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Abstract Using the basic concept of the supersymmetric
shape invariance approach and formalism, we obtained an
approximate solution of the Schrodinger equation with an
interaction of inversely quadratic Yukawa potential,
Yukawa potential and Coulomb potential which we con-
sidered as a class of Yukawa potentials. By varying the
potential strengths, we obtained a solution for Hellmann
potential, Yukawa potential, Coulomb potential and
inversely quadratic Yukawa potential. The numerical
results we obtained show that the interaction of these
potentials is equivalent to each of the potential.

Keywords Schrodinger equation - Eigensolutions - Class
of Yukawa potentials

Introduction

In the recent time, physicists have developed much interest
in searching for the exponential-type potentials. The reason
is that most of the exponential-type potentials play an
important role in physics, e.g. Yukawa potential is used in
plasma, solid-state and atomic physics [1]. As a result,
many authors have solved both relativistic and non-rela-
tivistic wave equations with these potentials. For instance,
Zhang et al. [2] obtained approximate solutions of the
Schrodinger equation with the Generalized Morse potential
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model including a centrifugal term. Jia et al. [3] solved six-
parameter exponential-type potentials. Onate [4] obtained
relativistic and non-relativistic solutions of the inversely
quadratic Yukawa potential. Falaye et al. [5] obtained
bound state solutions of the Schrodinger equation with
Manning-Rosen potential. Hassanabadi et al. [6, 7]
obtained Actual and general Manning—Rosen potential
under spin and pseudospin symmetries of the Dirac equa-
tion; approximate solutions of the Schrodinger equation
under Manning—Rosen potential in arbitrary dimensions via
SUSY QM. Hamzavi et al. [8] obtained approximate spin
and pseudospin solutions of the Dirac equation for inver-
sely quadratic Yukawa potential and tensor interaction.
Maghsoodi et al. [1] solved Dirac particles in the presence
of Yukawa potential plus a tensor interaction in SUSY QM
frame work. Ikhdair [9] obtained on the bound state solu-
tions of the Manning—Rosen potential including an
improved approximation to the orbital centrifugal term.

The solutions of the wave equations (either Schrodinger,
Klein—Gordon, Dirac or D.K.P.) with any of these expo-
nential-type potentials are obtained using different methods
which include: asymptotic iteration method (AIM) [10—
16], Nikiforov—Uvarov (N.U) method [17-20], exact/
proper quantization rule [21], supersymmetric method [22—
27], 1/N shifted expansion method [28], etc.

Motivated by the success in the exponential-type
potentials, we attempt to investigate the solutions of the
radial Schrodinger equation with a class of Yukawa
potentials given as

_ —br + ree % — ge=20r

V(r) = ; (1)
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where a, b and ¢ are potential strength and J is the
screening parameter. The potential is obtained by the
addition of Hellmann potential and inversely quadratic
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Yukawa potential which is equivalent to the interaction of
inversely quadratic Yukawa potential, Coulomb potential
and Yukawa potential. This potential has its application
where its components are useful. It is noted that the exact
solution of the radial Schrodinger equation with potential
(1) is not possible due to the presence of the inverse square
term. Therefore, to obtain an approximate solutions, we
employ a suitable approximation scheme. It is found that
such approximation proposed by Greene and Aldrich [29]

1 bR
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is a good approximation to the centrifugal/inverse square

term which is valid for § < 1 for a short potential range.
Our work is arranged as follows: in the following sec-

tion, we obtain the bound state solutions. We present dis-

cussion and concluding remarks at the end of the article.

Bound state solutions

To study any quantum physical system, we solve the
original Schrodinger equation given as [9, 30, 31]

P2

(Z + V(r)) lpn,l,m(r) = Eﬂ,ﬂpn,(,m(r)7 (3)
where E, , is the energy, u is the particle mass and V(7) is
the  potential. Setting the

Vpom(r) = M, we obtained the following radial
Schrodinger equation

wave functions

& 2u 00+1)
{ﬁ + (Ene—V(r) — > }R,,,[(r) =0. (4)
With Egs. (1) and (2), (4) becomes
d*R, 4(r
Téw = [Veff - Eeff]Rn,/f(r)v (5)
,
where Vi = {2;_0 (@8 —b+c)+ (6 + 1)52} e

or

25— (0 + 10| 75 and —Eur = — 22 (Eus +b)

+0(¢ +1)8%. Since we are dealing with a Schrédinger-like
equation that we solved by means of SUSY QM [6, 32-35],
the first step in the SUSY approach is finding the solution of
the Riccati equation [6]. Using the shape invariance for-
malism, it can be easily seen that

dw(r)

W2(r) a = Vetr — Eerr, (6)

whose solution is given as
Befér
W) =A-1—=,

’r @ Springer

The ground state wave function Ry (r) as
Ro(r) = exp (— / W(r)dr), (8)

where W(r) is called the superpotential function in super-
symmetric quantum mechanics [36-38]. Substitute Eq. (7)
into Eq. (6), we deduce the following relations

