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Abstract Construction of the reduced spin and helicity
density matrix for systems of two and three particles are
described by a wave packet with sharp and Gaussian
momentum distribution. The entropy for the spin and
helicity part of the systems is calculated from the viewpoint
of moving observers.
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Introduction

Special relativity effects on quantum entanglement and
quantum information are investigated by many authors.
Considerable efforts have also been expanded on the the-
oretical investigation of quantum information theory in
relativistic framework, which has gone beyond from pho-
tons to electrons, and from explicit examples calculated in
some specific cases to general framework formulated in
relativistic quantum mechanics and even relativistic
quantum field theory [1-31]. In practice, Lorentz trans-
formations in some special cases can change the entan-
glement of the spin and helicity of massive particles. Since
the helicity has an advantage in providing a smooth
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transition to the massless case, it is the helicity rather than
spin that is more often under both theoretical consideration
and experimental detection in high energy physics. We
know the helicity states and the spin states can be the basis
of Hilbert space, they differ in the way of unitary trans-
formation under the action of Lorentz group. As a result,
the entanglement properties for helicity differs from spin
after we trace out the momentum degree of freedom. Thus,
for both theoretical completeness and possible implemen-
tation in high energy physics, it is intriguing and significant
to investigate quantum entanglement between helicity and
momentum in relativistic framework.

One of the early works in this area has considered a
massive spin 1/2 field and by calculating reduced spin and
helicity density matrix. It is shown that the resultant
helicity entropy is different from spin in general [32].
According to [32], the helicity and spin entropy for one

particle are SYL) = 0.4917 and S(IS) = 1, respectively. This
paper is an effort for studying some special features of two
and three particles, spin and helicity entanglement in
inertial frames. We consider a quantum system of two and
three massive spin 1/2 particles that is observed by inertial
observers. The state of system for helicity state is supposed
to have an appropriate sharp momentum distribution and
for spin state the momentum distribution is supposed to be
Gaussian. We use the entropy as a measure for the helicity
entanglement as viewed in the boosted frame because the
entropy is one of the most important measure for entan-
glement. At the end, we have very interesting results.
Our paper is organized as follows: in Sects. 2 and 3 we
discuss entanglements for two and three particles’ spin and
helicity with momentum and calculating of spin and
helicity reduced density matrix and finally we obtained the
entropy of the states. In Sect. 4 we conclude our results.
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Two-particle entanglement

The quantum state of the two particles of mass m and spin
1/2 is

| P1,p2; 01,02 >

where p; is the four momentum of particle i, and g, rep-
resents the spin of particle i along the z-axis. It is a com-
plete orthonormal basis for Hilbert space of two particles.
Similarly, we can also choose the helicity state

|P17P2;K1,K2>-

It is also a complete orthonormal basis for the two-particle
state where «x is the helicity. The former is usually called
spin representation, and the latter is called helicity repre-
sentation. Moreover, these spin states and helicity states are
related by the representation transformation as

|P1,p2sk1, K2 > =Dy, [R(P1)1Dgyiy [R(p2)] | P1,P25 01502 >
(1)
Here, R(p) is the rotation that carries the z-axis into the

direction p, and D is the spin 1/2 irreducible unitary rep-
resentation of the Lorentz group [33]

,,-% 0 cos% — sin%
Dgﬂci [R(P:)] = oi ) (2)
0 e ]|gnS  cos <
2
where
tan & sinh ¢ sinh 4
anlf=—"——
cosh + cosh A

that ¥ is speed of particle, 4 is speed of the observer and ¢
is the Wigner’s angle with pi =
(sin&; cos ¢;, sin &; sin ¢p;, cos &;) and indices i denoted
particle i and ¢; is the angle of p; with x-axis. Note that the
spin states and helicity states considered here are observed
within the same inertial reference frame. For a pure two-
particle state, we can represent it as expansion of the spin
states, i.e. ,

