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Abstract
In this paper, we study some non-local measurements of quantum correlations in extended gravities with higher-order 
curvature terms, including conformal gravity. Precisely, we consider higher-curvature correction on holographic mutual 
information in conformal gravity. There is in fact one deformation in the states because of the higher-curvature corrections. 
Here by making use of the holographic methods, we study the deformation in the holographic mutual information due to the 
higher-curvature terms. We also address the change in the quantum phase transition due to these deformations.

Keywords Holographic mutual information · Higher-curvature correction

Introduction

Theories of gravity with higher-order curvature terms are 
of interest because of some reasons. For example, explor-
ing a suitable theory in four dimensions which have a well-
formulated quantized version is one of the motivations. It 
is known that by adding quadratic curvature terms to the 
Einstein gravity, one obtains a perturbatively renormaliz-
able theory. One of the most known higher-order gravity 
theories is the conformal gravity which is invariant under 
conformal transformations, and in four dimensions, the cor-
responding action is given by the square of the Weyl tensor. 
The conformal theory has unique Lagrangian and also leads 
to a renormalizable theory [1]. The equations of motion are 
of fourth order, and despite its renormalizability, the theory 
contains massive spin-2 and the massless graviton where the 
kinetic term of the massive modes has the wrong sign, so 
they are ghostlike [2, 3] (see also [4–7]).

There are some deep relations between conformal grav-
ity and Einstein gravity in four dimensions. It was shown 
that the renormalized shell action of Einstein gravity in an 
asymptotically hyperbolic Einstein spaces when evaluated 
on an Einstein solution is indeed given by the action of con-
formal gravity [8]. Moreover, it is claimed that the physical 

content of Einstein and conformal theories would be the 
same after removing the ghost [9].

In this paper, we are interested in studying the quantum 
correlation between two systems in four-dimensional con-
formal gravity. In other words, we want to address the effect 
of deformation in the states because of the higher-curvature 
corrections. Corresponding measure is the mutual informa-
tion. As a matter of fact, the entanglement entropy is a meas-
ure of storing quantum information in a quantum state where 
it is indeed a remarkable tool in studying quantum systems. 
Entanglement entropy has indeed been deduced from the 
first principles of quantum mechanics. However, when we 
want to evaluate the amount of the correlation between two 
systems, the mutual information is mostly used. In order to 
compute the mutual information, one should find the cor-
responding expression for the entanglement entropy.

In four dimensions in Ref. [10], the holographic entangle-
ment entropy of conformal gravity was studied in details, 
and in this paper, we will consider the n-partite information 
in this theory. There is in fact one kind of deformation in the 
states of conformal field theory in this model: the higher-
curvature terms which could address the low-energy quan-
tum excitation corrections. Precisely, in this paper, we are 
interested in the effect of the low-energy quantum excitation 
on the quantum correlation between two systems. To do so, 
we use the holographic methods which powered by the Anti-
de Sitter/conformal field theory (AdS/CFT) correspond-
ence. This correspondence is in fact a relationship between 
strongly correlated many-body systems and the classical 
dynamics of gravity, noting that in one higher dimension, 
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the gravity is dealing with classically. In the reverse side, 
on the other hand, this correspondence may improve our 
knowledge of geometry and quantum gravity in the reverse 
side. This correspondence also covers topics related to the 
condensed matter theory [11–14]. In this paper, by making 
use of the holographic method, we investigate the effect of 
including higher-order curvature terms in the gravitational 
action on holographic mutual information. In the model 
considered in this work, the gravitational action is given by 
four-dimensional Weyl-square tensor term, and we are going 
to study the change of holographic mutual information for 
strip entangling region due to these corrections.

