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Abstract A two-species driven-diffusive model of classi-
cal particles is introduced on a lattice with periodic
boundary condition. The model consists of a finite number
of first class particles in the presence of a second class
particle. While the first class particles can only hop for-
ward, the second class particle is able to hop both forward
and backward with specific rates. We have shown that the
partition function of this model can be calculated exactly.
The model undergoes a non-equilibrium phase transition
when a condensation of the first class particles occurs
behind the second class particle. The phase transition point
and the spatial correlations between the first class particles
are calculated exactly. On the other hand, we have shown
that this model can be mapped onto a two-dimensional
walk model. The random walker can only move on the first
quarter of a two-dimensional plane and that it takes the
paths which can start at any height and end at any height
upper than the height of the starting point. The initial
vertex (starting point) and the final vertex (end point) of
each lattice path are weighted. The weight of the outset
point depends on the height of that point while the weight
of the end point depends on the height of both the outset
point and the end point of each path. The partition function
of this walk model is calculated using a transfer matrix
method.
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Introduction

One of the most studied models which shows non-equi-
librium phase transitions is asymmetric simple exclusion
process (ASEP). In many literatures, the ASEP in the
presence of an impurity on a ring have been studied. The
role of the impurity is to investigate the motion of the
shock fronts in the ASEP. The single impurity in [1, 2]
hops in the opposite direction relative to the ordinary
particle of the ASEP while in [3] the impurity moves in the
same direction as the ordinary particles of the ASEP. In
both cases the phase structure of the models have been
studied extensively.

In this paper, we study the effects of the presence of a
single impurity on the ASEP on a ring where the second
class particle (impurity) is allowed to hop in the both
directions, relative to the ordinary particle of the ASEP,
with the rates g and p. It has been shown that the steady-
state distribution of all one-dimensional exclusion models
whose steady-states have a simple factorized form, can be
written in a matrix product form. The matrices which are
necessary for this purpose satisfy a generalized quadratic
algebra [4]. In [5], the authors have introduced a mathe-
matical tool for studying of correlations in the models
whose steady-states have a simple factorized form. They
use the matrices which satisfy a generalized quadratic
algebra. In this paper, we introduce an infinite-dimensional
matrix representation which satisfies the quadratic algebra
of the model. The canonical partition function of the model
is calculated exactly. Using a canonical ensemble, the
phase structure of the model is studied in thermodynamic
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limit. The steady-state distribution of our model has a
factorized form hence two matrix representations are pre-
sented which satisfy the generalized quadratic algebra of
the model. An infinite-dimensional matrix representation
and a 2-dimensional matrix representation. Using this
matrix representations the calculations seem to be very
straightforward. It has been shown that using the grand
canonical partition function one can analyze the phase
structure of the model. The transition point can be calcu-
lated numerically or analytically [6, 7]. By assigning the
fugacity z to the first class particles in a grand canonical
ensemble, we shall find the exact phase structure and cal-
culate the density profile and the correlations of the first
class particles precisely. Some of the critical exponents of
the model in phase transition is also obtained.

In recent years, many studies have been done on con-
nections between the one-dimensional driven-diffusive sys-
tems and the two-dimensional walk models [8—10]. It has
been shown that the partition function of some of the one-
dimensional driven-diffusive models with open boundaries
obtained using a matrix product method is equal to the
partition function of a two-dimensional walk model obtained
using a transfer matrix method [8, 11, 12]. In [11], the
author has introduced a lattice path with specific dynamical
rules where walker can start from origin and end at any
height upper than origin and it has been shown that the
partition function of this two-dimensional walk model is
exactly equal to that of a driven-diffusive system defined on
a discrete lattice with periodic boundary conditions that can
be mapped to a zero-range process [13, 14]. In this paper, a
two-dimensional walk model is introduced in which the
walker can only move on the first quarter of a two-dimen-
sional plane. Random walker can start moving at any height
upper than the origin and end at any height upper than the
starting point. All the paths made by the random walker are
weighted. The weight of a given path will be equal to the
product of the weights of the consecutive steps in that path
and the weight of the starting and end points. The partition
function of this walk model is the sum of the unnormalized
weights of different paths consisting of r — 1 steps and is
calculated using a transfer matrix method.