P>

\=£1/2 9,=%1/2

|y > = //d3p1d3pz‘//(Q1,Q2;P17P2)

| P1,p2; 01,00 >
(3)

with the normalized condition

Z 3 //d*pld*pz [ Y(er, i p1,02) IP=1, 4)

=+1/2 0,=%£1/2
where we have

Y01, P15 P2) = (P1,P2; 01, 02 |¥0)-
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A more realistic situation involves the wave packet of the
system with a momentum distribution function with finite
width. In this approach, while the spin subsystem is dis-
crete, the momentum subsystem is continuous and we
cannot use the same method for studying the entanglement
in these two subsystems. However, in our approach, we
assume that the wave packet is sharply distributed around
some given momenta. Then, the reduced spin density
matrix associated with the above-normalized state is
obtained by tracing the momentum degree, i.e.,

P =Trlly > <y || = //d3p1d3p2<p1,p2
|y > <y |p;,p, >

—ZZ//dS 1d Pz Q17Q2ap15p2)

21,02 Ql 92

(5)

Y01, b P, p) | @1, 00 > <0, b ]

Note that we have used the orthonormal relation for the
spin states. Then, as mentioned above, | > can also be
expanded by the helicity states as

//d3p1d P ®(k1, k25 Py, P2)
il/ZKz +1/2

|P1aP2;K1,K2>-

|t//>:

(6)

According to the transformation relation between the spin
states and helicity states Eq. (1) we have

(D(Kl » K23 P15 p2) = DK]g] [R(pl)]DKZgz [R(P2)]'70(Q1 ) 025 p17p2)7

(7)
which follows the reduced helicity density matrix as
p<h 2 //d3p1d3p2DKIQ] [R(p )] Kz@z

'<1 K2 K ;c
[R(p2)1¥(21, 02 P15 P2) (8)

¥ (01505 P15 P2)D g, [R(p2)1Dy v [R(p1)]
| k1,62 > <K}, K |).

Considering two particles with the spin in z-direction,
i.e.,

11 1 1
l//< 2 2aplap2) ¢(5557p17p2>
1 1
:lp(_za_ivplap2> :Oa

which implies that the corresponding spin entropy is zero.
However, it doesn’t mean that helicity entropy also van-
ishes for this state. By Eqs. (2) and (8), the reduced helicity
density matrix can be explicitly written as
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_ 1 11 According to [32] the entropy for one particle is S\ =
pt=2) ZZ//d3P1d3P2 | q)(i,E%Pl,Pz) ? g to 152 p'y P . (]h)
0.4917 and for two particles we obtained S,’ =
(I +cosé;)(1+coséy) — (I +cosép)siné, —sin & (1 +cos &) sin &, sin &,
—(1 4 cosép)sin&, (I 4+cosép)(1 —cosé,) sin &; sin &, —siné (1 —cos &) (10)

sin &; sin &,

—sin & (1 —cos &)

—sin & (1 4 cos &)

sin &; sin &,

(I —cosé&p)(1 +coséy)
— (1 —cos¢;)siné,

— (1 —cos¢;)siné,
(1 —cosé&p)(1 —cos&y)

In the following to simplify the calculations, we suppose
that the ¥ (3,3 p;, p,) is independent of the angle &. In this
case, the reduced helicity density matrix is written as:

0.9834 ~ 255”). Note that, in the case considered above,
the helicity entropy doesn’t depend on the specific form
of wave function but for spin state it is better to use

r - 2] Gaussian wave function for a minimum uncertainty state
T ic.
4 4 16 Hes
Ty 2 b
1172 e 2 11 iy
p(h72> == 4 16 4 ) (11) l//<_7_;plap2> =7 3‘) 36 22 ; (13)
4 o : n 22
4 16 4 where
7[2 Y Y 1
L 16 4 4 J
//w(l Lip p>2d3p d’p, =1 (14)
s P P2 1 2 —
and its eigenvalues are given by p| = le (% +3+ 1), Py = 2°2

then we combine Egs. (6, 7) with Eq. (5) to obtain the

: (— -3+ 1) and p} = p) = (1 — —) In addition, the
reduced spin density matrix as

entropy which is one of the most important measures for
entanglement is given by Von-Neumann relation i.e.,
— >, pilog, pi. Actually, this quantity measures the
entanglement of the helicity or spin part relative to the
momentum part. Here, the helicity entropy reads