In four dimensions, the action of the conformal gravity 
is given by

where C���� is the Weyl tensor and � is a dimensionless 
coupling constant. The equations of motion upon varying 
the metric is called the Bach equation given by

the above equations admit black hole solutions (see Ref. 
[15]) which will be discussed later. The aim is to consider 
holographic mutual information in this theory, and as men-
tioned to do so first, one should obtain the corresponding 
expression for the holographic entanglement entropy. We 
should emphasize that in the Einstein’s theory of gravity, 
in order to compute holographic entanglement entropy, one 
should use Ryu and Takayanagi proposal [16], where in 
the boundary for a given entangling region, the entangle-
ment entropy is related to the minimal surface in the bulk 
whose boundary coincides with the boundary of the entan-
gling region. In the extended version of this proposal for 
time-dependent geometries, one should use the extremal 
surface [17]. However, it is important to mention that this 
proposal only works for the Einstein gravity. So that in order 
to explore higher-derivative theories, this proposal should be 
replaced by some other recipes [18–22]. Some related works 
in this subject can also be found, for example, in [23, 24] and 
references therein.

Here, we will follow the proposal of [19] and review 
the procedure of computing the most general form of holo-
graphic entanglement entropy in higher-derivative theories 
which will be the subject of Sect. 3. In Sect. 4 we compute 
the holographic entanglement entropy (HEE) for strip entan-
gling region. In Sect. 5, we consider tripartite information 
and its sign in conformal gravity. Finally, the subject is con-
cluded in the last section.

(1)
I =

−�

32� ∫ d4x
√
−gC����C
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=
−�

32� ∫ d4x
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−g
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,

(2)2∇�∇�C
��

��
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Holographic entanglement entropy 
in higher‑order theories

Identifying the behaviors of correlation functions of local 
operators becomes an important issue if one wants to study 
a given field theory. Entanglement entropy (or geometric 
entropy) similar to other non-local quantities, e.g., Wilson loop 
and correlation functions, is an important non-local measure of 
different degrees of freedom in a quantum mechanical system 
[25]. Entanglement entropy measures how a given quantum 
system is entangled or strongly correlated. It is defined as the 
Von Neumann entropy when we trace out degrees of freedom 
inside a d-dimensional space-like sub-manifold in a given 
d + 1 dimensional quantum field theory. To define entangle-
ment entropy in its spatial (or geometric) description, let us 
divide a constant time slice into two spatial regions A and 
B where they are complement to each other. Therefore, the 
entanglement entropy is the entropy for an observer sitting in 
region A in a way that there is no accessibility to the region B 
as the information is lost by the tracing out in region B. By this 
definition, the corresponding total Hilbert space can be written 
in a specific partitioning as H = HA ⊗HB . By tracing out the 
degrees of freedom that live in B, the reduced density matrix 
for region A can be computed as �A = TrB� where � is the total 
density matrix. The entanglement entropy is then given by 
S = −Tr �A log �A, which is indeed the von Neumann formula.

The entanglement entropy is directly related to the degrees 
of freedom, and for a local d-dimensional quantum field 
theory, it follows the area law that results in a UV-divergent 
theory. The coefficient of the most divergent term is propor-
tional to the area of the entangling surface, and this is indeed 
the area law which is due to the infinite correlations between 
degrees of freedom near the boundary of entangling surface. It 
is worth to mention that computing the entanglement entropy 
in the context of field theory is indeed a difficult task; how-
ever, the AdS/CFT correspondence provides a rather simple 
geometric structure to find the entanglement entropy. Interest-
ingly, making use of the Ryu–Takayanagi proposal, one can 
define entanglement entropy in terms of the minimal area of 
codimension-two hypersurface in the bulk. This elegant pro-
posal shows the power of AdS/CFT techniques in computing 
some quantities in strongly coupled field theories. On the other 
hand, for actions with higher-derivative terms, for example, in 
the case of squared-curvature terms with the following action

one should use other proposal. Note that in the above equa-
tions GN stands for Newton’s constant and the cosmological 

(3)
I =
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constant is Λ = −
d(d−1)

2LAdS
 . It was shown that in this case the 

holographic entanglement entropy is given by [19],

In the above formula, ni (i = 1, 2) are the orthogonal normal 
vectors on the codimension-two hypersurface and Σ and K(i)

��
 

are the extrinsic curvature tensors on Σ defined as

where � is +1 for time-like and −1 for space-like vectors. It 
is noted that the first term in (4) is just the Ryu–Takayngi 
formula which appears for Einstein gravity part.

