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Abstract The basic features of nonlinear ion acoustic

(IA) waves are theoretically studied in a superthermal

electron–positron–ion (e–p–i) plasma with weakly trans-

verse perturbation. A three-dimensional Kadomtsev–Pet-

viashvili (KP) equation governing evolution of weakly

nonlinear IA waves is derived by means of a reductive

perturbation method. The energy integral equation is used

to study the existence domain of the localized structures. It

is found that deviation from thermodynamics equilibrium

increases the existence domain of solitary solution and also

makes the IA solitary structure more spiky. The ion con-

centration has an important effect on the existence domain

of solitary solution, as for low ion density the primitive

domain reduces significantly.

Keywords e–p–i Plasma � Transverse perturbation � KP

equation � Stability analysis

Introduction

Electron–positron–ion (e–p–i) plasma as a particular case

of ambiplasma is a quasineutral space plasma containing

electrons, positrons, protons, and antiprotons [1]. In the

presence of additional positron component in an ordinary

electron–ion plasma, the population of ions as well as the

restoring force on electron fluid reduces, henceforth it can

be predict that the basic features of electrostatic structures

affect considerably in an e–p–i plasma. Study of propa-

gation of localized structures in e–p–i plasma has important

aspects for researches due to existence of such kind of

plasma in the inner regions of the accretion disks sur-

rounding black holes [2], in the early universe [3, 4], in

pulsar magnetospheres [5], in the active galactic nuclei [6,

7], in the polar regions of neutron stars [8], at the center of

our galaxy [9], and in the plasmas in intense laser fields

[10, 11]. Such three-component e–p–i plasmas can also be

found in the laboratory plasma; for instance, during the

propagation of a short relativistic strong laser pulse in

matter, photo production of pairs due to the photon scat-

tering by nuclei can lead to the formation of e–p–i plasmas

[10, 11]. Collisions of runaway electrons with plasma ions

or thermal electrons in tokamaks (which have also been

observed in the Joint European Torus [12] and JT-60U

[13]) can lead to production of protons. Therefore,

according to the mentioned reasons during the last few

decades the propagation properties of electrostatic struc-

tures in e–p–i plasma have been attracted a great deal of

attention [14–24].

Nonlinear dynamics of IA solitary waves in unmagne-

tized e–p–i plasmas have been investigated by Popel et al.

[14]. They showed that the presence of positrons in elec-

tron–ion plasmas significantly reduces the amplitude of IA

solitary waves [14]. Small [15] and large [16] amplitude IA

double layers have been investigated in an e–p–i plasma.

Tiwari et al. [17] studied the influence of positron density

and temperature on IA dressed soliton in e–p–i plasma.

Subsequently, the IA structures have been studied in the

cases of magnetized [18–21], nonplanar [22], quantum [20,

23, 24] e–p–i plasma. These results are useful for under-

standing of the localized structures in e–p–i plasma with

Maxwellian electrons and positrons. However, a number of

space, astrophysical and laboratory plasma environments

including non-Maxwellian components and the study of

such non-Maxwellian plasmas are crucial to the
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understanding of space, astrophysical and laboratory

plasma dynamics, which they can appropriately be

described by the generalized Lorantzian (or kappa type)

distribution function [25–27]. This distribution function

was first employed by Vasyliunas [25] to model space

plasma. Observations [25, 28] indicate deviation of particle

distribution functions from the Maxwellian. In this case,

external forces acting on the neutral space plasma or

interaction of wave-particle may lead to formation of su-

prathermal particles. This kind of particle is often present

in space and astrophysical plasma environments, viz., the

ionosphere, mesosphere, magnetosphere, lower atmo-

sphere, magneto-sheet, terrestrial plasma-sheet, radiation

belts and auroral zones [29–33]. The suprathermal behavior

of plasma was also observed in laboratory plasma, for

instance in laser–matter interaction and in plasma turbu-

lence [34]. Suprathermal plasmas which are characterized

by a long tail in the high-energy region may generally be

modeled by a kappa-like distribution. Such distribution is

often more appropriate than the Maxwellian (thermal)

distribution in a broad range of plasma mediums. In the

limit of large values of parameter j, the j-distribution

reduces to the Maxwellian distribution. Also for low values

of j, they present a hard spectrum including a strong tail

with power law form at high speed [35–37], indeed low

values of kappa indicate distributions with a high number

density of suprathermal particles. Effect of electron supr-

athermality on the electrostatic excitations has been dis-

cussed by a number of authors [38–47]. Ion acoustic

solitary waves and double layers in a dense e–p–i magne-

toplasma have been studied by Chatterjee et al. [20].

Tribeche and Boubakour [38] studied the effects of su-

perthermal electrons and thermal positrons on IA double

layers in e–p–i plasma. They showed that due to the

electron superthermality and the relative fraction of posi-

trons, compressive as well as rarefactive double layers exist

in such a plasma. Recently, Manouchehrizadeh and Dorr-

anian [48] investigated the basic properties of wake-fields

in a magnetized plasma.

The solitary wave is a localized structure that travels

with a definite shape due to the mutual balance between the

nonlinearity and dispersion terms. A soliton structure

which preserves its shape after collision can trap the

plasma particles and transfer them over the large distances.