The paper is organized as follows: In “The driven-diffusive
model” atwo-species driven-diffusive model is introduced. In
“The canonical partition function” the canonical partition
function of the model is calculated in the thermodynamic limit
and the phase structure of the model is investigated. In “The
spatial correlations” the correlation functions and the critical
exponent of the model are calculated. In “The walk model”
we introduce a two-dimensional walk model related to the
two-species driven-diffusive model.

’r @ Springer

The driven-diffusive model

In [11], the author has introduced a one-dimensional dri-
ven-diffusive model of classical particles with hardcore
interactions. The model consists of a single particle of type
A (called the second-class particle) and M — 1 particles of
type B (called the first-class particles). The particles move
on a one-dimensional lattice of length ¢ with periodic
boundary condition. The particle of type A hops from the
lattice site i to i + 1 with the rate p provided that the target
site is empty. A particle of type B hops from the lattice site
i to i+ 1 with the rate 1 provided that the target site is
empty.

In this paper, we assume that the second-class particle is
also allowed to hop backward with the rate g. If an empty
lattice site is denoted by (), we can summarize the reaction
rules at a pair of lattice sites i and i + 1 as follows

Ap — A  with rate p
0A — AD  with rate g
B) — 0B  with rate 1.

In the long-time limit the system attains a non-equilibrium
steady-state. It can be shown that the probability distribu-
tion can be obtained using a matrix product method. For
this purpose, we label the particle of type A with 1 and
label the particles of type B with 2,3, ..., M. If the number
of empty lattice sites in front of the i’th particle is denoted
by n;, a general configuration of the model can be written
as {n} = {n1,na,...,ny}. If the lattice site is occupied by
the particle of type A, the matrix D is attributed to it. If a
lattice site is occupied by a particle of type B, the matrix D,
is attributed to it. In the steady-state the probability of
finding the system in a general configuration {n} =

{m,na,...,ny} is given by

1
PH{n}) = ——Tr(DE"D,E™.. DyE™ 1
({n}) Zn 0 ) (D1E" Dy mE™) (1)

in which Z; y/(p, ¢) is the normalization factor which is also
called the canonical partition function of the model and
that it should be calculated by considering the conservation
of the number of empty sites i.e., Zl‘”:l n,=t—M. A
sufficient condition for (1) to be the steady-state probability
distribution of the model is

leE — qEDl = D1
DrE = D,.

(2)

Details of the proof is given in [15]. It can easily be veri-
fied that the above algebra has the following infinite-di-
mensional matrix representation
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in which [i); = 0;; for i,j =0, 1,...,00.

The canonical partition function

The number of empty lattice sites is a conserved quantity
and does not change by the dynamical rules; therefore,
using (1) one can calculate the canonical partition function
of the model as follow

t—M

Zlp) = So DD Do

Y n(-m)’

(3)
Using the matrix representations of D, and E, one can write
D,E" = D,.
Using the above equation we can rewrite the canonical
partition function of the model as follows
t—M

Znp.g)= Y Tr{D1E" Da]os -~

v=

ny,(t—M)" (4)

nyye..,nyy=0

Using the matrix representation of the matrices D, D, and
E and the definition of trace of a matrix one can obtain

o0

Z i|D\E" D, i)

i=0

ni n qi
B ,-0( i >p_

Inserting the above equation into (4), the canonical parti-
tion function of the model can be written as

ESOE e

n;=0 i=0

Tr[D\E" D,) =

Zz,M(P f]

It can be seen that the partition function of the model in
thermodynamic limit M,t — oo behaves as

. ) l—p+
PO +q) M +qg-—p™  for p< 1iqq

Zim(p,q) ~
m(:q) (;)L for p> l-p+gq
M)p—(-pta t+q
(6)

in which p is the density of the first-class particle and is given
by p= (M — 1)/t ~ M/t. It can be seen that a phase tran-
sition occurs at p = (1 —p +¢)/(1 + ¢). To investigate the
phase behavior of the model we calculate the mean number of
the empty lattice sites in front of the second-class particle.
Given that the total number of empty lattice sites on the lattice
is t — M, the probability that the number of empty lattice sites
in front of the second-class particle is n;, is given by

om0 o

Hence the average number of empty lattice sites in front of
the particle of type A is

M
n = anpt,M(nl) = -
l’l|:0

Using (6), the average number of empty lattice sites in
front of the particle of second-class particle in the ther-
modynamic limit is as follows

Piy(m)

p 61nZt,M(Pa q) )

= (®)

1_

,<1ppﬂ) for p< i PT4

P l+qg—p l+¢q
1 .
)4 l-p+gq

—1 for p > ——

—(1=p)(1+q) l+q
9)

As can be seen there is a phase transition from a phase in
which the mean number of empty lattice site in front of the
second-class particle is of order ¢ to another phase where it
is a constant.