Corresponding equations of motion of (3) are given by

There is a homogeneous and isotropic black brane solution 
where in four dimensions can be written as follows

where L stands for the curvature. We will return to this solu-
tion later. In what follows, we use the conformal gravity and 
compute the holographic entanglement entropy, and also we 
find the expression for the mutual information in this theory.

Holographic entanglement entropy: 
conformal gravity

As mentioned, the pure conformal gravity can indeed be 
obtained by (1). It was shown that the theory admits black 
brane solution (7) where one has
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2
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,

where a and m are the two parameters of the solutions. Note 
that by setting a = 0 in the above solutions, one gets AdS 
black hole (brane) solutions of the Einstein gravity in four 
dimensions. Now the aim is to compute the holographic 
entanglement entropy for this theory. We use a strip as the 
entangling region on the boundary.

Strip entangling region

Now let us use a strip as an entangling region in the boundary 
and find the related holographic entanglement entropy. To do 
so, we define the following strip:

where � is the length of the strip and H plays an infrared reg-
ulator distance along the entangling surface and we assume 
H ≫ � and. One can use the following parametrization for 
the codimension-two hypersurface in a constant time slice as

so that the corresponding induced metric becomes

note that in the above formula the prime is the derivative 
with respect to �. For two hypersurfaces which are given by 
t = 0 and x1 − x(�) = 0, one can find the orthogonal normal 
vectors as follows

And the extrinsic curvatures of the hypersurface are

where
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Thus for this region, the entanglement entropy of (4) 
becomes

and this is the entropy functional which should be mini-
mized. Note that in (14) s1 and s2 are given by

We should emphasize that the above entanglement func-
tional has been obtained for general higher-derivative action 
(3), though for our case in conformal gravity one should set 
a = −

1

3
 , b = 2 and c = −1 . Now with these parameters, one 

can compute the holographic entanglement entropy. Before 
going to details, it is important to mention that in the final 
expression of the entanglement entropy, neither L nor the 
radial coordinate � appeared explicitly. This is an interesting 
observation leads to the fact that the resultant entanglement 
entropy does not have UV-divergent terms as long as the 
integrand does not diverge at � = 0 , for more details see 
[10].

Holographic entanglement entropy

In this section, we find the corrections to the entanglement 
entropy for conformal gravity. This is followed by minimiz-
ing the entropy functional (14) in order to find the profile 
of the hypersurface which has been parametrized by x(�) . It 
is noted that x(�) is supposed to be a smooth differentiable 
function with the condition x(0) = �∕2 . To proceed, one 
may consider the entropy functional as a one dimensional 
action in which the corresponding Lagrangian is independ-
ent of x(�) which leads to a conservation law. In other words, 
let us write (14) as S = ∫ d�L , and thus the equation of 
motion becomes

(13)
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2
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)
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where C is a constant which can be fixed by imposing the 
condition that at the turning point �t of the hypersurface in 
the bulk one has x�(�t) → ∞ . After minimizing the func-
tional and using the condition of the hypersurface turning 
point, one gets the following conserved quantity along the 
radial profile

In principle, the above equation allows us to find x�(�) . In 
general, it is a difficult task to solve (17) to find a proper pro-
file since it is a cubic equation for x�(�) . However, in some 
special cases, the semianalytic solutions might be obtained. 
In the following, we will develop the behavior of HEE of 
a conformal field theory whose states are in fact under the 
excitation of the higher-curvature terms due to the conformal 
gravity. Up to the leading order and after making use of the 
following expression

one obtains

which can be inverted to find the turning point of the pro-
posed hypersurface in the bulk as follows

Gathering all the results, one finally gets the holographic 
entanglement entropy for a strip of length � for a black hole 
solution in conformal gravity as follows

To end up this section, we would like to mention that the 
above expression has no UV-divergent terms (for more 
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details see Ref. [10]). In what follows, we will consider the 
quantum correlation for two and more systems.

Holographic n‑partite information

In the context of the quantum information, if one interests 
in evaluating the amount of correlations between two or 
more subsystems, mutual and n-partite information are 
useful quantities namely these are regarded as criterion 
that indicates the amount of shared information, or more 
precisely the correlation, between the entangling regions 
[26]. Concerning the peculiarities of holographic mutual 
and tripartite information, it is worth investigating the 
effect of higher-order terms, e.g., conformal gravity, on 
these quantities which is the main task of this section.