This turns out that the solitons can play a vital role in

transportation of energy in plasma. The dynamical behav-

ior of solitons in a one-dimensional homogeneous plasma

is governed by the well-known Korteweg–deVries (KdV)

equation [49]. Different effects such as external magnetic

[21, 50] field and inhomogeneous medium [51–54] can

modify the propagation properties of soliton. In the pre-

sence of the density gradient or boundary in plasma, they

may appear in role of a reflector and reflect the soliton

waves [55, 56]. In the presence of transverse perturbations

a KP equation [57–62] describes the multidimensional

solitary structures. Malik et al. [59] studied KP solitons in

an inhomogeneous plasmas with finite temperature drifting

ions. Boiti et al. [60] investigated properties of solutions of

the Kadomtsev–Petviashvili equation in different possible

cases. The KP equation in relativistic plasma is also

investigated [61].

El-Awady et al. [39] investigated IA soliton propagation

in e–p–i plasma with kappa distribution. Oblique propa-

gation of IA waves in a magnetized e–p–i plasma with

superthermal electrons has been studied by Alinejad and

Mamun [21]. The stability of electrostatic structures has

been investigated in a magnetized e–p–i plasma with non-

Maxwellian electrons and positrons [49]. They showed that

evolution of IA solitary waves in their model was governed

by a Zakharov–Kuznetsov type equation. Ghosh et al. [63].

examined effect of superthermal electrons on the IA shock

structures in a nonplanar e–p–i plasmas. They derived a

KP-Burgers equation to describe the shock structure in

their nonplanar e–p–i plasma. Alinejad et al. [64] investi-

gated the effect of electron suprathermality on the IA

modulation in dusty plasma.

To complement and give new insights into the previ-

ously published work, we propose here to address the

propagation properties of weakly nonlinear IA solitary

waves in a superthermal e–p–i plasma with transverse

perturbation. The reductive perturbation is used to derive

the KP equation and then the existence domain of solitons

is carefully investigated.

Theoretical model

We consider an electron–positron–ion plasma consisting of

inertia less superthermal electron and positron, and inertial

ion fluids of densities ne, np and ni, respectively. The

direction of wave propagation lies on the z-axis, and we

assume a weak transverse perturbation perpendicular to the

z-axis. At equilibrium, the charge neutrality reads as

ne0 = ni0 ? np0, where ne0, np0 and ni0 are the equilibrium

density of electrons, positrons, and ions, respectively, and

the fractional concentration of electrons with respect to

ions can be read as f = ni0/ne0 = 1 - np0/ne0. The non-

linear dynamics of the low frequency purely electrostatic

perturbation mode (whose phase speed is much less than

the electron thermal speed) in a one-fluid model are given

by

oni

ot
þr � ðniuiÞ ¼ 0; ð1Þ

oui

ot
þ ðui � rÞui ¼ �r/ � ri

ni

rpi; ð2Þ
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opi

ot
þ ðui � rÞpi þ cipiðr � uiÞ ¼ 0; ð3Þ

r2/ ¼ ne � fni � ð1 � f Þnp; ð4Þ

where nj (j = e, p, i) is the number density of plasma

species normalized by nj0, ui = (u, v, w) is the ion fluid

velocity normalized by cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

Te=mi

p

, / is the electrostatic

wave potential normalized by Te/e, the time variable (t) is

normalized by xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pne0e2=mi

p

, the space variable

(r) is normalized by kD = cs/xpi, ci = (2 ? N)/N (where

N is the degrees of freedom), ri = Ti/Te and the other

variables have their usual meaning.

To model the fast superthermal electrons and positrons,

we adopt three-dimensional generalized Lorentzian or

kappa distribution function [25–27]

fjðvÞ ¼
ne;p0

ðpjh2Þ3=2

Cðj þ 1Þ
Cðj � 1=2Þ 1 þ v2 þ 2qi;e/

me;pjh2

 !�1�j

;

ð5Þ

where h2 = 2Te,p(j - 3/2)/jme,p is the effective thermal

speed, C is the gamma function, and j is a spectral index.

In order to find an electron/positron number density with

superthermal particles, we integrate the kappa distribution

function (5) over the velocity space. Then, the normalized

electron and positron number densities are accordingly

expressed as

ne ¼ 1 � /
je � 3=2

� ��jeþ1=2

; ð6Þ

np ¼ 1 þ rp/
jp � 3=2

� ��jpþ1=2

; ð7Þ

in which je,p is a spectral index and measures deviation

from Maxwellian distribution, as the smaller values of je,p

denote the more suprathermal particles in the distribution

function tail (and the harder energy spectrum). In the limit

of je,p ? ?, the kappa distribution recovers the Max-

wellian distribution. It must be noted that the density

expressions given by Eqs. (6) and (7) are only valid for

je,p [ 3/2. Furthermore, Baluku et al. [36] showed that in

the weakly nonlinear regime, when we employed the

reductive perturbation method, the spectral indexes je and

jp cannot take the values in the region of 3/2 \je,p \ 3.

Therefore, in this case we should restrict our attention to

the region of je,p [ 3. Also rp is Tp/Te with Te(Tp) being

the electron (positron) temperature.

