
RESEARCH

Analytical study of nonlinear oscillatory systems using
the Hamiltonian approach technique

Martin Hermann • Masoud Saravi •

Hadi Ebrahimi Khah

Received: 22 September 2013 / Accepted: 20 May 2014 / Published online: 6 June 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract In this article, we investigate and apply Ham-

iltonian approach method as one of the analytical approx-

imate techniques, for studying the strongly nonlinear

dynamical systems such as the motion of a rigid rod

rocking back on the circular surface without slipping and

the free vibrations of an autonomous conservative oscilla-

tor with inertia and static-type fifth-order nonlinearities. To

illustrate the applicability and accuracy of the method, the

approximate solution results are compared with exact and

numerical solutions.

Keywords Dynamical systems � Strongly nonlinear

differential equations � Analytical approximate techniques �
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Runge–Kutta method

Introduction

Most of the dynamical systems facing engineers, physicists

and applied mathematicians today exhibit certain essential

features which preclude exact analytical solutions. Some of

these features are nonlinearities, variable coefficients, com-

plex boundary shapes, and nonlinear boundary conditions at

known or, in some cases, unknown boundaries. Even if the

exact solution of a problem can be found explicitly, it may be

useless for mathematical and physical interpretation or

numerical evaluation. Examples of such problems are Bessel

functions of large argument and large-order and doubly

periodic functions. Therefore, to obtain information about

solutions of equations, we are forced to resort to approximate

and numerical solutions, or combinations of both.

Recently, considerable attention has been directed toward

the analytical approximate solutions for the strongly nonlinear

differential equations of dynamical systems. The traditional

perturbation methods have many shortcomings, and they are

not valid for strongly nonlinear dynamical systems.

To overcome the shortcomings, many techniques have

appeared in open literature, for example, parameter-

expanding method [1–3], variational iteration method [4–

7], energy balance method [8–14], variational approach

method [15–19], amplitude–frequency formulation [20–

22], homotopy perturbation method [23–29], and the other

analytical approximate solutions [30].

The solution of differential equations in physics and

engineering, especially some oscillation equations are non-

linear, and in most cases it is difficult to solve such equations,

especially analytically. Previously, He had introduced the

energy balance method based on collocation and the Ham-

iltonian. This method can be seen as a Ritz method and leads

to a very rapid convergence of the solution, and can be easily

extended to other nonlinear oscillations.

This approach is very simple but strongly depends upon

the chosen location point. Recently, He [31] has proposed

the Hamiltonian approach to overcome the shortcomings of

the energy balance method. This approach is a kind of

energy method with a vast application in conservative

oscillatory systems. Application of this method can be

found in many literatures [31–35].
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The Hamiltonian approach method is the subject of this

article, as one of the analytical approximate techniques. In this

article, we present two examples to illustrate the applicability,

accuracy and effectiveness of the Hamiltonian approach

method as one of the analytical approximate techniques.

As the first example in this paper, we investigate the

nonlinear differential equation of the motion of a rigid rod

rocking back on the circular surface without slipping [36].

In the second example, we investigate the nonlinear dif-

ferential equation of the free vibrations of an autonomous

conservative oscillator with inertia and static-type fifth-

order nonlinearities [37].

To illustrate the accuracy of the Hamiltonian approach

method, in first example, we compare the approximate

solution result with exact solution. In second example,

because there is no exact solution, we compare the

approximate solution result with Runge–Kutta method as

one of the known numerical methods.

The description of Hamiltonian approach method

To descript the He’s Hamiltonian approach method, we

consider the following general oscillator [31]:

d2

dt2
uðtÞ þ f ðuðtÞÞ ¼ 0 ð1Þ

with initial conditions:

uð0Þ ¼ A;
d

dt
uð0Þ ¼ 0: ð2Þ

It is easy to establish a variational principle for Eq. (1),

which reads [31]:

J uðtÞð Þ ¼
ZT=4

0

� 1

2

d

dt
uðtÞ

� �2

þF uðtÞð Þ
( )

dt ð3Þ

where T is the period of the oscillator qF/qu = f(u).

