 8 shows the 
dependence of the heat capacity ( Cv ) of donor impurity QD 
on the dimension (N) for fixed values of (V0) and (R). We can 
see that heat capacity curves cross at the same temperature 
point which almost equals 170 K (energy-level crossing). 
As the dimensionality of the QD reduces, the energy of the 
QD enhances and in this case the heat capacity decreases 
since more thermal energy is required to excite the electron.

Another important thermodynamics quantity we have 
studied is the entropy (S). We have calculated the entropy 
(S) as a function of temperature (T) as shown in Fig. 9 with 
impurity and without impurity. The enhancement in the 
entropy (S) of the QD as the temperature (T) increases is 
expected. At lower temperatures, the behavior is qualitatively 
different as compared to that at relatively higher tempera-
tures; the entropy increases monotonically at high value of 
temperatures, but at low temperatures the entropy increases 
quite rapidly. The thermal energy of electrons will bring 
more and more disorder in the form of random motion, so the 
entropy (S) increases with temperature (T) increasing. At zero 

Fig. 5  Heat capacity of QD 
( C

v
∕kB ) as a function of temper-

ature (T) with donor impurity 
and without impurity at constant 
R = 2aD,V0 = 100RD ,N = 3D

Fig. 6  Heat capacity of 
donor impurity QD ( C

v
∕kB ) 

as a function of tempera-
ture (T) for different values 
V0 = 40RD , 60RD , 100RD at 
constant R = 2aD,N = 3D
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temperature (T), only the lowest energy level is occupied, so 
the entropy (S) is zero and there is a very little probability 
of a transition to a higher energy level. As the temperature 
(T) increases, there is an increase in entropy (S) and thus 
the probability of a transition goes up. We observe also that 
the presence of the impurity in the QD greatly reduces the 
entropy (S) of the QD, since the electron is becoming more 
bound and in this case the disorder decreases leading to a 
significant reduction in the entropy (S) of the QD.

The variation of entropy (S) with respect to the QD radius 
(R) at different temperatures (T) is shown in Fig. 10. The 
figure shows that the entropy (S) increases as the QD radius 
(R) increases because the increase in radius will lead to the 

more ways there are to distribute the atom in that size which 
means higher entropy (S). Figure 11 shows the effect of the 
potential depth 

(
V0

)
 on the behavior of the curve of the 

entropy (S) at different temperatures (T). The figure shows 
clearly the change in the entropy (S) curves as we increase 
the confining Gaussian potential V0 . The Gaussian potential 
term (− V0e

−r2∕2R2

) enhancing greatly the total energy state 
due to its large Gaussian energy confinement.

To emphasize the effect of dimension (N) on entropy (S) , 
we plot in Fig. 12 the entropy S∕kB as a function of tem-
perature (T) but at different values of dimension (N). The 
entropy change is due to the difference in spectral density 
of QD states.

Fig. 7  Heat capacity of 
donor impurity QD ( C

v
∕kB ) 

as a function of temperature 
(T) for different values of 
R = 1.5aD , 2aD , 2.5aD at con-
stant V0 = 100RD,N = 3D

Fig. 8  Heat capacity of 
donor impurity QD ( C

v
∕kB ) 

as a function of temperature 
(T) for different values of 
N = 2D, 3D, 4D at constant 
V0 = 100RD,R = 2aD
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Conclusions

We have solved the Hamiltonian of GaAs/AlGaAs spherical 
QD, in the presence of donor impurity and Gaussian confin-
ing potential using the shifted 1∕N expansion method. We 
have presented a calculation for the donor energies in quan-
tum dot of different dimensions, N = 2, 3 and 4. The effects 
of impurity on the ground state energy and average energy 
have been considered. The computed result shows that the 
donor impurity increases effectively the average energy 
due to its negative Coulomb contribution. According to the 
numerical results obtained in this work, we have shown the 

shifted 1∕N expansion method is very efficient and accurate 
in calculating the energy spectrum of the donor impurity in 
QD. The heat capacity (Cv) and entropy (S) dependence on 
dot radius ( R ), confining potential depth (V0), dimension 
(N) and temperature (T) of GaAs/AlGaAs QD have been 
investigated. The investigations had shown clearly that as 
we increase the temperature (T), dot radius ( R ) and dimen-
sion (N) , the heat capacity (Cv) and entropy (S) enhance, 
while increasing the confining potential depth (V0) leads to 
a reduction in QD-thermal quantities: the heat capacity (Cv) 
and entropy (S).

Fig. 9  Entropy of QD ( S∕kB ) 
as a function of temperature 
(T) with donor impurity and 
without impurity at constant 
R = 2aD,V0 = 50RD,N = 3D

Fig. 10  Entropy of donor 
impurity in QD ( S∕kB ) as 
a function of temperature 
(T) for different values of 
R = 1.5aD , 2aD , 2.5aD at con-
stant V0 = 100R

D
,N = 3D.
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Appendix

The shifted 1∕N  expansion method consists in solving 
Eq. (5) systematically in terms of the expansion parameter 
1∕k̄ . The leading contribution to the energy comes from the 
effective potential:

where Q is a constant which rescales the potential (in large 
k̄ limit), Q = k̄2 . To obtain such an expansion, it is neces-
sary to remove linear parts with respect to the coordinates 
in the potential. Therefore, we develop the potential around 
its minimum.