Derivation of Kadomtsev–Petviashvili equation

We adopt the standard reductive perturbation method to

investigate the nonlinear dynamical equation of IA waves

in an unmagnetized e–p–i plasmas with transverse pertur-

bation to obtain the KP equation. The stretched coordinates

are defined as

X ¼ ex; Y ¼ ey; n ¼ e1=2 z � Vtð Þ; s ¼ e3=2t: ð8Þ

Here, the parameter e refers to a real and small param-

eter which measures the weakness of the amplitude or

dispersion, and V is the phase speed normalized by cs. The

dependent variables are expanded as

ni ¼ 1 þ en1 þ e2n2 þ � � � ; ð9aÞ

u ¼ e3=2u1 þ e5=2u2 þ � � � ; ð9bÞ

v ¼ e3=2v1 þ e5=2v2 þ � � � ; ð9cÞ

w ¼ ew1 þ e2w2 þ � � � ; ð9dÞ

/ ¼ e/1 þ e2/2 þ � � � : ð9eÞ

The appearance of transverse velocity components at a

higher order of e (relative to the parallel component w)

comes from an anisotropy induced by the influence of

transverse perturbation. Then, we use Eqs. (8) and (9a) in

Eqs. (1–4), and collect the terms in different powers of e.
The lowest order of e leads to

w1 ¼ Vni1;Vw1 ¼ /1 þ ripi1;

Vpi1 ¼ ciw1; ne1 � 1 � fð Þnp1 � fni1 ¼ 0:
ð10Þ

The above equation yields the following linear disper-

sion relation

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rici þ
f

je�1=2
je�3=2

þ ð1 � f Þrp
jp�1=2

jp�3=2

v

u

u

t : ð11Þ

We can write the lowest order x and y components of the

momentum equation as

ou1

on
¼ 1

V

o/1

oX
þ ri

V

opi1

oX
; ð12aÞ

ov1

on
¼ 1

V

o/1

oY
þ ri

V

opi1

oY
: ð12bÞ

The next order in e gives a set of equations in the sec-

ond-order perturbed quantities, as follows

�V
oni2

on
þ oni1

os
þ ou1

oX
þ ov1

oY
þ ow2

on
þ o

on
ðni1w1Þ ¼ 0;

ð13aÞ

�V
ow2

on
þ ow1

os
þ w1

ow1

on
� Vni1

ow1

on

¼ � o/2

on
� ri

opi2

on
� ni1

o/1

on
; ð13bÞ

�V
opi2

on
þ opi1

os
þ cipi1

ow1

on
þ ci

ow2

on
þ ci

ou1

oX
þ ci

ov1

oY
¼ 0;

ð13cÞ
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o2/1

on2
¼ ne2 � ð1 � f Þnp2 � fni2: ð13dÞ

Taking the second derivative of (13d) with respect to n,

and using Eqs. (10–13c), we eliminate the second-order

perturbed quantities to obtain the following KP equation,

o

on
o/1

os
þ A/1

o/1

on
þ B

o3/1

on3

� �

þ C
o2

oX2
þ o2

oY2

� �

/1 ¼ 0;

ð14Þ

where

The forthcoming equation is the well-known KP equa-

tion, and governs the evolution of the first-order approxi-

mation of electrostatic potential corresponding to the IA

waves in a superthermal e–p–i plasma. The effect of

transverse perturbation leads to appearance of the last term

in Eq. (14), as in the absence of this effect the KP Eq. (14)

reduces to the usual KdV equation. Thus, the transverse

perturbation, through the last term in Eq. (14), affects the

properties and existence domain of solitary structures. In

the following, we investigate the effect of transverse per-

turbation on the basic properties as well as the existence

domain of solitary structures.

There are several methods to solve the KP equation [60,

62, 65–67]. An exact solution in the form of a solitary wave

can be obtained via the generalized expansion method of

Eq. (14). For this we transform the independent variables

X, Y and n into a new coordinate

f ¼ lXX þ lY Y þ lnn � Us

¼ e lXx þ lY yð Þ þ e1=2ln z � Vtð Þ � e3=2Ut; ð16Þ

where U is an arbitrary constant speed, and lX, lY and ln are,

respectively, the directional cosines of the wave vector k
*

along the x, y and z axes, so that lX
2 ? lY

2 ? lZ
2 = 1.

/1 ¼ /max sec h2 lXX þ lY Y þ lnn � Us
D

� �

¼ /max sec h2ðf
D
Þ; ð17Þ

where

/max ¼ 3
Uln � Cðl2X þ l2YÞ

Al2
n

; ð18aÞ

and

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Bl4n

Uln � Cðl2X þ l2
YÞ

s

; ð18bÞ

give the normalized amplitude and width of solitary wave.

A further set of solutions of KP equation was presented in

Refs. [60, 62, 67]. Using the appropriate scaling, namely

/1 ? b1u, n ? b2z0, X ? b3x0, Y ? b3y0, and s ? t0, the

KP Eq. (14) reduces to

ðut0 þ 6uuz0 þ uz0z0z0 Þz0 � 3ux0x0 � 3uy0y0 ¼ 0; ð19Þ

which is equivalent to the standard form of KP equation.