In the functional (3), � 1
2

d

dt
uðtÞ

� �2

is kinetic energy,

and F(u(t)) is potential energy, so the functional (3) is the

least Lagrangian action, from which we can immediately

obtain its Hamiltonian, which reads:

H ¼ 1

2

d

dt
uðtÞ

� �2

þF uðtÞð Þ ¼ constant ¼ H0 ð4Þ

or:

RðtÞ ¼ 1

2

d

dt
uðtÞ

� �2

þFðuðtÞÞ � FðAÞ ð5Þ

Equation (4) implies that the total energy keeps

unchanged during the oscillation.

We use the following trial function to determine the

angular frequency x.

uðtÞ ¼ A cos x t ð6Þ

where x is the frequency. Submitting Eq. (6) into Eq. (5)

results in a residual:

RðtÞ ¼ 1

2
A2x2 sin2 x t þ FðA cos x tÞ � FðAÞ ð7Þ

If, by chance, the exact solution had been chosen as the trial

function, then it would be possible to make R zero for all values

of t by appropriate choice of x. Since u(t) = A cos xt is an

approximation to the exact solution, R cannot be made zero

everywhere. According to the energy balance method [2],

locating at some a special point, that is, xt = p/4 and setting

R(t = p/4x) = 0, we can obtain an approximate frequency–

amplitude relationship of the studied nonlinear oscillator. Such

treatment is much simple and has been widely used by engi-

neers [3–7]. The accuracy of such location method, however,

strongly depends upon the chosen location point. To overcome

the shortcoming of the energy balance method, in this paper,

we apply a new approach based on Hamiltonian [8, 9].

From Eq. (7), we have:

oH

oA
¼ 0: ð8Þ

Introducing a new function, �HðuðtÞÞ, defined as:

�H uðtÞð Þ ¼
ZT=4

0

1

2

d

dt
uðtÞ

� �2

þF uðtÞð Þ
( )

dt ¼ 1

4
TH ð9Þ

It is obvious that:

o �H

oT
¼ 1

4
H ð10Þ

Equation (10) is, then, equivalent to the following one:

o

oA

o �H

oT

� �
¼ 0 ð11Þ

or

o

oA

o �H

oð1=xÞ

� �
¼ 0: ð12Þ

From Eq. (12), we can obtain approximate frequency–

amplitude relationship of a nonlinear oscillators.

The application of Hamiltonian approach method

for nonlinear dynamical systems

The motion of a rigid rod rocking back on the circular

surface without slipping

In this section, we consider the motion of a rigid rod

rocking back on the circular surface without slipping. The
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governing equation of this motion is in the following form

[36]:

d2

dt2
uðtÞ

� �
þ 3

4
uðtÞ2 d2

dt2
uðtÞ

� �

þ 3

4
uðtÞ d

dt
uðtÞ

� �2

þ3
g

l
uðtÞ cos uðtÞ ¼ 0

ð13Þ

with the following initial conditions [36]:

uð0Þ ¼ A;
d

dt
uð0Þ ¼ 0 ð14Þ

where g and l are the positive constants. For this problem,

we have:

f uðtÞð Þ ¼ 3

4
uðtÞ2 d2

dt2
uðtÞ

� �

þ 3

4
uðtÞ d

dt
uðtÞ

� �2

þ3
g

l
uðtÞ cos uðtÞ ð15Þ

and:

F uðtÞð Þ ¼ 3

8
uðtÞ2 d

dt
uðtÞ

� �2

þ 3gðcos uðtÞ þ uðtÞ sin uðtÞÞ
l

:

ð16Þ

Its Hamiltonian can be easily obtained, which reads:

H ¼ 1

2

d

dt
uðtÞ

� �2

þ 3

8
uðtÞ2 d

dt
uðtÞ

� �2

þ 3gðcos uðtÞ þ uðtÞ sin uðtÞÞ
l

:

ð17Þ

Integrating Eq. (17) with respect to t from 0 to T/4, we

have:

�H uðtÞð Þ ¼
ZT=4

0

1

2

d

dt
uðtÞ

� �2

þ 3

8
uðtÞ2 d

dt
uðtÞ

� �2
(

þ 3g cos uðtÞ þ uðtÞ sin uðtÞð Þ
l

�
dt:

ð18Þ

Assuming that the solution can be expressed as

u(t) = A cos xt and substituting it to Eq. (18), we obtain:

�HðuðtÞÞ¼
ZT=4

0

1

2
A2x2 sin2xtþ3

8
A4x2 cos2xtsin2xt

þ3g cosðAcosxtÞþAcosxt �sinðAcosxtÞð Þ
l

8>><
>>:

9>>=
>>;

dt

¼
Zp=2

0

1

2
A2xsin2 tþ 1

x

3

8
A4x2 cos2 tsin2 t

þ3g cosðAcostÞþAcost �sinðAcostÞð Þ
l

2
664

3
775

8>><
>>:

9>>=
>>;

¼1

2
A2x �p

4
þ 1

x
3

8
A4x2 � p

16
þp

2
�3g Bessel Jð0;AÞþA �Bessel Jð1;AÞð Þ

l

� �
:

ð19Þ

In Eq. (19), we have two Bessel functions of the first kind.

The Bessel functions are one of the special functions in

mathematics. We can expand these Bessel functions of the

first kind in the following form:

Bessel J(0, AÞ ¼ 1 � 1

4
A2 þ 1

64
A4 ð20Þ

and:

Bessel J(1, AÞ ¼ 1

2
A � 1

16
A3 þ 1

384
A5 ð21Þ

By substituting Eqs. (20) and (21) into Eq. (19), we

obtain:

�H uðtÞð Þ ¼ 1

2
A2x �p

4
þ 1

x

� 3

8
A4x2 � p

16
þp

2
� 3g

l

1� 1

4
A2 þ 1

64
A4

� �

þA � 1

2
A� 1

16
A3 þ 1

384
A5

� �

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;

ð22Þ

Setting:

o

oA

o �H

oð1=xÞ

� �
¼ �Ax2 � p

4
� 3

8
A3x2 � p

4
þ 3g

l

� p
2

� 1

2
A þ 1

16
A3 þ A � 1

4
A3 þ 1

64
A5

� �

¼ 0

ð23Þ

We obtain the following frequency–amplitude relationship:

xHAM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=lð Þ 32 þ 12A2ð Þ 32 � 12A2 þ A4ð Þ

p
32 þ 12A2

: ð24Þ

Its period can be written in the following form:

THAM ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=lð Þ 32þ12A2ð Þ 32�12A2þA4ð Þ

p
32þ12A2

: ð25Þ

To illustrate the accuracy of the Hamiltonian approach

method, we compare the approximate solution results with

exact solution. For this dynamical system, the exact period

is in the following form [36]:

TExact ¼4
l

3g

� �1=2Zp=2

0

�
4þ3A2 sin2 u

 �

A2 cos2 u

8 AsinAþcosA�Asinusin Asinuð Þ�cos Asinuð Þ½ �

 !1=2

du:

ð26Þ

A comparison of obtained results from the approximate

period and the exact one is tabulated in Table 1 for

g = 1.00, l = 1.00 and different values of A. From

Table 1, the maximum relative error of the approximate

periods is 1.9344 % for g = 1.00, l = 1.00 and A = 0.45p.

Also, we present the comparison results of analytical

approximate solution of u(t) based on t with exact solution
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with g = 1.00, l = 1.00 and different values of A in Figs. 1

and 2.

Also, to investigate on the behavior of this dynamical

system, the effect of parameters g and l on the frequency

corresponding to different values of amplitude (A) has been

studied in Figs. 3 and 4.

The free vibrations of an autonomous conservative

oscillator with inertia and static-type fifth-order

nonlinearities

In this section, we consider the free vibrations of an

autonomous conservative oscillator with inertia and static-

type fifth-order nonlinearities. The differential equation of

this dynamical system is the following form [37]:

d2

dt2
uðtÞ

� �
þ e1uðtÞ2 d2

dt2
uðtÞ

� �
þ e2uðtÞ4 d2

dt2
uðtÞ

� �
þ e1uðtÞ d

dt
uðtÞ

� �2

þ 2e2uðtÞ3 d

dt
uðtÞ

� �2

þkuðtÞ þ e3uðtÞ3 þ e4uðtÞ5 ¼ 0; �1� k� 1

ð27Þ

with the following initial conditions [37]:

uð0Þ ¼ A;
d

dt
uð0Þ ¼ 0 ð28Þ

where e1, e2, e3 and e4 are positive parameters and k is an

integer which may take values of -1, 0 and 1 [37]. For this

problem, we have:

Fig. 1 Comparison of Hamiltonian approach method solution of

u(t) based on t with exact solution for g = 1.00, l = 1.00, A = 0.05p

Fig. 2 Comparison of Hamiltonian approach method solution of

u(t) based on t with exact solution for g = 1.00, l = 1.00, A = 0.45p

Fig. 3 Comparison of frequency corresponding to different values of

amplitude (A) and l = 1.00

Table 1 Comparison of approximate periods with exact periods for

g = 1.00, l = 1.00 and different values of A

A Hamiltonian

approach method

Exact

solution

Error

percentage

0.05p 3.66126 3.66109 0.0054

0.10p 3.76398 3.76397 0.0008

0.15p 3.94065 3.94086 0.0056

0.20p 4.20182 4.20292 0.0264

0.25p 4.56433 4.56948 0.1129

0.30p 5.05832 5.07728 0. 3734

0.35p 5.76741 5.79770 0.5224

0.40p 6.73586 6.81564 1.1705

0.45p 8.67226 8.84333 1.9344
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f uðtÞð Þ ¼ e1uðtÞ2 d2

dt2
uðtÞ

� �
þ e2uðtÞ4 d2

dt2
uðtÞ

� �
þ e1uðtÞ d

dt
uðtÞ

� �2

þ 2e2uðtÞ3 d

dt
uðtÞ

� �2

þ kuðtÞ þ e3uðtÞ3 þ e4uðtÞ5

ð29Þ

and:

F uðtÞð Þ ¼ 1

2

d

dt
uðtÞ

� �2

e1uðtÞ2 þ 1

2

d

dt
uðtÞ

� �2

e2uðtÞ4

þ 1

2
kuðtÞ2 þ 1

4
e3uðtÞ4 þ 1

6
e4uðtÞ6:

ð30Þ

Its Hamiltonian can be easily obtained, which reads:

H ¼ 1

2

d

dt
uðtÞ

� �2

þ 1

2

d

dt
uðtÞ

� �2

e1uðtÞ2 þ 1

2

d

dt
uðtÞ

� �2

e2uðtÞ4

þ 1

2
kuðtÞ2 þ 1

4
e3uðtÞ4 þ 1

6
e4uðtÞ6:

ð31Þ

Integrating Eq. (31) with respect to t from 0 to T/4, we

have:

�H uðtÞð Þ¼
ZT=4

0

1

2

d

dt
uðtÞ

� �2

þ1

2

d

dt
uðtÞ

� �2

e1uðtÞ2þ1

2

d

dt
uðtÞ

� �2

e2uðtÞ4

þ1

2
kuðtÞ2 þ1

4
e3uðtÞ4þ1

6
e4uðtÞ6

8>>><
>>>:

9>>>=
>>>;

dt

ð32Þ

Assuming that the solution can be expressed as

u(t) = A cos xt and substituting it to Eq. (32), we obtain:

Setting:

o

oA

o �H

oð1=xÞ

� �
¼ �Ax2 � p

4
� 2e1A3x2 � p

16
� 3e2A5x2 � p

32

þ kA � p
4
þ e3A3 � 3p

16
þ e4A5 � 5p

32
¼ 0:

ð34Þ

We obtain the following frequency–amplitude relation-

ship:

xHAM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6e3A2 þ 5e4A4 þ 8k
8 þ 4e1A2 þ 3e2A4

s
ð35Þ

�H uðtÞð Þ ¼
ZT=4

0

1

2
A2x2 sin2 xt þ 1

2
e1A4x2 sin2 xt cos2 xt þ 1

2
e2A6x2 sin2 xt cos4 xt

þ 1

2
kA2 cos2 xt þ 1

4
e3A4 cos4 xt þ 1

6
e4A6 cos6 xt

8>><
>>:

9>>=
>>;

dt

¼
Zp=2

0

1

2
A2x sin2 t þ 1

x

1

2
e1A4x2 sin2 t cos2 t þ 1

2
e2A6x2 sin2 t cos4 t

þ 1

2
kA2 cos2 t þ 1

4
e3A4 cos4 t þ 1

6
e4A6 cos6 t

2
664

3
775

8>><
>>:

9>>=
>>;

dt

¼ 1

2
A2x � p

4
þ 1

x

1

2
e1A4x2 � p

16
þ 1

2
e2A6x2 � p

32
þ 1

2
kA2 � p

4

þ 1

4
e3A4 � 3p

16
þ 1

6
e4A6 � 5p

32

2
664

3
775:

ð33Þ

Fig. 4 Comparison of frequency corresponding to different values of

amplitude (A) and g = 1.00
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Its period can be written in the following form:

THAM ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6e3A2þ5e4A4þ8k
8þ4e1A2þ3e2A4

q ð36Þ

For this dynamical system, because there is no exact

solution, we compare the approximate solution results with

Runge–Kutta method, as one of the known numerical

methods. The numerical solution with Runge–Kutta

method for this nonlinear differential equation is:

d

dt
u1ðtÞ ¼ u2ðtÞ; u1ð0Þ ¼ A ð37Þ

and

d

dt
u2ðtÞ ¼ � 1

1 þ e1u1ðtÞ2 þ e2u1ðtÞ4

ku1ðtÞ þ e1u1ðtÞu2ðtÞ2

þ 2e2u1ðtÞ3
u2ðtÞ2

þ e3u1ðtÞ3 þ e4u1ðtÞ5

0
BBB@

1
CCCA:

ð38Þ

Motion is assumed to start from the position of maximum

displacement with zero initial velocity. k is an integer

which may take values of -1, 0 and 1, and e1, e2, e3 and e4

are positive parameters. The values of parameters e1, e2, e3

and e4 associated for a mode are shown in Table 2.

To illustrate the accuracy of the Hamiltonian

approach method solution, we present the comparison

results of analytical approximate solution of u(t) based

on t with the numerical solution which solved by

Runge–Kutta method as one of the known numerical

methods in Figs. 5 and 6 for k = 1.00, A = 1.00 and

various modes (mode-1 and mode-3).

Figures 7 and 8 present the high accuracy of Hamilto-

nian approach method solution in comparison with

numerical solution for different values of e1, e2, e3 and e4,

Fig. 5 Comparison of Hamiltonian approach method solution of

u(t) based on t with numerical solution (Runge–Kutta method) for

k = 1.00, A = 1.00in mode-1

Fig. 6 Comparison of Hamiltonian approach method solution of

u(t) based on t with numerical solution (Runge–Kutta method) for

k = 1.00, A = 1.00 in mode-3

Fig. 7 Comparison of analytical approximate solution of du/dt based

on u(t) with the with numerical solution (Runge–Kutta method) for

k = 1.00, A = 1.00 in mode-1

Table 2 Values of dimensionless parameters ei for a mode

Mode e1 e2 e3 e4

Mode-1 0.326845 0.232598 0.129579 0.087584

Mode-2 1.642033 0.913055 0.313561 0.204297

Mode-3 4.051486 1.665232 0.281418 0.149677
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and show the phase–space curves (du/dt versus u(t) curve)

for amplitude A = 1.00 and k = 1.00.

It can be observed that the phase–space curves generated

from approximate solution are close to that of the numerical

curves. The phase plots show the behavior of the dynamical

system in modes 1 and 3. It is periodic with a center at (0, 0).

Also, to investigate on the behavior of this dynamical

system, the effect of parameters e1, e2, e3 and e4 on the

frequency corresponding to different values of amplitude

(A) has been studied in Fig. 9.

It is evident that Hamiltonian approach method shows

excellent agreement with the exact and numerical

solutions and is quickly convergent and valid for a wide

range of vibration amplitudes and initial conditions. The

accuracy of the results shows that the Hamiltonian

approach method can be potentiality used for the analysis

of strongly nonlinear oscillation problems accurately.

Conclusion

In this article, we applied Hamiltonian approach method as

one of the analytical approximate techniques, for studying

the strongly nonlinear dynamical systems such as the

motion of a rigid rod rocking back on the circular surface

without slipping and the free vibrations of an autonomous

conservative oscillator with inertia and static-type fifth-

order nonlinearities.

Comparison of the results which are obtained by this

method with the obtained result by the exact and numerical

solutions reveal that the Hamiltonian approach method is

very effective and convenient and does not require linear-

ization or small perturbation and can be easily extended to

other nonlinear dynamical systems and can therefore be

found widely applicable in engineering and other sciences.
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