First let us consider two separated systems, e.g., A1 and 
A2 , and we want to identify the amount of entanglement (or 
information) that these two systems can share. So that as 
mentioned the mutual information would be a proper meas-
ure which is given by [27].

where S(Ai) ’s are the entanglement entropy of the region 
Ai and S

(
A1 ∪ A2

)
 stands for the entanglement entropy for 

the union of two entangling regions.Actually, there are two 
options in computing the minimum area for two systems, 
precisely as Fig. 1 shows, and depending on the separation 
of two systems, one can use Sdis or Scon for the entangle-
ment entropy of the union part. For the union of two strips 
with the same length � separated by distance h, there are 
two different configurations which are the disconnected and 
connected ones, and the one with minimum area should be 
chosen; these configurations are schematically shown in 
Fig. 1. Therefore, due to the transition of S

(
A1 ∪ A2

)
 from 

Sdis. = 2S(�) to Scon. = S(2� + h) + S(h) and vice versa, 
there is a phase transition in the mutual information. In 
other words, holographic mutual information vanishes or 
takes a finite value depending on the values of the entangling 
regions lengths and their separation. In other words, one has

(22)I
(
A1,A2

)
= S

(
A1

)
+ S

(
A2

)
− S

(
A1 ∪ A2

)
,

and it can be shown that there is a critical value of distance, 
say as r1 , where the mutual information undergoes a phase 
transition. Interestingly, in the context of the quantum 
information, it is shown that mutual information undergoes 
a first order phase transition due to a discontinuity in its 
first derivative [28]. Therefore, via the holographic methods 
such phase transition gets a rather simple explanation, e.g., 
Depending on the value of h∕� the corresponding minimal 
configurations, i.e., Ryu–Takayanagi surfaces, may change 
from one to another.

Now the aim is to compute the effect of higher-curvature 
term on the mutual information. To do so first, let us obtain 
the corrections to the mutual information.

The last term in Eq. (24) appears due to the effect of the 
conformal gravity.

This study can be generalized for three and more sys-
tems with topological order, where the tripartite and 
n-partite information might be utilized as a quantity to 
characterize entanglement in states of the system. Actu-
ally, this quantity could measure the amount of informa-
tion or correlations (both classical and quantum) between 
the systems. More generally for a subsystem consisting of 
n disjoint regions Ai, i = 1,… , n, the n-partite information 
is defined as follows [29]

where again S(Ai ∪ Aj ⋯) is the entanglement entropy of the 
region Ai ∪ Aj … with the rest of the system. It is worth to 
mention that this definition gives us 1-partite information 
and 2-partite information which are indeed the entanglement 
entropy and mutual information, respectively. One may use 
the definition of the mutual information to write the above 
equation as follows

(23)

I
(
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)
=

{
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h
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�
,
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+
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)2
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4
)2
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.

(25)

I[n](A{i}) =

n∑
i=1

S(Ai) −

n∑
i<j

S(Ai ∪ Aj)

+

n∑
i<j<k

S(Ai ∪ Aj ∪ Ak)

−⋯ − (−1)nS(A1 ∪ A2 ∪⋯ ∪ An),

Fig. 1  Schematic representation of two different configurations for 
computing the entanglement entropy of union of regions
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It is worth mentioning that although the mutual information 
is always non-negative, the n-partite information I[n] could 
have either signs. In the literature of information theory for 
a subsystem consisting of n disjoint regions, one may define 
another quantity which, indeed, is a direct generalization of 
mutual information (known as multi-partite entanglement) 
defined as (see for example [25])

In terms of the mutual information, it may be recast into the 
following form

(26)

I[n](A{i}) =

n∑
i=2

I[2](A1,Ai) −

n∑
i=2<j

I[2](A1,Ai ∪ Aj)

+

n∑
i=2<j<k

I[2](A1,Ai ∪ Aj ∪ Ak) −⋯

+ (−1)nI[2](A1,A2 ∪ A2 ⋯ ∪ An).

(27)J[n](A{i}) =

n∑
i

S(Ai) − S(A1 ∪ A2 ∪⋯ ∪ An).