ZZ//d3P1d P20y, [R(P1)]Dygy i,

01,02 00}

[R(p2) Y (1, K23 Py, P2) (15)

S( log, p + pj log, p + p3 log, pj + pj log, pj]

= [}
1
:_Z[(16+2+

) log, (n
n T

+ (16_2+ 1) logz(
n? 1
—|—2(1 16> log2<

4 64

2

64

2

64

2

1
it3)
T 1
§3)

"—)] = 0.9834 ~ 251

(12)

1 11
:Z//d3pld3p2 | ‘ﬁ(E,E;Pth) |2

(14 cos &)?
' sin &(1 + cos €)
e sin &(1 4 cos &)
€% sin® &

e~ sin &(1 4 cos &)
(I —cosé)(1 4 cosé)
sin? &

e®sin &(1 — cos &)

e~ sin &(1 + cos &)
sin® &
(I —cos&)(1+cosé)
e®sin ¢(1 — cos &)

¥ (K, K53 Py Pz)DZ/zlg/z [R(p2)]

/! /
01,0, > <01,0 |-

DY [R(p1)] |

Now consider instead particles in the eigenstate of spin
with eigenvalues +1/2 and isotropic momenta distribu-
tions such as Gaussian. The reduced spin density matrix
lead to

e 2 gin? ¢
e ®sin &(1 — cos &)
e ®sin &(1 — cos &)
(1 —cosé)?
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SO
1 0 0 0
2
T
01 Z o
o 1 16
p( Z)ZZ ) ) (17)
o X 1 o
16
00 0 1

the eigenvalues are easy to obtain as p; = i ( 1+ %), 0>

i (1 - %) and p; = py = }1. The spin entropy reads as

s 7'[2 7'[2 7'[2 T[z
Sty = —41(1+5) o (}+5)+ (1-%) loza (4 - &)
—4] = 1.8524. This resultant spin entropy value implies

that entropy of the spin state is more than entropy of the
helicity state for two particles.

Three particle entanglement

Now for the three particles we have
| P1,P2,P3:K1,K2,K3 > = DQ[’V’I [R(pl)]D(JzKZ [R(pz)]

Dy, [R(p3)] | P1,P2,P3; 01,04, 03 > ,where D is presented
in Eq. (2) and for pure three particle state, we can write

> [ [ [evdes,
01=+%1/2 0y=%1/2 03=%1/2

> =

2. 2

XW(Qlana Q3§P1;P27P3) |P17P27P3§ 01,02,03 >
(19)

where

> ¥ Y [ énande
0=%1/2 0,=£1/2 g;=%1/2 (20)

lrb(QhQZa QS;p17p2ap3) |2: 1a

and

Y(01,02,03:P1,P2:P3) = (P1, P2 P33 01,02, 03]¥).  (21)

The reduced spin density matrix associated with this state
is
pts=d :///d3p1d3p2d3p3 <P P2 P3| Y >

<lﬁ|p1,p27p3 >
= ///dgp d P2d3P%
01 102,03 0,05,0%

X[P(015 025 03;P1> P2, PV (0}, 05, 05 Py, P2s P3)
| 01502,03 > <@}, 05,05 |].
(22)
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This state can also be expanded by the helicity states as

