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Abstract The effect of linear ion Landau damping on

weakly nonlinear as well as weakly dispersive low-fre-

quency waves in a dusty plasma is investigated. The stan-

dard perturbative approach leads to the Korteweg–de Vries

(KdV) equation with a linear Landau damping term for the

dynamics of the low-frequency nonlinear wave. Landau

damping causes the wave amplitude to decay with time and

the dust charge variation enhances the damping rate.

Keywords Landau damping � Dusty plasma � Korteweg–

de Vries equation � Dust acoustic wave

Introduction

The Landau damping is a physical phenomenon which is

related to the resonant particles (the particles whose velocity is

nearly equal to the wave phase velocity) [1, 2]. The resonant

particles may include both trapped and un-trapped particles.

The usual ion acoustic wave in electron-ion plasma suffers

Landau damping due to these resonant particles [1–3]. How-

ever, the presence of charged dust grains in a plasma gives rise

to very low-frequency new mode (*10–15 Hz), called dust

acoustic wave (DAW) [4–8], where the inertia is provided by

the charged and massive dust grains. In the linear theory, it has

already been seen that this mode also suffers Landau damping

due to the resonant wave–particle interactions [9, 10]. Another

well known non-Landau damping mechanism in a dusty

plasma is due to the dust charge variations in the presence of

waves [11, 20]. Actually, dust grains immersed in a plasma

can exhibit self-consistent charge variations in response to the

surrounding plasma oscillations and thus become a time-de-

pendent dynamical variable which causes an anomalous dis-

sipation in a dusty plasma.

In the nonlinear theory, the linear electron Landau damping

effects on ion acoustic solitary wave have been investigated in

an electron-ion plasma neglecting the particle trapping effect

under the assumption that the particle trapping time is much

larger than the Landau damping time [1, 13]. It has been

shown that the solitary wave amplitude decays with time due

to the linear electron Landau damping [13]. Later, theoretical

[14, 15] and experimental [16] results show similar behavior.

The wave–particle interactions also cause the oscillations in

the tail of the solitary waves in which the shape of the tail

depends on the strength of the Landau damping [17]. Recent

experimental observation also predicts the formation of ion

acoustic shock wave due to the Landau damping induced

dissipation [18]. However, no study of nonlinear DAW is

carried out including Landau damping in a dusty plasma. In

this paper, the effect of linear ion Landau damping on dust

acoustic solitary wave has been investigated neglecting the

particle trapping effect. The instantaneous dust charge varia-

tion effects are also incorporated.

The manuscript is organized in the following manner.

Formulation of the problem including the physical

assumptions and basic equations is described in Sect. 2.

The Korteweg–de Vries (KdV) equation with linear

damping is derived using the reductive perturbation tech-

nique in Sect. 3. The analytical solution and the effect of
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Landau damping on the solitary wave solution are inves-

tigated in Sect. 4. The results of the present investigation

are summarized in Sect. 5.

Formulation of the problem and the basic
equations

A fully ionized, un-magnetized plasma consisting of elec-

trons, ions, and negatively charged dust grains are considered.

The plasma is assumed to be in its equilibrium state at �1,

where electrostatic potential / ¼ 0, electron number density

ne ¼ ne0, ion density ni ¼ ni0, dust density nd ¼ nd0, and dust

charge qd ¼ �zde, so that the quasi-neutrality condition ne0 þ
zdnd0 ¼ ni0 is satisfied, where zd is the number of electrons

residing on the dust grains, nj is the number density of the

jth ðe ¼ electron ; i ¼ ion and d ¼ dust grainÞ spe-

cies, and nj0 be its equilibrium value.