A? = —E, 9)
2uad
B= ‘;lf — (L4 1), (10)
—c— — 2_ g2
A:2,u5(b c—ad) — (L +1)6-—B . ()
2B

With Eq. (7), we can construct the two partner potentials
as follows:

U, = w(r) + V0
r
—or —or
:Az_B(BJFZA)f +B(B+5)€ - (12)
1—e 0 (1 _ e—br)
daw
U, = W2(r) + dr(’")
B(B + 2A —or B(B — —or
_ BB BB 0" (13)
1 —eor (1 —eo)

Using the shape invariance technique [6, 39-42], it can
readily be shown that the two partner potentials are shape
invariant. Therefore, their relationship is written as

U,(r,ap) =U_(r,a;) + T(ay), (14)

where ay is an old set of parameters in which the new set of
parameters a, is obtained from and 7(a;) is a remainder that
isindependent of the variable r. Here, B = a, via mapping of
the form a;, —» ay — 0, a, — ag — 26, az — ag — 30.
Thus, a generalization is drawn as a,, — ag — nd. In terms of
the parameters of the problem, we obtain the following
relations:

T(a)) = {2#5(19 —c— a(s)z;og(g +1)5 — ag]

- [2u5(b —c-— aé)z;g(ng e — a%]’ -
T(a) = {2;15(19 —c— a(s)z;l o0+ 18 — a%]

- [2#5(17 —c— aé)zc;g(g 1) — a%]’ o
Tlay = [P0 e ) = e )7

- [2“5(5 —c— aé)zc;e(e +1)8° — ag] o
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2ud(b — ¢ —ad) — (L +1)0* —a_, ) _ 2
_ n " / n+1—-—y2n+2e+1 n+e)+N
T(an) { 2a,_ | o)+ y(l(— y) ) +f(y)ﬁ
B [Zué(b—c—aé) — L+ 1)8? —aﬁ] (18) —0.
2ay (27)

The energy spectral can then be determine as follows:

Ey, =0, (19)
E, = Eer +Eyy =Y Tlax)
k=1
o _ 2 2
_ {2u5(b c—ad)—Ll+1) an]. (20)
2a,,
This gives energy equation as
(041
E,, - 5(5}1 e+t b)
522 [ (b —c—ad) — (n+ L+ 17—+ )]
C 2u 2(0+n+1)
(21)

Wave function

To obtain the un-normalized wave function, we define a

variable of the form y = ¢~ and substitute it into Eq. (5)
to have

d*R,4(r)  1dR,(r)
dy? y dy

NQy+P
b -y 0

(22)

where

2ﬂ(b5 +En,€)

2u(bd + co+ Eyy)
0=~ 2
8
2u(ad 4 ¢6* + 2E, ;)
M= o
Analyzing the asymptotic behavior of Eq. (22) at origin

and at infinity, it can be tested that when r — O(y — 1) and
when r — oo(y — 0) Eq. (22) has a solution

)

(23)

Rn,[(y) = yﬂ(l _y)ﬁ’ (24)
where
2u(bd + E, g
n= —“(zit’”w(ul), (25)
o°h
IR 2ua

Now, taking a trial wave function of the form R, ¢(y) =
y1(1 — y)*f(y) and substitute it into Eq. (22), we have

Equation (27) is a differential equation satisfied by the
hypergeometric function. Thus, its solution is obtained as:

f) = 2F1(=n,n+2(n +¢);2n + 1, y). (28)

Replacing the function f(y) with the hypergeometric
function and write a complete radial wave function as:

Ruo(y) =y'"(1 —y)2F 1 (—n,n+2(n+¢);2n + 1,y).
(29)

Results and discussion

Some special cases of interest are studied here, when
a = 0, our potential (1) reduces to Hellmann potential

—b —or
V() == (30)
which reduces the energy Eq. (21) to
2
E,, = 5(5}3 qe+1) b)
5 [ (b—c) = (n+ L+ 17—+ 1)
©2u 2(0+n+1)

(31)

When a = ¢ = 0, the potential (1) reduces to Coulomb
potential

vy =", (32)
and the energy Eq. (21) turns to
2
E,, = 5(5}‘1 e+1) b)
2p
2 [ — (n+ £+ 1) 00+ 1)) “
C2u 2(0+n+1) (33)

When a = b = 0, the potential (1) reduces to Yukawa
potential

(34)