The employed coefficients in scaling are given by

b1 = 6B1/3e4ip/3/A, b2 = B1/3e4ip/3, b3 ¼ B1=6C1=2eip=6=
ffiffiffi

3
p

.

A traveling wave solution u(x0, y0, z0, t0) = u(v) can be

obtained by the repeated homogeneous balance method for

A ¼ �
ðje�1=2Þðjeþ1=2Þ

ðje�3=2Þ2 � ð1 � f Þr2
p
ðjp�1=2Þðjpþ1=2Þ

ðjp�3=2Þ2

2
je�1=2

je�3=2
þ ð1 � f Þrp

jp�1=2

jp�3=2

h i2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�1=2

je�3=2
þð1�f Þrp

jp�1=2

jp�3=2

r

þ 25ri

18

je�1=2
je�3=2

þ ð1 � f Þrp;
jp�1=2

jp�3=2

h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�1=2

je�3=2
þð1�f Þrp

jp�1=2

jp�3=2

r þ ð1 þ 2f Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�1=2

je�3=2
þð1�f Þrp

jp�1=2

jp�3=2

r ;

B ¼ 1

2
je�1=2

je�3=2
þ ð1 � f Þrp

jp�1=2

jp�3=2

h i2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�1=2

je�3=2
þð1�f Þrp

jp�1=2

jp�3=2

r

;

C ¼
1 þ 5ri

3

je�1=2

je�3=2
þ ð1 � f Þrp

jp�1=2

jp�3=2

h i

2
je�1=2

je�3=2
þ ð1 � f Þrp

jp�1=2

jp�3=2

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�1=2

je�3=2
þð1�f Þrp

jp�1=2

jp�3=2

r

ð15Þ
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Eq. (19), where v ¼ lx0x
0 þ ly0y

0 þ lz0z
0 � v�t

0, ðlx0 ; ly0 ; lz0 Þ
are positive real numbers such that l2x0 þ l2y0 þ l2z0 ¼ 1, and vo

is the incremental soliton speed. For this we use the

expansion u =
P

i=0
n hiF

i and suppose that F0 = aF2 ? b,

where a, b are constant. Then, the general solutions of the

standard KP equation can be summarized as follows:

(1) For ab = -1

uðx0; y0; z0; t0Þ ¼
3ðl2

y0 þ l2
x0 Þ þ lz0 ðv� þ 8l3

z0 Þ
6l2z0

� 2l2z0 tanh2 v;

ð20Þ

(2) For a = 1

F ¼
�

ffiffiffiffiffiffiffi

�b
p

tanhð
ffiffiffiffiffiffiffi

�b
p

vÞ; for b\0

�1=v; for b ¼ 0
ffiffiffi

b
p

tanhð
ffiffiffi

b
p

vÞ ; for b [ 0

8

<

:

; ð21Þ

Which lead to the following form for the function u,

uðx0; y0; z0; t0Þ ¼
3ðl2

y0 þ l2
x0 Þ þ lz0 ð�v� þ 8bl3

z0 Þ
6l2

z0

þ 2bl2
z0 tanh2ð

ffiffiffiffiffiffiffi

�b
p

vÞ; ð22aÞ

uðx0; y0; z0; t0Þ ¼
3ðl2

y0 þ l2
x0 Þ � v�lz0

6l2z0
�

2l2z0

v2
; ð22bÞ

uðx0; y0; z0; t0Þ ¼
3ðl2

y0 þ l2
x0 Þ � lz0 ðv� þ 8bl3z0 Þ

6l2
z0

� 2bl2
z0 tanh2ð

ffiffiffi

b
p

vÞ; ð22cÞ

respectively for b\ 0, b = 0, and b[ 0.

Energy integral and parametric investigation of solitary

wave existence

Kadomtsev and Petviashvili [57] have studied the soliton

stability perpendicular to its direction of propagation. They

derived a KP equation which governs the evolution of

solitons in the presence of transverse perturbation. The

solitons remain stable against such perturbations [57, 58].

The profile of soliton solution of KP equation (in contrast

to KdV equation) is a function of the sign of dispersion

coefficient. Kadomtsev and Petviashvili [57] have shown

that in a one-dimensional system with negative dispersion

the perturbations can be transformed from soliton to the

medium and thus in this case the solitons are stable with

respect to the weak transverse perturbations. Kako and

Rowlands [58] have considered different types of pertur-

bations on two-dimensional solitons and investigated the

stability of IA solitons. Recently, Liu and Zeng [68] pre-

sented a new exact solution for the (3 ? 1)-dimensional

KP equation. To discuss the stability properties of IA sol-

itons, we employ a method based on energy consideration,

which it needs to obtain and study of potential energy,

namely Sagdeev potential. Using the transformation (16)

into Eq. (14) we obtain the following differential equation

ln
o2

of2
�U/1 þ

A

2
ln/

2
1 þ Bl3

n
o2/1

of2

� �

þ C l2X þ l2Y
� � o2/1

of2

¼ 0;