The charge on the dust grain varies continuously in space

(x) and time (t). The temperature of dust grain is very low

compared to that of electrons ðTeÞ and ions (TiÞ. Therefore,

the dust grains are effectively cold with respect to the elec-

trons and ions. The dust grains are moving with fluid velocity

U. It is convenient to express all the variables in non-di-

mensional form before going to the details of the basic for-

malism of the problem. For this purpose, let us introduce the

following normalization: U ¼ e/=Ti, N ¼ nd=nd0,

Ne ¼ ne=ne0, Ni ¼ ni=ni0, �x ¼ x=kD, �t ¼ xpdt, �U ¼ U=Cs

and �qd ¼ qd=zde ¼ �1 þ DQ, and DQ is the fluctuating dust

charge. Here, xpd ¼ ðz2
de

2nd0=�0mdÞ1=2
is the dust plasma

frequency, kD ¼ ð�0Ti=ni0e
2Þ1=2

is the plasma Debye length,

Cs ¼ ðzdTi=mdÞ1=2
is the dust acoustic speed, di ¼ ni0=ne0,

r ¼ Ti=Te, and z ¼ z2
de=4p�0rdTe are the dimensionless dusty

plasma parameters (the ratio of the electrostatic energy of a

dust grain of radius rd to the electron thermal energy).

Hereafter, we will be using these new variables and remove

all the bars for simplicity of notations.

We assume that di mi=mdð Þ1=2� r3=2 me=mið Þ1=2
, so that

the electron Landau damping effect is neglected. The dust

Landau damping effect is also neglected as the dust thermal

velocity is much smaller than the wave phase velocity.

Moreover, we are interested to study the low-frequency

nonlinear DAW and, therefore, we neglect the inertia of the

electrons compared to the dust grains. On this slow time

scale, the electrons are in local thermodynamic equilibrium

and their densities are modeled by the Boltzmann distri-

bution: ne ¼ ne0 expðrUÞ:
The ions are treated kinetically, so that their number

densities are given by

Ni ¼
Z þ1

�1
fdV : ð1Þ

The velocity distribution function of ion f (normalized)

satisfies the following Vlasov–Boltzmann equation:

M
of

ot
þ V

of

ox
� oU

ox

of

oV
¼ 0: ð2Þ

Here, the parameter M ¼ zdmi=mdð Þ1=2
represents the effect

of finite ion inertia on propagation characteristics of DAW.

The ion velocity V is normalized in units of ion thermal

velocity Vti ¼ Ti=mið Þ1=2
and velocity distribution function f

is normalized byVti=ni0. It is to be noted that when the plasma

is in thermodynamical equilibrium, the velocity distribution of

the ion is given by the following Maxwellian distribution:

f ð0Þ ¼ 1ffiffiffiffiffiffi
2p

p expð�V2=2Þ ð3Þ

which is also the solution of Eq. (2) in the absence of

external force ðU ¼ 0Þ.
Finally, the nonlinear propagation of low phase velocity

(in comparison with the electron and ion thermal veloci-

ties) DAW is governed by the following normalized basic

equations:

oN

ot
þ oðNUÞ

ox
¼ 0 ð4Þ

oU

ot
þ U

oU

ox
¼ �ðDQ� 1Þ oU

ox
ð5Þ

o2U
ox2

¼ 1

di � 1
expðrUÞ � di

di � 1
Ni � ðDQ� 1ÞN

� �
: ð6Þ

The normalized dust grain charging equation becomes

xpd

md

� �
dDQ

dt
¼ Ie þ Ii

mdzde
ð7Þ

where md ¼ rdx2
pið1 þ zþ rÞ=

ffiffiffiffiffiffi
2p

p
Vti is the dust charging

frequency and xpi is the ion plasma frequency. The

expressions for electron current ðIeÞ and ion current ðIiÞ for

negatively charged dust grains are given by

Ie ¼ �pr2
de

ffiffiffiffiffiffiffiffi
8Te

pme

r
ne0 expðrUÞ exp½zðDQ� 1Þ� ð8Þ

and

Ii ¼ pr2
de

ffiffiffiffiffiffiffiffi
8Ti

pmi

r
ni0Ni 1 � z

r
ðDQ� 1Þ

h i
: ð9Þ

Korteweg–de Vries equation with Landau
damping

To study the propagation characteristics of finite amplitude

nonlinear DAW, the reductive perturbation technique is

adopted. Accordingly, the stretched co-ordinates and power
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series expansion (in powers of �) of dependent variables are

as follows:

n ¼
ffiffi
�

p
ðx� KtÞ; s ¼ �3=2 t ð10Þ

h ¼ hð0Þ þ � hð1Þ þ �2hð2Þ þ � � � ð11Þ

where � is the smallness parameter that indicates the

magnitude of the rate of change and K is the normalized

wave phase velocity. It is to be noted that hð0Þ ¼ 1ð0Þ,
h � NjðU;UÞ, and h ¼ f ð0Þ for h � f . To incorporate the

effects of ion inertia on finite amplitude nonlinear DAW,

the following scaling is assumed which is consistent with

the perturbation:

M�Oð�Þ ) M ¼ l�: ð12Þ

Substituting Eqs. (10)–(12) in Eqs. (1)–(8) and then

equating different powers of � on both sides of these

equations, the following relations are obtained. In the

lowest order of �, Eqs. (1)—(8) reduce to

N
ð1Þ
i ¼

Z þ1

�1
f ð1ÞdV ;KNð1Þ ¼ Uð1Þ ð13Þ

KUð1Þ ¼ �Uð1Þ;DQð1Þ ¼ r
di � 1

Uð1Þ � di
di � 1

N
ð1Þ
i þ Nð1Þ:

ð14Þ

The Vlasov–Boltzmann equation (2) for ions at the order of

�3=2 yields

V
of ð1Þ

on
þ Vf ð0Þ

oUð1Þ

on
¼ 0: ð15Þ

This equation does not have unique solution [13]. How-

ever, the non-uniqueness can be removed by including a

of ð1Þ=os term [13] in Eq. (15), and thus, we have the fol-

lowing equation:

l �2 of
ð1Þ
�

os
þ V

of
ð1Þ
�

on
¼ �Vf ð0Þ

oUð1Þ

on
: ð16Þ

Then, f ð1Þ is uniquely determined from the solution of the

Eq. (16) by taking f ð1Þ ¼ lim�!0 f
ð1Þ
� [13]. Finally, we get

f ð1Þ ¼ �f ð0ÞUð1Þ: ð17Þ

It is well known that the non-steady dust charge variations

produce an anomalous dissipation which leads to colli-

sionless, non-Landau wave damping in a dusty plasma

[19–22]. However, for a typical laboratory dusty plasma

[6], dust oscillation frequency xpd � 102 s �1 and dust

charging frequency md � 108 s�1 imply xpd=md � 10�6,

and thus, the charging equation (7) can be approximated as

Ie þ Ii � 0; ð18Þ

so that the charge on the dust grains instantaneously

reaches its equilibrium value, which is known as ‘‘adiabatic

variation’’ of dust charge. In this adiabatic approximation,

Eq. (18) together with Eqs. (8) and (9), at the order of �

gives the following relation:

DQð1Þ ¼ bd N
ð1Þ
i � rUð1Þ

� �
; bd ¼ ðzþ rÞ

z 1 þ zþ rð Þ : ð19Þ

This equation together with Eqs. (13)–(15), (19) self-con-

sistently determined the (normalized) phase velocity of

DAW

K2 ¼ ðdi � 1Þ
ðrþ diÞ þ bdð1 þ rÞðdi � 1Þ : ð20Þ

In the absence of dust charge variations ðbd ¼ 0Þ, this

Eq. (20) can be written in dimensional form, as

x2 ¼ k2C2
s ðdi � 1Þ

ðdi þ rÞ ;

which is the phase velocity of the usual DAW in the long

wavelength limit [4].

In the next higher order of �, Eqs. (1), (2) and (4)–(6)

yield the following relations:

oNð1Þ

os
þ oðNð1ÞUð1ÞÞ

on
¼ K

oNð2Þ

on
� oUð2Þ

on
ð21Þ

oUð1Þ

os
þ DQð1Þ oU

ð1Þ

on
þ Uð1Þ oU

ð1Þ

on
¼ K

oUð2Þ

on
þ oUð2Þ

on
ð22Þ

o2Uð1Þ

on2
¼ r

di � 1
Uð2Þ þ r2

2ðdi � 1ÞU
ð1Þ2

� di
di � 1

N
ð2Þ
i

� DQð1ÞNð1Þ � DQð2Þ þ Nð2Þ
ð23Þ

N
ð2Þ
i ¼

Z þ1

�1
f ð2ÞdV : ð24Þ

To get the unique solution for f ð2Þ of Eq. (2), proceeding as

before, a term containing time derivative of f ð2Þ (as in the

lowest order case) is included in the equation of order of

�5=2 of Eq. (2), and thus, we obtain

l�2 of
ð2Þ
�

os
þ V

of
ð2Þ
�

on
¼ � Klf ð0Þ

oUð1Þ

on
þ Vf ð0Þ

oUð2Þ

on
� Vf ð0ÞUð1Þ oU

ð1Þ

on

" #
:

ð25Þ

As before, f ð2Þ is uniquely determined from the solution of

Eq. (25) by taking the limit f ð2Þ ¼ lim�!0 f
ð2Þ
� and thus

finally using the relation (24), we obtain the following

relation:

oN
ð2Þ
i

on
¼ � oUð2Þ

on
þ Uð1Þ oU

ð1Þ

on
þ Klffiffiffiffiffiffi

2p
p

� �
}

Z þ1

�1

oUð1Þ

o�n

d�n

n� �n

ð26Þ
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where } represents Cauchy’s principal value. Note that in

the derivation of the above relation (26), we use the

properties of generalized functions [25]:

1=ðg� i0Þ ¼ }ð1=gÞ þ ipdðgÞ, g}ð1=gÞ ¼ 1, gdðgÞ ¼ 0

and dðkgÞ ¼ ðsgnðkÞ=kÞdðgÞ.
The Eq. (18) together with Eqs. (8) and (9) at the order

of �2 gives

DQð2Þ ¼ bd N
ð2Þ
i � rUð2Þ � zrDQð1ÞUð1Þ

�

� r2

2
Uð1Þ2

� z2

2
DQð1Þ2

� z

rþ z
N

ð1Þ
i DQð1Þ

�
: ð27Þ

Finally, the usual perturbation analysis (the elimination of

all the second-order terms) yields the following modified

form of Korteweg–de Vries (KdV) equation modified by

Landau damping:

oUð1Þ

os
� aUð1Þ oU

ð1Þ

on
þ b

o3Uð1Þ

on3
þ cL}

Z þ1

�1

oUð1Þ

o�n

d�n

n� �n
¼ 0

ð28Þ

where

a ¼ b
3

K4
þ r2 � di

di � 1
� bd

3

K2
ð1 þ rÞ

��

þ1 � z2b2
d

ðrþ zÞ2
ð1 þ rþ zÞ2 þ ð1 þ rÞ2

� �!#
;

ð29Þ

b ¼ K3

2
ð30Þ

and

cL ¼ K4l

2
ffiffiffiffiffiffi
2p

p bd þ
di

di � 1

� �
: ð31Þ

The variations of cL with ion-electron density ratio for

different ion-electron temperature ratio are shown graphi-

cally in Fig. 3. Note that l ¼ 0 ) cL ¼ 0 and then from

Eq. (28), we recover the usual KdV equation for the finite

amplitude nonlinear DAW. The term bd present in the

expression for cL is responsible for the instantaneous dust

charge variations. It is also to be noted that one can easily

obtain the regular Landau damping of DAW from Eq. (28)

for a ¼ b ¼ 0. Let us discuss it briefly: Taking the Fourier

transform of Eq. (28) with a ¼ b ¼ 0 with respect to n and

s [according to the formula, ~g x; kð Þ ¼
R1
�1

R1
�1 g n; sð Þ

expfi kn� xsð Þgdnds] and then treating the integral as a

convolution with the help of the result that the inverse

transform of ½isgnðkÞ� ¼ �ð1=pÞ}ð1=nÞ [25], the following

equation is obtained:

x ¼ �ipkcL ¼ �ikl

ffiffiffi
p
8

r
K4 bd þ

di

di � 1

� �
: ð32Þ

This clearly shows that the wave becomes damped due to

finite ion inertia effects as l / zdmi=mdð Þ1=2
with the

damping decrement (normalized) j c j¼ pcL. More pre-

cisely, in the absence of dust charge variations ðbd ¼ 0Þ,
we obtain the following Landau damping decrement

(normalized):

j c j¼ pcLðbd ¼ 0Þ ¼
ffiffiffi
p
8

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zdðdi � 1Þ

p
di

1 þ diTe=Tið Þ3=2

Te

Ti

� �3=2 ffiffiffiffiffiffi
mi

md

r

ð33Þ

of DAW in usual dusty plasma [9]. These discussions

clearly show that the term cL arises only due to the Landau

damping, which is the consequence of the presence of l
and the scaling (Eq. 12). This expression also shows that

the dust charge variations enhance the Landau damping

rate.