DN SRS S KXY
Ki=%1/2 K5=41/2 kK3=%+1/2

(D(KI;K27K3;pl7p2?p3) | Pi1, P2, P3; K1, K2, K3 >,

¥ > =

(23)
where
D;;lgl [R(Pl)]D)Tzlgz [R(p2)]
(1502503 P15 P2, P3)-

(D(Kla K2, K3;p17p27p3) =
Dr:3193 [R(p3

We obtain the reduced helicity density matrix as follows:

P / / / & dp,dpsD; [R(p)

K|K2K3K K K

D, [R(p2)ID;.,,. [R(p3)]
X(01,02,03; D1, P2y P3)Y (07, 05, 05 Py, P2y P3)
XDy [R(P3)IDg, i, [R(p2)1D g [R(P1)] | 701, 762, 3

/
> <K, Ky, Ky | .

(24)

(25)
If three particles prepared in z-direction, i.e.,
111
lp(ivivi;plap%p_%) # 0, (26)
we rewrite

p3) = ///dglhd Pd’p;

Kl K2,K3 K h, K
Kl%[R(Pl)] lé[R(Pz)]D;;%[R(P,%)}
i P1s P2y p3) |2

VG505
XDy [R(p3)|Dyo [R(p2)|Dye [R(p1)] | K1, 162, K3
> <K, Ky, Ky | .

(27)

By this equation and Eq. (2) we have

1
h 3 ///d3p1d3p2d3pg |(D<§ Dk 2,P1,P27P3> |2

I+cosé) —sin&;
{ —siné; (l—cosél)]
(I+cosé&) —siné,
®{ —siné, (l—coséz)]
(1+COS£3) —Sinf:;
®{ —siné; (1—00553)]’ (28)

that helicity state ® is used as Eq. (24) and ® means direct
product of the states. If Y (3,3,3;p,,p,,p3) be independent



J Theor Appl Phys (2017) 11:263-268

267

of the angle & (for simplicity without loss of generality),

the reduced helicity density matrix can be calculated as

,3 1
p(h ):g
[ 1 T T 72 T 72 2 ]
4 T4 16 4 16 16 6
o, ® o2 o ©
4 16 4 16 4 64 16
Y 7'[2 ] T 7'[2 7233 T 7t2
T "4 16 e 4 16
7'L'2 T T 7233 7'[2 2 T
6 4 4 ' “e& 16 16 4
T 7'E2 7'E2 7'53 1 T Y 7I2
4 16 16 64 4 4 16
7'L'2 T 7'[3 7'(2 s 1 7'(2 T
6 4 & 16 4 6 4
7'L'2 7'[3 T TEZ s 7'[2 Y
6 64 4 16 4 16 ' T3
7'[3 7'E2 7'E2 T 7'E2 Y Y 1
L 64 16 16 4 16 4 4 d
(29)

The corresponding eigenvalues are

A 3n—z+1+£\/n4+96n2+2304
Pr=g\’16 64 ’

1 72 T
A S L 242304
0, 8(316+ 64\/7: + 9672 + 230 )
0" :,c/:plzl —n—2+l+£\/n4—32n2+256
3OS TR 16 64 ’

2
/ !/ / 1
Py =p6=p8=§ _E‘F

L
64

and the helicity entropy reads

8
SY = =3 pllog, pf = 14752 ~ 351"

i

=1

vVt =327 + 256),

(30)

If we again suppose the wave packet to be Gaussian

111
'7”(555

where

Y

22,2
o PItPtPy

9 _9
lap27p3) =T ‘v Ze 22 )

111
///W(§7575;P1792,P3>|2d3pld3pzd3p3:1'

One can write the reduced spin density matrix as

(31)

. 1 111
p(‘ 3):§///d3p1d3p2d3p3¢(§,§7§§P1apzap3> |2

(14cosé;) e ising, ]

e?siné; (1 —cos¢))
(14cos&,) e siné,
e25iné, (1 —cosb,)

(14+cosés) e ssinéy

(1 cos§3)1.