ð23Þ

and after integrating twice, Eq. (23) takes the following

form

o2/1

of2
¼ U

Bl3n
/1 �

A

2Bl3n
/2

1 �
C

Bl4n
l2X þ l2

Y

� � o2/1

of2
þ c1/1 þ c2

ð24Þ

in which c1and c2 are the integrating constants. Then,

multiplying both sides of Eq. (24) with d/1/df and inte-

grating once we can obtain the following energy-like

equation

1

2

d/1

df

� �2

þwð/1Þ ¼ 0 ð25Þ

where w(/1) is the pseudopotential or Sagdeev potential

and is given by

wð/1Þ ¼
�Uln þ Cðl2X þ l2YÞ

2Bl4
n

/2
1 þ

A

6Bl2n
/3

1 ð26Þ

To obtain Eq. (26), the appropriate boundary conditions

have been employed, namely {/1; d/1/df; d2/1/

df2}|f?±? ? 0, which lead to c1 = c2 = 0. Equation (25)

is the well-known equation in the form of the ‘‘energy

integral’’ of an oscillating particle of unit mass, with

velocity q//qf and position / in a potential well w(/1).

The first term in Eq. (25) can be considered as the kinetic

energy of the unit mass, and w(/1) is the potential energy.

Since the kinetic energy is a positive quantity, it requires

that w(/1) B 0 for the entire of motion, i.e., in the interval

0 \/\ /max(/min \/\ 0) for the compressive (rare-

factive) solitary waves. Where /max(/min) is the maximum

(minimum) value of / for which w(/) = 0.

Furthermore, Eq. (26) describes the Sagdeev potential for

IA solitons in a superthermal e–p–i plasma. The limiting case

of two-component electron–ion (e–i) plasma can be obtained

by substituting f = 1 in Eq. (26), which then reduces to the

case for the IA solitary wave in a homogeneous e–i plasma.

The existence condition of solitary wave solution (17)

requires that d2w=d/2
1 /1¼0

	

	 \0, which implies that

d2w

d/2
1

/1¼0

	

	 ¼ �Ulf � Cðl2
X þ l2YÞ

2Bl4
f

¼ �S

l4
f

\0 ð27Þ

The above expression shows that the solitary wave

solution (17) exists whenever the condition
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S ¼ Ulf � C lX
2 þ lY

2

 �� �

=2B [ 0 ð28Þ

is satisfied. The existence domain of solitary wave solution

can explore by plotting the curve S = 0 that separates the

parameter space into two regions; one in which S [ 0 and

solitary waves exist and another one where S \ 0 and

solitary waves do not exist. We note that the sign of

S mainly is determined by ln rather than other parameters

and in turn, the values of ln that satisfy the existence

condition are strongly controlled by arbitrary parameter

U. This statement is justified in the following manner. Here

we can also obtain an expression which determines the

polarity of IA solitons in the present plasma model. Thus,

using Eqs. (18a, 28), we can obtain

P ¼ B

A
S ð29Þ

This equation gives a criterion for soliton polarity, in

which P [ 0 refers to the compressive solitons, while for

P \ 0 a rarefactive soliton may be predict in the present

plasma system. To examine the effect of relevant physical

parameters, such as ion/positron concentration, electron/

positron superthermality, and ion temperature on the sta-

bility properties of IA waves, we have numerically inves-

tigated the condition (28). The results are depicted in

Figs. 1 and 2. The contour of parameter S in space (f, ln) is

plotted in Fig. 1. The curve S = 0 divides the space (f, ln)

into two parts, one in which S \ 0 (area below the curve)

and another one where S [ 0 (area above the curve). It

shows that the solitary wave solution (28) exists at the

upper region of the curves, while it cannot exist at the

lower region. This figure shows that the existence range of

solitons increases as the wave propagation goes more

oblique, it is also shown that in the presence of higher

concentration of ions the existence domain decreases the

threshold values of ln to the higher values of obliqueness.

Figure 1a is depicted for non-Maxwellian limit with

je = jp = 3, and Fig. 1b for Maxwellian components, i.e.,

je = jp = 100. This figure shows that the threshold values

of ln depend on the electron/positron suprathermality, as for

the higher (lower) values of je and jp the threshold acquire

higher (lower) values. We investigated the nature of soli-

tary structures in Fig. 1c, d in the parameter spaces of (f,

ln). A comparison between Fig. 1a with c (or between

Fig. 1b with d) shows that only compressive IA solitons

support in the present plasma model. To perform a para-

metric investigation on the existence region of solitary

wave solution we repeated Fig. 1 in spaces of (jp, ln), (je,

ln), (ri, ln), and (U, ln), in Fig. 2a–d, respectively. Fig-

ure 2a–b represents that deviation of electrons and posi-

trons from thermodynamics equilibrium increases the

primitive range of ln. The electron species and positrons

have similar physical properties, such as mass and

magnitude of electric charge. But, in the present model the

neutrality condition ne0 = ni0 ? np0 causes that the posi-

tron population becomes smaller than that of electrons.

Accordingly, the positron suprathermality has a weaker

effect on the existence domain of solitary structures.