The spatial correlations

In [4] the author has shown that the steady state of a
disordered driven-diffusive system consisting of M differ-
ent type of particles, that can be mapped onto the Zero
Range Process, can be obtained using the matrix method in
which the matrices should satisfy the following generalized
quadratic algebra

D,E"D,y = f,(n,)D for u,ff =1,2,...,. M  (10)

in which f,(n,) is a function of transition rates and can be
constructed using pairwise balance condition [16]. Our
model is a two-species driven-diffusive model of classical
particles on a lattice with periodic boundary condition with
the following dynamic

wWo-0p0---0p —p0---0pu0---0 4" with the rate u,(n,)

——
ny ny ny+1 n—1

W00 0 O u = 0 -0 u0---0y" with the rate v,(n,)
ny /1,4 ny —1 ny+1

(11)

’r @ Springer
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where u,(n,) is the hopping rate of the particle x to its right
neighboring lattice site and v,(n,) is the hopping rate of the
particle u to its left neighboring lattice site i.e.,

vi(n) = g,
Vz(nz) =0.

Ml(nl) =p,

Mz(nz) = 17

(12)

It can be checked that by defining fi(n;) = (1’#)"‘ and

f2(n2) = 1 and requiring f; ,(0) = 1, the following infinite-
dimensional matrix representation satisfies the quadratic
algebra (10)

D= S AWI0)
i=0

D2 =" 10)l (13)
i—0

E:;|i+l>(i\.

Using (13) the grand-canonical partition function of the
model can be written as

o0

Z(p,q,2) = Tr[D:C"™'] =" f()ilC"'|0) (14)
i=0

where the matrix C = E + zD, and that z is the fugacity of

the first-class particles. According to the matrix represen-

tations (13) it can be verified that

—

2
CU)y =2z + )iy + i+ — 1) (15)
i—0

Now the grand-canonical partition function Z;(p, g,z) can
be calculated using (15)

1+q =1 _ _

pz(—) 1 t—1 1 —1

Z(p.q,2) = ! R +( +q> :
l+qg—p(l+z) 14+qg—p(l+2) p

(16)

The fugacity z has to be fixed by density of the first-class
particles which is given by the following equation
z0
) =>—InZ(p,q,2). 17
pz) =5 nZ(p.q.2) (17)
It is known that the real positive values of the fugacity are
of physical interest hence it is necessary that p <1 + gq.
Using (16) it can be shown that in the thermodynamic limit
the density of first-class particles can be written as follows
1 —

< for z > “ta-p
1+z

0

p(z) = - (18)
1 —
for z < M
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Fig. 1 The density of the first-class particles as a function of fugacity
z obtained from the exact solution (the blue line) and in the
thermodynamic limit (the red dotted line) for t =200, p =1 and
q=2

Fig. 2 Two lattice path that start from (0, 0) and (0, 2)

According to (18) it turns out that there is a critical fugacity
Ze = H% at which the density of the first-class particles

shows a finite discontinuity. The behavior of p(z) for z <z,
and z > z. are different and the system undergoes a first-
order phase transition provided that p <1+ ¢ . In Figs. 1
and 2 exact expression of the density of the first-class par-
ticles and its thermodynamic limit are plotted as a function
of the fugacity z. As can be seen, in the thermodynamic limit
both plots overlap. At z. there is a finite discontinuity while
for z > z., p(z) grows with z until it saturates.

In [5] the authors have studied the spatial correlations in
exclusion models corresponding to the Zero Range Pro-
cesses. They have shown that the spatial correlations of the
exclusion models that can be mapped onto the Zero Range

Processes can be expressed in terms of 1-point and 2-point

correlation functions Gl(l) and Gl(?