€' sin &5
(32)
Now suppose three particles move in z-direction so &; =

& =¢& =¢ and Y is independent of & then reduced spin
density matrix become

1T 0 0 0 0 0 0 O]
72 72
1 = hadl
0 T 0 T 0 0 0
72 72
9 ol
0 16 0 16 0 0 0
7l
0O 0 O 1 0O — — 0
(s=3) _ 1 16 16
p 8 2 7
0 % 16 0 1 0 0 0
72 2
O 0 0 — 0 1 — 0
16 16
72 72
O 0 0 — 0 — 1 0
16 16
10 0 0 0 0 0 0 1]

(33)

The eigenvalues for the matrix
2

L+ 1) =pi =1

(1 - %), so the spin entropy for these eigenvalues are

above is p; = p3 =

and Ps = P6 = P7=Pg =

oo|—

SES) = 2.3988 that is more than two-particle spin entropy

and similar to two-particle state, the spin entropy is more
than helicity entropy for three particle state.

Conclusion and outlook

In this work, we investigated helicity and spin entropy of
systems of two and three massive particles described by
sharp and Gaussian momentum-distributed wave packet,
also with calculating we obtained three interesting results:
1- We showed with increasing the number of particles that
the helicity and spin entropy increases, 2- For one-, two-
and three-particle systems, the spin entropy is more than
helicity entropy, 3- For helicity entropy of two and three
particles, we have approximately two and three times of
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one-particle helicity entropy (good approximation) and the

relation seems to exist Sﬂh) ~ nS(lh) for helicity entropy of n

particles that an interested reader can check the validity of
this relationship.
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distribution, and reproduction in any medium, provided you give
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link to the Creative Commons license, and indicate if changes were
made.

References

1. Czachor, M.: Nonlocal looking equations can make nonlinear
quantum dynamics local. Phys. Rev. A 55, 72 (1997)

2. Peres, A., Terno, D.R.: Two roles of relativistic spin operators.
J. Mod. Opt. 49, 1255 (2002)

3. Peres, A., et al.: Relativistic spin operator and Lorentz transfor-
mation of spin state of a massive Dirac particle. Phys. Rev. Lett.
88, 230402 (2002)

4. Alsing, P. M., Milburn, G. J.: Speeding up entanglement degra-
dation, arXiv:quant-ph/0203051 (2009)

5. Gingrich, R.M., Adami, C.: Quantum entanglement of moving
bodies,. Phys. Rev. Lett. 89, 270402 (2002)

6. Peres, A., Terno, D.R.: Quantum information and special rela-
tivity. Mod. Opt. 50, 1165 (2003)

7. Peres, A., Terno, D.R.: Quantum helicity entropy of moving
bodies. Int. J. Quant. Inf. 1, 225 (2003)

8. Pachos, J., Solano, E.: Entanglement entropy: helicity versus
spin. Quant. Inf. Comput. 3, 115 (2003)

9. van Enk, S.J., Rudolph, T.: Local vs. joint measurements for the
entanglement of assistance. Quant. Inf. Comput. 3, 423 (2003)

10. Czachor, M., Wilczewski, M.: Two-spinors, oscillator algebras,
and qubits: aspects of manifestly covariant approach to rela-
tivistic quantum information. Phys. Rev. A 68, 010302 (2003)

11. Esfahani, B.N., Aghaee, M.: Tripartite entanglements seen from a
relativistically moving frame. Int. J. Quant. Inf. 09, 1255 (2011)

12. Bergou, AlJ., et al.. Maximum entanglement and its proper
measure. Phys. Rev. A 68, 042102 (2003)

13. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly
accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

14. Esfahani, B.N., Aghaee, M.: Spin fidelity for three qubit Green-
berger-Horne-Zeilinger and W states under Lorentz transforma-
tions. Int J. Theor. Phys. 5, 1395 (2011)