(28)
J[n](A{i}) = I[2](A1,A2) + I[2](A1 ∪ A2,A3)

+⋯ + I[2](A1 ∪ A2 ⋯ ∪ An−1,An).

where S
(
A1,A2,A3

)
 is the entanglement entropy for the 

union of three subsystems. To compute the holographic tri-
partite information by pursuing the Ryu–Takayanagi pro-
posal of finding the minimal surface, the union terms of 
S(Ai ∪ Aj) and S

(
A1 ∪ A2 ∪ A3

)
 should be considered in more 

details. In Fig. 2, we have plotted all possible diagrams of 
the union of three regions.

Thus, S(Ai ∪ Aj) and S
(
A1 ∪ A2 ∪ A3

)
 are given by the 

minimum among the possible diagrams. More generally, 
for three strips with entangling lengths �1,�2 and �3 with 
separations h1 and h2 , there are, in fact, 11 possible con-
figurations for unions of regions:

and also one has
(30)

S
(
A1 ∪ A2

){ S(�1) + S(�2) ≡ S1
S(�1 + h1 + �2) + S(h1) ≡ S2

,

S
(
A1 ∪ A3

){ S(�1) + S(�3) ≡ S3
S(�1 + h1 + �3 + h2 + �3) + S(h1 + �2 + h2) ≡ S4

,

S
(
A2 ∪ A3

){ S(�2) + S(�3) ≡ S5
S(�2 + h2 + �3) + S(h2) ≡ S6

,

Fig. 2  Schematic representation 
of competing configurations in 
the computation of S(Ai ∪ Aj) 
and S

(
A1 ∪ A2 ∪ A3

)

Note that this quantity is finite for a system with n disjoint 
regions and is zero for n un-correlated regions. In particular, 
the tripartite information was first introduced as the topo-
logical entropy and defined by

(29)

I
[3]
(
A1,A2,A3

)
= S

(
A1

)
+ S

(
A2

)
+ S

(
A3

)
− S

(
A1 ∪ A2

)
− S

(
A1 ∪ A3

)
− S

(
A2 ∪ A3

)
+ S

(
A1 ∪ A2 ∪ A3

)
,

(31)S
�
A1 ∪ A2 ∪ A3

�
⎧
⎪⎪⎨⎪⎪⎩

S(�1) + S(�2) + S(�3) ≡ S7
S(�1) + S(�2 + h2 + �3) + S(h2) ≡ S8
S(�1 + h1 + �2) + S(h1) + S(�3) ≡ S9
S(�1 + h1 + �2 + h2 + �3) + S(h1 + �2 + h2) + S(�2) ≡ S10
S(�1 + h1 + �2 + h2 + �3) + S(h1) + S(h2) ≡ S11

.

From these possible configurations, the minimum expression 
should be used in each case so the holographic tripartite 
information can be written as follows

For our case in hand, for three strips with the same length 
and separation, the above relations reduce to

(32)

I
[3](A1,A2,A3) = S(�1) + S(�2) + S(�3) −min

{
S1, S2

}
−min

{
S3, S4

}
−min

{
S5, S6

}
+min

{
S7, S8, S9, S10, S11

}
.
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Therefore, one can write

Therefore, the holographic tripartite information for three 
entangling regions with the same length � separated by dis-
tance h is given by

which is the same as mutual information case, there are two 
critical values of separations where the tripartite information 
changes its value (Fig. 3).

Conclusion

In this paper, we studied the effect of higher-order deriva-
tive terms on mutual and tripartite information. In principle, 
higher-order theories of gravity including the conformal 
gravity are interesting because such theories could provide 
an effective description of quantum corrections and also 
probe the finite coupling effects via making such correc-
tions to the Einstein gravity theory in the bulk space. We 

S
�
Ai ∪ Aj

�⎧⎪⎨⎪⎩

2S(�) ≡ S1
S(2� + h) + S(h) ≡ S2
S(3� + 2h) + S(� + 2h) ≡ S3

S
�
A1 ∪ A2 ∪ A3

�⎧⎪⎨⎪⎩

3S(�) ≡ S4
S(3� + 2h) + S(� + 2h) + S(�) ≡ S5
S(2� + h) + S(�) + S(h) ≡ S6
S(3� + 2h) + 2S(h) ≡ S7

(33)

I
[3]
(
A1,A2,A3

)
= 3S(�) − 2min

{
S1, S2

}
−min

{
S1, S3

}
+min

{
S4, S5, S6, S7

}
.