. Given that the only
impurity is at site 1, the density of the first-class particles at

the lattice site i can be written as

1 . )
G\ = (p)) = o Tr[D,C"2(zDy)C"). 19
(pi) (7, 4,2) [ 1 (zD2) ] (19)
Calculating (19) using (15) is straightforward and the result
is
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(p;) = A1 + Azrexp (%) (20)

in which & is a correlation length which is given by

p(l+72)

el
=In .
< 1+gq

(21)

The coefficients A; and A, in (20) are functions of the
transition rates p, g and also the system size ¢

A= P12 :
pz[(l e (%)t_l} +(+g-p *PZ)(l,tqy_l
) A(50) "+ a-p1 4+
-

=17

p(%)zz{(l +2)7" - (%)H} +(1 +q*l7*pz)<%>
(22)

The density of the first class particles increases expo-
nentially from the vicinity of the second-class particle. In
the thermodynamic limit the density of the first class
particles (p;) behaves as (18) far from the second class
particle.

It should be noted that in addition to infinite dimensional
matrix representation (13) the quadratic algebra (10) has a
2-dimensional matrix representation. In [17] the authors
have shown that the quadratic algebra (10) has a finite-
dimensional representation which depends on the number
of types of particles. The dimension of the matrix is M if
the number of types of the particles is equal to M. Hence
for our model with two species of particles the quadratic
algebra (10) has a 2-dimensional matrix representation
given by

. <1 0) . (0 1> . ITta
1= s h = s = p .
10 01 e
(23)

According to (23) the matrix C = E + zD, in (14) can be
written as

I+q
c="7p ° (24)
0 1+z

It can be seen that the correlation length (21) can be written
as a function of the eigenvalues of the 2-dimensional
matrix C as

«—1 /11
= In( = 25
¢ n<b) (25)

where .y =14z and A, :lpﬂ, in agreement with the

known results obtained in [18]. The 2-point correlation
(2)

function G;'(z) = (p;p;) can be written as

2

(2) z
Gi' 7)) = ———
J @ Zi(p,q,2)

Using (15) and (20) and after some straightforward cal-

Tr[D\C2D,C D). (26)

culations one can obtain ng) (z) explicitly

©) <
G¥(z)=—"1(p).
i (@) =1 (P (27)
The (n+ 1)-point correlations are  written as
(n+1)
G . = <pipi+j] . -Pi+j1+~~+j,,>

(.n+.l) _
Sdn = 74(p,q,2)

Tr[Dy C2(zD2) ' 1 (zDy) G217 (zDy). . .C' ).

(28)
Using (19) and (26) we can express the above equation in
terms of Gf” as follows
n
(n+1) <
Gj].uj,, = <1—+Z> (pi)- (29)

We can calculate the critical exponents of model at the
phase transition point. To find the critical exponent defined

by p x (z — zc)ﬂ , we only need to consider the behavior of
the density of the first-class particles as a function of
fugacity z at the critical point z. = Hpﬂ in the thermo-
dynamic limit. According to (17), it can be seen that the
density of the first-class particles in the vicinity of z, can be
expressed as p o« (z — zc)fl. Hence the critical exponent
p=-1. (1+z)—>1’#.
According to (20), it can be seen that in the thermodynamic

Near the critical fugacity,

limit the density profile (p;) o (z—z.)"'. Hence, the
critical exponent o defined by (p;) o (z —z.)* is & = —1.
With the correlation function given asymptotically by

(2) . n—D+2—y —(j—i)y : . . .
Gy ~(j—1i) exp(—%—) in which D is the dimen-

sion of the system, we find n = 1.