Temperature of ions has a destructive effect on the exis-

tence domain of soliton solution, as an increase in ri leads

to decrease of primitive interval (Fig. 2c). The arbitrary

parameter U has also an important effect on the sign of

parameter S, and thus on the existence domain of soliton

solution. Figure 2d shows that the threshold values of ln
tend to the lower values for higher values of parameter

U. On the other hand, we know that the amplitude of the

soliton is controlled by U and its value should be chosen in

such a way that the amplitude remains small to establish

the assumption of weak nonlinearity. This fact imposes a

restriction on the upper value of U. Based on the above

findings, henceforth, we fix the value of U at 1 and we shall

see in the following that the assumption of weak nonlin-

earity will be satisfied by this choice. The nature of these

IA solitary structures investigated in panels (Fig. 2e–h). It

is clear that only in the case of compressive nature, the

solitary structures can exist. Thus, the solitary structures in

the present plasma model would be excited with positive

amplitude. This is a respectable result, because here we

have employed the reductive perturbation method, and for

this we have to restrict the spectrum indexes jp and je to

the region 3 \ jp, je [36]. We found that in this range, the

amplitude soliton takes only the positive values.

A three-dimensional plot of amplitude and width of

solitons in spaces (ln, f) and (ri, je) are depicted, respec-

tively in Fig. 3a–d. It can be seen that when ion number

density (obliqueness) increases (decreases) and approaches

to critical values (at S = 0), the amplitude of solitary

potential increases (Fig. 3a) while its width decreases

(increases) (Fig. 3b). Then, for values of f and ln greater

than critical values, the solitary structure disappears (see

also Fig. 1). Similarly, the influence of ion temperature and

electron suprathermality on the soliton amplitude and

width has been examined in Fig. 3c, d. Deviation of elec-

tron components from thermodynamic equilibrium (ion

temperature) increases (decreases) the amplitude of IA

solitons while its width experiences an inverse effect. This

is similar to that observed for IA solitons in a bi-super-

thermal electron plasma [46]. Consequently, decrease of

obliqueness, increase of ion number density, decrease of

ion temperature and also deviation from Maxwellian

behavior make the IA solitary structure more spiky.

On the other hand, to discuss the formation of IA soli-

tary waves in the present model, we have numerically

examined the variation of Sagdeev potential and corre-

sponding electrostatic potential. It should be noted that the

amplitude and thickness of the produced IA solitary waves
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are in relevance with two main characteristic values; /max

and wmin, where /max is the maximum value of / for which

w(/) = 0, and wmin is the minimum value of the Sagdeev

potential. Thus, we can predict the amplitude and thickness

of DA soliton as D ¼ /max=
ffiffiffiffiffiffiffiffiffiffiffiffi

wminj j
p

[69]. The corre-

sponding variations of /max or D against plasma parame-

ters are similar to the variation of the solitary waves

amplitude and width, respectively. These properties will be

investigated in the Fig. 4. To see what happens when the

electron suprathermal index je increases we have studied

the variation of Sagdeev potential with respect to the cor-

responding electrostatic potential in Fig. 4a for different

values of je. We observe that the height of IA soliton

increases as electrons deviate from thermodynamic equi-

librium. This means that the electron superthermality

makes the IA solitons more spiky. This is in good agree-

ment with that reported in Ref. [46] for IA solitons in

superthermal plasma with two-temperature electrons. Fig-

ure 4b shows that the effect of ion number density on the

behavior of Sagdeev potential. We can see that when the

ion number density increases, both two main characteristic

values /max and wmin will increase.

The behavior of IA solitary profile has been investigated

in spaces of (n, X) and (n, f) in Fig. 5a, b, respectively.

Figure 5a represents that how the position of pulse changes

in plane of (n, X). It is clear that the pulse moves toward the

negative direction of n as X increases. The one-dimensional

model cannot show such behavior. Figure 5b shows evo-

lution of IA solitary profile as a function of the n coordinate

and ion number density f. The IA solitary structure expe-

riences a decrease (increase) in amplitude (width) with a

decreasing f, as for low values of f the IA solitary structure

may be disappears. Such behavior could be predicted via

Fig. 1, which shows that the existence domain of solitons

decreases with a decreasing f.

Discussion on the special cases

Here, the nonlinear coefficient A, the dispersion coeffi-

cients B and C are dependent on the superthermal index

parameter j, ion concentration f, and ion temperature ri. In

the following, we consider two special cases of electron–

positron (i.e., f ? 0) and electron–ion (i.e., f ? 1) limits.

Fig. 1 The existence domain of solitary solution in space of (f, ln) in

two limits of a non-Maxwellian (with je, jp = 3) and b Maxwellian

plasma (je, jp = 100). The other parameters are ri = 0.1, rp = 1,

and lX = lY = 0.95. The panels a and b are revisited for polarity of

solitons, according to Eq. (23), in panels c and d, respectively
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However, a third case could also be considered for negative

ions, which refers to the e–p plasma under the effect of dust

grains similar to that discussed by Malik and Malik [70].