(34)

I[3]
�
A1,A2,A3

�
=

⎧⎪⎨⎪⎩

S(�) − 2S(h + 2�) + S(2h + 3�), 0 <
h

�
< r1

2S(h) − 3S(�) + S(2h + 3�), r1 ≤ h

�
< r2

0, r2 ≤ h

�

used conformal gravity theory as an example of higher-
order derivative in four-dimensional space-time and for 
a strip entangling region, and obtained the corrections to 
holographic mutual information as well as holographic tri-
partite information. As mentioned for two disjointed sys-
tems, the mutual information is usually used as a measure 
of quantum entanglement that two systems can share. The 
mutual information can also be utilized as a useful probe 
to address certain phase transitions and critical behavior in 
these theories.

The main result of this paper can be described as follows: 
It was shown that the Ryu–Takayanagi entropies obey the 
inequality

for any regions A1,A2,A3 in the boundary field theory [35]. 
On the other hand, Ryu–Takayanagi formula applies only 
to field theories dual to Einstein gravity. We considered the 
effect of higher-curvature corrections to the bulk gravita-
tional action (conformal gravity), and showed that for our 
case namely for a strip again one has the above inequality. 
From the definition of the tripartite information, one can 
write the tripartite information in terms of the mutual infor-
mation as

Having noted that the tripartite information is negative, one 
gets

in the context of quantum information theory, for any meas-
ure of the information say as F(Ai) , the inequality of the 
form F(A1,A2) + F(A1,A3) ≤ F(A1,A2 ∪ A3) is known as 
monogamy relation which implies that the holographic 
mutual information is monogamous. This features are 

(35)I[3](A1,A2,A3) ≤ 0

(36)
I[3](A1,A2,A3) = I(A1,A2) + I(A1,A3) − I(A1,A2 ∪ A3).

(37)I(A1,A2) + I(A1,A3) ≤ I(A1,A2 ∪ A3),

Fig. 3  Numerical results for holographic mutual information (left plot) and tripartite information (right plot) as a function of the separation dis-
tance: for � = 1.1,… , 1.5 . Note in all cases I

(
�1,�2

)
 is positive where as tripartite information remains negative
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characteristic of measures of quantum entanglement. In 
the context of quantum information theory, the monogamy 
property is related to the security of quantum cryptography, 
since, unlike classical correlation, quantum entanglement 
is not a shareable resource. In other words, entangled cor-
relations between A1 and A2 cannot be shared with a third 
system A3 without spoiling the original entanglement [29]. 
We showed that adding higher-order terms at the gravity side 
does not break the monogamy feature of the information at 
the field theory side.

In this direction, considering time-dependent back-
grounds and check how the sign of these quantities changes 
during the thermalization process can be a challenging work. 
We leave further investigations to future works.
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Appendix: some useful mathematical 
relations

Here in this appendix, we present some useful relations that 
we have used in this paper. Let us choose a five-dimensional 
metric with coordinate t, r, x, y, z as follows

The determinant of the induced metric reads as

Therefore, two normal vectors are obtained as

The nonzero component of the extrinsic curvature ten reads 
as

⎛⎜⎜⎜⎜⎜⎜⎝

−
f (r)

r2
0 0 0 0

0
1

r2f (r)
0 0 0

0 0
1

r2
0 0

0 0 0
1

r2
0

0 0 0 0
1

r2

⎞⎟⎟⎟⎟⎟⎟⎠

1

r6f (r)
+

x�(r)2

r6

⎧⎪⎨⎪⎩
1�
r2

f (r)

, 0, 0, 0, 0

⎫
⎪⎬⎪⎭
,

�
0,−

x�(r)√
r2f (r)x�(r)2 + r2

,
1√

r2f (r)x�(r)2 + r2
, 0, 0

�

and also one finds
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