15. Peres, A., Terno, D.R.: Quantum information and relativity the-
ory. Rev. Mod. Phys. 76, 93 (2004)

16. Soo, C., Lin, C.C.Y.: Quantum helicity entropy of moving bodies.
Int. J. Quant. Inf. 2, 183 (2004)

17. Moradi, S., Aghaee, M.: Frame independent nonlocality for three
qubit state. Int. J. Theor. Phys. 49, 615 (2010)

Y4
ﬁ @ Springer

18. Alsing, P.M., et al.: Teleportation in a non-inertial frame. J. Op-
tics. B6, S834 (2004)

19. Shi, Y.: Entanglement in relativistic quantum field theory. Phys.
Rev. D 70, 105001 (2004)

20. Kim, W.T., Son, E.J.: One- and two-spin-1/2 particle systems
under the Lorentz transformations. Phys. Rev. A 71, 014102
(2005)

21. Czachor, M.: Relativistic spin operator and Lorentz transforma-
tion of the spin state of a massive Dirac particle. Phys. Rev. Lett.
94, 078901 (2005)

22. Fuentes-Schuller, 1., Mann, R.B.: Alice falls into a black hole:
entanglement in non-inertial frames. Phys. Rev. Lett. 95, 120404
(2005)

23. Caban, P., Rembielinski, J.: Unstable particles as open quantum
systems. Phys. Rev. A 72, 012103 (2005)

24. Esfahani, B.N.: Relativistic entanglement for spins and momenta
of a massive three-particle system. Quant. Inf. Process. 11, 529
(2011)

25. Kok, P., Braunstein, S.L.: Diversities in quantum computation
and quantum information. Int. J. Quant. Inf. 4, 119 (2006)

26. Ball, J.L., et al.: Entanglement in an expanding spacetime. Phys.
Lett. A 359, 550 (2006)

27. Lamata, L., et al.: Relativity and Lorentz invariance of entan-
glement distillability. Phys. Rev. Lett. 97, 250502 (2006)

28. Lamata, L., et al.: Dynamics of momentum entanglement in
lowest-order QED. Phys. Rev. A 73, 012335 (2006)

29. Jordan, T.F., et al.: Einstein-Podolsky-Rosen correlations of
Dirac particles: quantum field theory approach. Phys. Rev. A 73,
032104 (2006)

30. Alsing, P.M., et al.: Entanglement of Dirac fields in noninertial
frames. Phys. Rev. A 74, 032326 (2006)

31. Shi, Y.: Charmed hadron spectroscopy from focus. Phys. Lett. B
641, 486 (2006)

32. He, S, et al.: Quantum helicity entropy of moving bodies, arXiv:
quant-ph/0702028 (2007)

33. Weinberg, S.: The Quantum Theory of Fields. Cambridge
University Press, Cambridge (1995)

34. Caban, P., Rembielinski, J.: Quantum state of a free spin-1/2
particle and the inextricable dependence of spin and momentum
under Lorentz transformations. Phys. Rev. A 74, 042103 (2006)

35. Jordan, T.F., et al.: Entanglement entropy: helicity versus spin,
arXiv:quant-ph/0608061 (2007)

36. Ling, Y., et al.: Quantum entanglement and teleportation in
higher dimensional black hole spacetimes. J. Phys. A 40, 9025
(2007)

37. Adesso, G., et al.: Extremal entanglement and mixedness in
continuous variable systems, arXiv:quant-ph/0701074 (2007)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutionalaffiliations.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/quant-ph/0203051
http://arxiv.org/abs/quant-ph/0702028
http://arxiv.org/abs/quant-ph/0702028
http://arxiv.org/abs/quant-ph/0608061
http://arxiv.org/abs/quant-ph/0701074

	Two and three particles entanglement; helicity and spin with momentum
	Abstract
	Introduction
	Two-particle entanglement
	Three particle entanglement
	Conclusion and outlook
	Open Access
	References