1st case: Two-component e–p limit (i.e., f ? 0) Let us

consider a special case for the limit of f ? 0, which

infers to a two-component electron–positron (e–p) plas-

mas. We know that for f & 0 (i.e., a pure e–p plasma) no

ions are present and therefore, no IA solitary structures

can exist. Thus, in this limit only high frequency waves

(such as electron acoustic waves) can propagate, this

means that in this limit the present plasma model does not

support the excitation of ion acoustic waves. Study of this

two-component limit is very interesting due to the fact

that e–p plasma is an important constituent of the early

Universe [4]. The nonlinear and dispersion coefficients of

KP equation in the e–p limit take the following limiting

form

Aðe�pÞ ¼ �
ðje�1=2Þðjeþ1=2Þ

ðje�3=2Þ2 � r2
p
ðjp�1=2Þðjpþ1=2Þ

ðjp�3=2Þ2

2
ffiffiffi

f
p je�1=2

je�3=2
þ rp

jp�1=2

jp�3=2

h i3=2

þ 1

2
ffiffiffi

f
p je � 1=2

je � 3=2
þ rp

jp � 1=2

jp � 3=2

� �1=2

;

Bðe�pÞ ¼ 1

2
ffiffiffi

f
p je�1=2

je�3=2
þ rp

jp�1=2

jp�3=2

h i3=2
;

Cðe�pÞ ¼ 1

2
ffiffiffi

f
p je�1=2

je�3=2
þ rp

jp�1=2

jp�3=2

h i1=2
: ð30Þ

In the Maxwellian limit (with je, jp ? ?) the above

expressions get the following form

bFig. 2 The existence domain of solitary solution: a in space of (jp,

ln) with ri = 0.1, rp = 1, f = 0.8, U = 1, je = 3, lX = lY = 0.95,

b in space of (je, ln) with ri = 0.1, rp = 1, f = 0.8, U = 1,jp = 3,

lX = lY = 0.95, c in space of (ri, ln) with rp = 1, f = 0.8, U = 1,

je = 3, jp = 3, lX = lY = 0.95, (d) in space of (U, ln) with

ri = 0.1,rp = 1, f = 0.8, je = 3, jp = 3, and lX = lY = 0.95. The

panels a–d are revisited for polarity of solitons, according to Eq. (23),

in panels e–h, respectively

Fig. 3 Three-dimensional plot of a the amplitude and b width of soliton in space of (f, ln) with ri = 0.1, rp = 1, U = 1, je = jp = 3,

lX = lY = 0.95. c The amplitude and d width of soliton in space of (je, ri) with f = 0.8, rp = 1, ln = 0.9, je = jp = 3, and lX = lY = 0.95
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A
ðe�pÞ
M ¼ rp þ f ð1 þ rpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1 þ rpÞ
p ;

B
ðe�pÞ
M ¼ 1

2
ffiffiffi

f
p

ð1 þ rpÞ3=2
;

C
ðe�pÞ
M ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1 þ rpÞ
p :

ð31Þ

The above Eqs. (30) and (31) show that how the coef-

ficients of KP equation are dependent on the concentration

of ions/positrons for low ion density and two Maxwellian

and superthermal limits. In this limit the dispersion coef-

ficient BM
(e–p) is smaller than the coefficient CM

(e–p) with

factor of (1 ? rp). Parameter S in the limit of low ion

density (i.e., f ? 0) and in the limit of Maxwellian low ion

density (i.e., je, jp ? ? and f ? 0) reduces respectively

to the following forms

S ¼ U
ffiffiffi

f
p je � 1=2

je � 3=2
þ rp

jp � 1=2

jp � 3=2

� �3=2

ln

� 1

2

je � 1=2

je � 3=2
þ rp

jp � 1=2

jp � 3=2

� �

l2
X þ l2

Y


 �

ð32aÞ

S ¼ U
ffiffiffi

f
p

ð1 þ rpÞ3=2
ln �

1

2
ð1 þ rpÞðl2X þ l2YÞ ð32bÞ

Figure 1 shows that the existence domain of solitary

structures is strongly dependent to the ion concentration and

suprathermality, as in the Maxwellian limit no soliton

solution exists for f & 0 (see Fig. 1b). However, in the non-

Maxwellian the existence domain of solitary solution

increases but again no soliton solution predicted for limit of

f & 0 (see Fig. 1a). Such results can be predicted by

Eqs. (32a) and (32b), as these equations show that for f & 0

the parameter S is always negative and therefore, the

Fig. 4 The behavior of Sagdeev potential w(/) with respect to the

electrostatic potential /, a for different values of electron suprath-

ermality index je with f = 0.8, b for different values of ion

concentration f with je = 3. The other parameters are rp = 1,

ln = 0.9, jp = 3, and lX = lY = 0.9

Fig. 5 Three-dimensional plot of the electrostatic potential: a in space of (n, X) with f = 0.8, and b in space of (n, f) with X = 1. The other

parameters are ri = 0.1rp = 1, ln = 0.9, je = jp = 3, lX = lY = 0.9, s = 0.1 and Y = 1
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essential condition for existence of solitary solution cannot

be satisfied at f & 0. The behavior of soliton amplitude and

width with respect to the ion concentration has been shown

respectively in Fig. 3a, b. It can be seen that in the limit of

f ? 0 the IA soliton becomes more spiky. Of course we see

that at f & 0 the solitary structure disappears and system do

not supports solitons in the pure e–p limit. It can also be

seen from Figs. 4b and 5b that the amplitude (width) of IA

soliton decreases (increases) with an decreasing f, and

according to Fig. 5b the IA soliton collapses at f & 0.

2st case; Two-component e–i limit (i.e., f ? 1) In the

contrast limit, we can consider the electron–ion limit

(f ? 1), these limits of plasma support ordinary IA waves.