The walk model

In this section, we show that there exists a walk model which
is equivalent to the driven-diffusive model explained in the
previous sections. We consider a two-dimensional walk
model in which a random walker can start from any height
upper than the origin (0, j) in which j is an integer j > 0. We
assume that the random walker can take a finite number of
steps on Z2 = {(i,j) : i,j >0 are integers} according to
the rules which will be explained later. For the reasons that
will become clear shortly we assume that the length of the
lattice path is equal to # — 1. After taking a finite number
t — 1 of consecutive steps, the random walker can get to the
lattice site (r — 1, j') where j/ =, j+1,...,j+¢— 1. The
initial vertex (starting point) and the final vertex (end point)

’r @ Springer
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of the lattice path are weighted. This type of lattice path is
introduced in [19]. For any path the weight of the start and
end points depend on the height of these points. There are
different ways that after taking the finite number of steps
t — 1, the random walker can get to the lattice site ( — 1, j).
The weight of a given path will be equal to the product of the
weights of the start and end points and the consecutive steps.
The random walker moves according to the following rules:

1. The random walker can start from any height upper
than the origin as (0, j) where j =0,1,2,...,00.

2. A path that starts from the height (0, j), after ¢ — 1
steps might terminate at any height such as (r — 1,7)
where / =jj+1,j+2,....j+t—1.

3. The weight of the initial vertex (starting point) for the
path that starts from the height (0, j) is ¢/

4. The weight of the final vertex (end point) for the path
that starts from the height (0, j) and terminates to the

o
— oo (T 1
lattice site (¢ — 1,j'), is <j ) o

5. For i>j and from the lattice site (i, j) to (i + 1,/ + 1)
the steps have the weight 1(upward steps).

6. For i>j and from the lattice site (i, j) the random
walker can drop to the surface (i + 1,0). These steps
have the weight 1 (jump steps forj > 0 and horizontal
steps for j = 0).

In Fig. 2 we have plotted two different paths of length 8
according to the above mentioned rules. We will be
interested in those paths of fixed length which contain a
certain number of jumps and horizontal steps (equivalently
upward steps); therefore, for our later convenience we
introduce an ad hoc fugacity z and change the last rule as
follows: for i >j from the lattice site (i, j)) random walker
can drop to the surface (i + 1,0) with the weight z.

The position of the random walker in lattice path will be
denoted by the vector |j) in which j is the height relative to
the horizontal plane which is a number between 0 and co.
These vectors have the following properties

V>k:5.i,k for j,k:O,l,...,oo,

i’y = 60 for j,j/ =0,1,...,00,

(Ioli> i (30)
> ol=1

=0

in which Z is an infinite-dimensional identity matrix. We
assume that the random walker starts from the height [j) in
which j =0, 1, ..., 00. After taking r — 1 steps the random
walker can get to the lattice site (r—1,;/) in which
j=j,j+1,....j+t— 1. There are different paths to get
to the lattice site (z — 1,5') . Each of these paths has its own
weight. We now calculate the weight of a given path p as
follow

’r @ Springer

=1
W, = Wi [H Wsmp(ei)} w (31)
i=1
in which w’ and w' are the weights of the start and end
points and w¥P(¢;) is the weight of the i’th step in the path.
We know that the transfer matrix updates the state of the
random walker hence according to the rules of the steps in
the lattice path and their weights, the transfer matrix cor-

responding to this lattice path can be written as follow
Clj) =20) + [j + 1. (32)

The matrix representation of the transfer matrix C is

Z Z Z 2
1 0 0 0O

C = 01 0 0O (33)
001 00

The partition function of the lattice path

As we mentioned the random walker can start from the any
height upper than the origin |j) in which j =0,1,...,00.
We have also assumed that the total number of steps is
t — 1. After taking these steps the random walker can get to
the lattice site (¢t —1,j') where j/ =j,j+1,....j+r—1
through different paths. Each of these paths has its own
weight. The partition function of the walk model is the sum
of the unnormalized weights of different paths consisting
of t — 1 steps that start from different heights |j) and get to
the different heights |//) where j=0,1,...,00 and
j=j,j+1,....j+t— 1. To obtain the partition function
of the lattice path, we calculate the sum of the weights of
all paths that start from the height |j) and, according to the
mentioned rules, after ¢+ — 1 successive steps get to the
height |j/). This sum is given by the following equation

Zy = w'(j'|C ) (34)

in which Z;; is the sum of unnormalized weights of dif-
ferent paths that start from the lattice site (0, j) and after
taking 7— 1 steps get to the lattice site (r—1,j).
According to the mentioned rules the weight of the start
and end points for each path that starts from the height |;)
and ends at the height |/} are given by

i - ();

Using the above equations the Z;; can be written as

(35)
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25 (1) S 01e b, (36)