V(r) is assumed to be well behaved so that Veff(r) has 
minimum at r = r0 and there are well-defined bound states. 
Q is then determined from the following equation:

(14)Veff(r) =
ℏ2

8m∗r2
+

V(r)

Q

(15)4m∗r3
0
V �
(
r0
)
= ℏ2Q

Fig. 11  Entropy of donor 
impurity in QD ( S∕kB ) as 
a function of temperature 
(T) for different values of 
V0 = 40RD , 60RD , 100RD at 
constant R = 2.5aD,N = 3D

Fig. 12  Entropy of donor impu-
rity in QD ( S∕kB ) as a function 
of temperature (T) for different 
values of N = 2D, 3D, 4D at 
constant R = 2.5aD,V0 = 100RD

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In order to shift the origin of the coordinate to the posi-
tion of the minimum of the effective potential, it is conveni-
ent to define a new variable x

By using the Taylor expansion around the effective poten-
tial minimum r0 , respectively x = 0 , we obtain an analytical 
equation similar to the Schrodinger equation of the one-
dimensional anharmonic solvable oscillator. We compare the 
coefficients of both equations to define all the anharmonic 
oscillator parameters in terms of k̄ , Q, r0 and the potential 
derivatives in order to obtain the energy spectrum.

We will define an oscillator frequency:

The energy eigenvalues are given by an expansion in 
powers of 1∕k̄ where k̄ = N + 2l − a , N being the number 
of spatial dimensions and (a) so-called shifted parameter.

The shift parameter is defined by equation:

For any value of the radial quantum number nr and for any 
value of l , the energy E

(
nr, l

)
 (up to third order of 1

/
k̄ ) is given 

by:

The binding energy EB(n, l) in a given state is defined by

where

where

The explicit forms of the previous parameters are given 
in the following
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Q = (N + 2 ∗ � − a)2

c1 = (1 − a)

c2 = (2 − a)

c3 = (3 − a)

�1 = n1 ∗ e2 + 3 ∗ n2 ∗ e4 − c5 ∗
(
e2
1
+ 6 ∗ n1 ∗ e1 ∗ e3 + n4 ∗ e2

3

)

�2 = t7 + t12 + t16

c5 = �−1

with

where ( n,s)(d,s) and (e,s) are parameters given as:

t7 = t1 − c5 ∗
(
t2 + t3 + t4 + t5 + t6

)

t12 = c2
5
∗
(
t8 + t9 + t10 + t11

)

t16 = −c3
5
∗
(
t13 + t14 + t15

)

t1 = n1 ∗ d2 + 3 ∗ n2 ∗ d4 + 5 ∗ n3 ∗ d6

t2 = n1 ∗ e2
2
+ 12 ∗ n2 ∗ e2 ∗ e4

t3 = 2 ∗ e1 ∗ d1 + 2 ∗ n5 ∗ e2
4

t4 = 6 ∗ n1 ∗ e1 ∗ d3 + 30 ∗ n2 ∗ e1 ∗ d5

t5 = 6 ∗ n1 ∗ e3 ∗ d1 + 2 ∗ n4 ∗ e3 ∗ d3

t6 = 10 ∗ n6 ∗ e3 ∗ d5

t8 = 4 ∗ e2
1
∗ e2 + 36 ∗ n1 ∗ e1 ∗ e2 ∗ e3

t9 = 8 ∗ n4 ∗ e2 ∗ e2
3

t10 = 24 ∗ n1 ∗ e2
1
∗ e4 + 8 ∗ n7 ∗ e1 ∗ e3 ∗ e4

t11 = 12 ∗ n8 ∗ e2
3
∗ e4

t13 = 8 ∗ e3
1
∗ e3 + 108 ∗ n1 ∗ e2

1
∗ e2

3

t14 = 48 ∗ n4 ∗ e1 ∗ e3
3

t15 = 30 ∗ n9 ∗ e4
3

n1 = 1 + 2 ∗ nr

n2 = 1 + 2 ∗ nr + 2 ∗ n2
r

n3 = 3 + 8 ∗ nr + 6 ∗ n2
r
+ 4 ∗ n3

r

n4 = 11 + 30 ∗ nr + 30 ∗ n2
r

n5 = 21 + 59 ∗ nr + 51 ∗ n2
r
+ 34 ∗ n3

r

n6 = 13 + 40 ∗ nr + 42 ∗ n2
r
+ 28 ∗ n3

r

n7 = 31 + 78 ∗ nr + 78 ∗ n2
r

n8 = 57 + 189 ∗ nr + 225 ∗ n2
r
+ 150 ∗ n3

r

n9 = 31 + 109 ∗ nr + 141 ∗ n2
r
+ 94 ∗ n3

r

c4 = 2 ∗ m∗ ∗ �

e1 = �1∕
√
c4

e2 = �2∕c4

e3 = �3∕c
3∕2

4

e4 = �4∕c
2

4

d1 = �1∕
√
c4

d2 = �2∕c4

d3 = �3∕c
3∕2

4

d4 = �4∕c
2

4

d5 = �5∕c
5∕2

4

d6 = �6∕c
3

4
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Furthermore:

where
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