Landau damping effect on dust acoustic solitary
wave

The KdV equation (28) without the Landau damping ðcL ¼
0Þ represents a completely integrable Hamiltonian system

which has an infinite set of conservation laws. We consider

the following energy conservation equation:

1

2

o

os

Z þ1

�1
Uð1Þ2

ðn; sÞdn ¼ 0: ð34Þ

This shows that in the absence of Landau damping, the

wave energy is conserved and possesses the following

single soliton solution:

Uð1Þðn; sÞ ¼ A sech2

ffiffiffiffiffiffiffiffi
aA
12b

s
n� a

3
As

� �" #
ð35Þ

where A is the amplitude of the solitary wave, 3A=a is the

solitary wave velocity, and 12b=Aað Þ1=2
is the spatial width

of the solitary wave.

However, in the presence of Landau damping ðcL 6¼ 0Þ,
the KdV equation (28) does not represent a completely

integrable Hamiltonian system, and in this case, the above

energy equation (34) becomes

1

2

o

os

Z þ1

�1
Uð1Þ2

ðn; sÞdn

¼ �cL

Z þ1

�1
Uð1Þðn; sÞ }

Z þ1

�1

dUð1Þðn; sÞ
d�n

d�n

n� �n

" #
dn:

ð36Þ

Now, following the procedures of Refs. [15, 23, 24], in the

presence of Landau damping, a slow time-dependent form

of the solution of Eq. (28) is considered
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Uð1Þðn; sÞ ¼ AðsÞ sech2

ffiffiffiffiffiffiffiffiffiffiffiffi
aAðsÞ
12b

s
n� aAðsÞ

3
s

� �" #
: ð37Þ

Finally, substitution of Eq. (37) in Eq. (36) yields the fol-

lowing solution:

AðsÞ ¼ A0 1 þ s
s0

� ��2

ð38Þ

where

s�1
0 ¼ 6cLfð3Þ

p2

ffiffiffiffiffiffiffiffi
aA0

3b

s
ð39Þ

where A0 ¼ Aðs ¼ 0Þ[ 0 is the initial amplitude and fð3Þ
be the Riemann Zeta function [26] defined by

fð3Þ ¼ p2

24
}

Z þ1

�1
dn

Z þ1

�1

sec h2ndn0

n� n0
d

dn
ðsec h2nÞ:

The above solution (38) shows that the linear ion Landau

damping causes the dust acoustic solitary wave amplitude

AðsÞ to decay algebraically with time ðsÞ and the decay rate

is proportional to cL (Landau damping). In the presence of

Landau damping, the amplitude modulations with time s
for different ion-electron density ratio ðdiÞ and temperature

ratio ðrÞ are shown in Figs. 1 and 2.

Conclusions

In this paper, we have investigated the effects of ion

Landau damping on nonlinear dust acoustic wave. It is

shown that the nonlinear wave is governed by a modified

form of KdV equation [see Eq. (28)]. In the presence of

Landau damping, approximate analytical solutions reveal

that the wave amplitude decays algebraically with time. To
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τ

A
(τ
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A

(0
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δ
i
=2.0

δ
i
=10.0

σ=1.0

Fig. 1 (Color online) Time variations of wave amplitude with rð¼
Ti=TeÞ ¼ 1 for different dið¼ ni0=ne0Þ
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Fig. 3 (Color online) Variations of damping rate cL with di for
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understand the feature, the wave amplitude modulations

with time s [see Eqs. (38) and (39)] are shown graphically

for different r and di in Figs. 1 and 2 for Kþ ion and

electron plasma. Figures 1 and 2 show that wave amplitude

decreases with time s for any fixed value of di and r:
However for any fixed time s; the amplitude increases with

the increase of ion-electron temperature ratio (r) and ion-

electron density ratio (di). In addition, the Landau damping

rate (cL) decreases with the increase of ion-electron tem-

perature ratio (r), as shown in Fig. 3.
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