Considering that the lattice path can start from different
height |j) in which j=0,1,...,00 and end at different
height |/') where j/ =j,j+1,...,j+1— 1 then the parti-
tion function of the lattice path can be written as

~£30)1

J=0

1. (37)

Using (15) the partition function of the lattice path is given
by the following relation

oo jti—1 q, =2
=> > < >ﬁ ( 2z D)7 6+ 5j',f+r1>~

J=0 j'=j k=0

Zt(qu <

(38)

Hence, the partition function of the lattice path can be
rewritten as

+
S )

Using Newton’s binomial expansion the above equation
can be rewritten as follows

Z(p,q;z :ZZ( > ;zz—s- )tj'2+[%(l—g>t.
| (40)

Note that all parameters in the summand are non-neg-
ative thus using Tonelli’s theorem we can interchange

the summations, as (Zj 02/—,> = (Z;C:O Zj/:o)

Hence, the partition function of the lattice path can be
written as

Z(p,q,2) =

(41)

We are interested in the partition function of the original
walk model in the special case, that after taking r — 1
successive steps, the random walker has taken a certain
number of upward steps. We study the case in which after
t — 1 successive steps, the random walker can be at the
heights between O and t — M where M <t. To find the
partition function of the model in this case, let us have a
closer look at the role of the fugacity z. The weight asso-
ciated with a horizontal or downward movement is pro-
portional to z; therefore, the coefficient of M-1in (41) is

equal to the partition function of the walk model which
consists of at most + — M upward steps. The result is

p L2 =2\
17 = < ) >Z"
l

i=0
Using the above equation, the coefficient of the z¥~! can
be easily calculated as follows
—-M ./ . i
IN(t—=J—2\¢
Zm(p,q) = ()( >—/ (42)
l JZ; =0 \J M=2 /P

One can interpret this partition function as the sum of the
weights of all paths that have the length r — 1 which con-
tain + — M upward steps (or equivalently M — 1 horizontal
and downward steps).

The phase behavior of the lattice path
in the thermodynamic limit

As a relevant quantity, one can investigate the mean height
of the random walker. The probability that the paths who
starts from the height |j), and after # — 1 successive steps
according to the rules of the lattice path end at the height
[/}, is given by

| g j’) (z—j’—2>
= . 43
i) = 7 () (- “
Hence the average height of all possible paths in the lattice
path is

—M j

> iPmGid) (44)

/=0 j=0

It should be noted that in the above equation the arrange-
ment of the index has been changed with respect to the
Tonelli theorem. According to (42), the average of the
height in lattice path is given by the following relation

p 0 ant,M(p) '

) =3

(45)
In the thermodynamic limit due to the behavior of the
partition function of the lattice path, it turns out that the
mean height of the random walker is given by

)4

t(lfpfi
1+q-—
(h) = =

, .
Py forp-g>1-p(1+
(=) +q) 9> 1-p(1+4q)

p) for p—q<1-p(1+q)

(46)

As can be seen in the thermodynamic ¢ — oo, there is a
phase transition from a phase in which the mean height of
the random walker is of order ¢ to another phase where it is
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(1-p)(1+¢q)/[p— (1 —p)(1+q)]. If g=0 the results
are exactly those obtained in [11].

Concluding remarks

In this paper, we have introduced a two-species driven-
diffusive model of classical particles defined on a one-
dimensional lattice with periodic boundary condition
which can be mapped onto a zero-range process. The
canonical partition function of the model is calculated and
phase behavior of this model is investigated. After calcu-
lating the grand canonical partition function, the critical
fugacity is obtained at which the model undergoes a first-
order phase transition. The density profile of the model is
calculated exactly and the spatial correlations of the model
are obtained in terms of 1-point correlation function. We
have introduced a two-dimensional walk model in which
the random walker, in contrast with the lattice path intro-
duced in [11], can start from any height upper than the
origin and that the end point of the lattice path can be at
any height upper than the start point. This type of lattice
path is introduced in [19]. The partition function of the
lattice path is calculated using the transfer matrix method.
Comparing this partition function with that of the driven-
diffusive model we have shown that these two model are
equivalent. It should be noted that the walk model intro-
duced in [11] and the one introduced in present work can
be mapped onto zero-range process.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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