The nonlinear and dispersion coefficients of KP equation in

the e–i limit reduce to the following form

Aðe�iÞ ¼ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�3=2
je�1=2

q

ðje � 1=2Þðje þ 1=2Þ
ðje � 1=2Þ2

þ 25ri

18

je � 1=2

je � 3=2
þ 1 þ 2f

2

� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�3=2
je�1=2

q ;

Bðe�iÞ ¼ 1

2
je�1=2
je�3=2

h i2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�3=2
je�1=2

q

;

Cðe�iÞ ¼
1 þ 5ri

3
je�1=2
je�3=2

h i

2
je�1=2
je�3=2

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

je�3=2
je�1=2

q ð33Þ

The above expressions can be obtained in the Max-

wellian limit (with je, jp ? ?) as follows

A
ðe�iÞ
M ¼

25ri

18
þ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

q ; B
ðe�iÞ
M ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

q ;

C
ðe�iÞ
M ¼

1 þ 5ri

3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
3
ri þ f

q ð34Þ

Equations (33) and (34) describe the limiting behavior

of the coefficients of KP equation. It is clear that all of the

coefficients A, B, and C in the limits of two-component e–i

and Maxwellian plasma, take a simple form as follows

A
ðe�iÞ
M ¼ 2 25ri

18
þ f


 �

B
ðe�iÞ
M , C

ðe�iÞ
M ¼ 1 þ 5ri

3


 �

B
ðe�iÞ
M . Similar

to the Maxellian e–p limit, in the Maxwellian e–i limit also

the dispersion coefficient CM
(e–i) is greater than the disper-

sion coefficient BM
(e–i). Parameter S in the limit of low ion

density (i.e., f ? 0) and in the limit of Maxwellian low ion

density (i.e., je, jp ? ? and f ? 0) reduces respectively

to the following forms

S ¼ Uln
je � 1=2

je � 3=2

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5ri

3
þ f

je � 3=2

je � 1=2

s

� 1

2
1 þ 5ri

3

je � 1=2

je � 3=2

� �

je � 1=2

je � 3=2
l2X þ l2Y

 �

ð35aÞ

S ¼ Uln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5ri

3
þ f

r

� 1

2
1 þ 5ri

3

� �

l2X þ l2Y

 �

ð35bÞ

Figure 1a shows that in the limit of f ? 1 (with je,

jp = 3) the existence domain of solitary solution lies in the

region of 0.79 \ ln \ 1. In the Maxwellian limit (with

je, jp = 100) the primitive region of ln for f ? 1 reduces

to 0.88 \ ln \ 1 (see Fig. 1b). Figure 2a, b show that in the

limit of f ? 1, the effect of positron suprathermality on the

primitive region is weaker than the electron suprather-

mality. Figure 3a shows that the amplitude of IA soliton

increases with an increasing f, while the soliton width

shows an inverse behavior (see Fig. 3b). This means that

the e–i limit supports smaller and wider solitons. Fig-

ures 4b and 5b verify that the amplitude (width) of IA

soliton increases (decreases) with an increasing f.

Conclusions

A three-dimensional e–p–i plasmas consisting of super-

thermal electrons and positrons have been considered to

examine the effects of transverse perturbation, electron/

positron superthermality and ion concentration on the

existence, formation and profile of IA solitary waves.

Using the reductive perturbation technique we derived a

KP equation describing the IA solitary structures. We

employed the energy integral equation to study the exis-

tence domains of the solitary structures. It is found that the

nature of solitary structures in the present model is com-

pressive. The main points of this investigation are sum-

marized as follows:

1. We have investigated the existence domain of solitary

solution through a parametric analysis and found that

this domain is dependent on the suprathermality, ion

concentration and ion temperature. While deviation of

electrons and positrons from thermodynamics equilib-

rium increases the primitive range of ln, an increase in

ion temperature (through ri) leads to decrease of the

primitive interval. Also the existence domain of soliton

increases with arbitrary parameter U. We found that in

the e–p limit no soliton solution supports by the

present model, while the primitive domain of solitons

increases with approaching to the e–i limit. In the non-

Maxwellian e–i limit, the existence domain of solitary

solution lies in the region of 0.79 \ ln \ 1, and in the

Maxwellian e–i limit the primitive region of ln reduces

to 0.88 \ ln \ 1.

2. It is found that the nonlinear evolution of IA solitary

waves in the present e–p–i plasma model is governed

by the KP equation, the coefficients of which are found

to be significantly modified by the effects of transverse
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perturbation, suprathermality, ion temperature, and ion

concentration.

3. The soliton amplitude and width are strongly dependent

on the suprathermality, ion concentration and ion

temperature. Effect of suprathermality causes to

increase (decrease) the amplitude (width) of the solitary

structures. This means that deviation of electrons/

positrons from thermodynamics equilibrium makes the

solitary structure more spiky. The soliton amplitude

increases with an increasing f, while the width of soliton

shows an inverse behavior. We found that the solitary

structure becomes narrower and larger in the e–i limit,

while the solitary structure collapses in the e–p limit.

We expect that the present investigation should be

useful for understanding the localized electrostatic distur-

bances in space, astrophysical and laboratory e–p–i plasma.
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