and the energy Eq. (21) turns to

Y
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for the cls of Yokowa . Se 5 £ £
potential E, ", Hellmann 2p 0.001 —2.2474553 —2.2475002 —2.2485002 —2.2455002
potential Epg» Coulomb 0.005 —2.2374615 —2.2375062 —2.2425062 —2.2275062
potential ESY and Yukawa
potential EVF 0.010 —2.2249805 —2.2250250 —2.2350250 —2.2050250
‘ 3p 0.001 —0.9983214 —0.9983347 —0.9993347 —0.9963347
0.005 ~0.9916874 —0.9917007 —0.9967007 —0.9817007
0.010 —0.9834563 —0.9834694 —0.9934694 —0.9634694
3d 0.001 —0.9969870 —0.9970003 —0.9980003 —0.9950003
0.005 —0.9849930 —0.9850063 —0.9900063 —0.9750063
0.010 —0.9700120 —0.9700250 —0.9800250 —0.9500250
4p 0.001 ~0.5611224 —0.5611281 —0.5621281 —0.5591281
0.005 —0.5556960 —0.5557016 —0.5607016 —0.5457016
0.010 —0.5490507 —0.5490563 —0.5590563 —0.5290563
4d 0.001 —0.5603710 —0.5603766 —0.5613766 —0.5583766
0.005 —0.5519085 —0.5519141 —0.5569141 —0.5419141
0.010 —0.5414008 —0.5414063 —0.5514063 —0.5214063
4f 0.001 —0.5592447 —0.5592503 —0.5602503 —0.5572503
0.005 —0.5462508 —0.5462563 —0.5572563 —0.5362563
0.010 —0.5300196 —0.5300250 —0.5400250 —0.5100250
5212 f( 0+ 1) Table 2 Bound states energy for the class of Yukawa potential E,?}(P,
E,, = T Hellmann potential E}7, Coulomb potential EJ} and Yukawa potential
YP
SR [ — (n+ L+ 1)°—L(0+1) 2 Eni
T ETESY G5 w0y £ £ EX
When b = ¢ = 0, potential (1) reduces to inversely quad- 0 0 —89896656 —8.9900250  —9.0000250  —8.9700250
ratic Yukawa potential 0 —2.2400552 —2.2401000 —2.2501000 —2.2201000
‘ 1 —0.9834563 —0.9834694 —0.9934694 —0.9634694
V() = —ae‘zo’, (36) 20 —09902117 —0.9902250 —1.0002250 —0.9702250
r2 1 —0.5490507 —0.5490563 —0.5590563 —0.5290563
and the energy Eq. (21) turns to 2 —03431582  —0.3431610 —0.3531610 —0.3231610
- 30 —0.5528944 —0.5529000 —0.5629000 —0.5329000
E,, - O"h (L + 1) 1 —0.3481262 —0.3481290 —0.3581290 —0.3281290
’ 2p ) 2 —02356234 —0.2356250 —0.2456250 —0.2156250
2 % —(n+l+1) =0 +1) 3 3 —0.1670240 —0.1670250 —0.1770250  —0.1470250
T 2u 20+ n+1) (37) 4 0 03506222 03506250 03606250 —0.3306250
1 —02391345 —0.2391361 —0.2491361 —0.2191361
In Table I, we numerically reported the energy 2 —0.1709424 —0.1709434  —0.1809434  —0.1509434
eigenvalues for a class of Yukawa potential 3 —0.1260556 —0.1260563 —0.1360563 —0.1060563
(a=1x1072b=2x10° ¢=—-1x10°), Hellmann 4 —0.0948517 —0.0948522 —0.1048522 —0.0748522

potential (a =0,b =2 x 10°, ¢ = —1 x 10°), Coulomb
potential (¢ =0=c¢ =0, b =23) and Yukawa potential
(a=b=0, c=-3x 10°) for 2p, 3p, 3d, 4p, 4d and 4f.
In Table 2, we have reported the energy eigenvalues of
these potentials for n=0, €¢=0; n=1, £=0,1;
n=2,¢=0,1,2; n=3,€£=0,1,2,3 and n=4, { =
0,1,2,3,4. In Table 1, energy increases as the screening
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parameter increases. In Table 2, energy increases as
n increases. In Table 3, we compared our result for the
Hellmann potential with the result from two other
methods.
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Table 3 Ro-vibrational energy spectrum (—E, ;) for the Hellmann
potential with2m=h=1,b=2and c =1

State R SUSY NU [43] AP [43]
2p 0.001 0.063999 0.064000 0.063495
0.005 0.069975 0.070000 0.067377
0.010 0.077400 0.077500 0.072020
3p 0.001 0.029499 0.029279 0.028765
0.005 0.036356 0.035309 0.032480
0.010 0.044869 0.042903 0.036645
3d 0.001 0.029274 0.029388 0.028767
0.005 0.035184 0.035817 0.032526
0.010 0.042403 0.043825 0.036814
4p 0.001 0.017436 0.017128 0.016602
0.005 0.024652 0.023200 0.020100
0.010 0.033606 0.030925 0.023711
4d 0.001 0.017308 0.017180 0.016604
0.005 0.023952 0.023464 0.020142
0.010 0.032056 0.031256 0.023857
af 0.001 0.017117 0.017311 0.016607
0.005 0.022925 0.024027 0.020206
0.010 0.029825 0.032356 0.024072
Conclusions

We have obtained approximate solutions of the Schro-
dinger equation by combining inversely quadratic Yukawa
potential, Yukawa potential and Coulomb potential. We
deduced that from the energy equation of these combined
potentials, the energy equation of Hellmann potential as
well as these individual potential can be obtained. In
Tables 1 and 2, we have numerically reported the equiva-
lence of the energy of these potentials.
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