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Abstract

In the present work, the optical properties of a GaAs quantum wire with a parallelogram cross section are studied. In
this regard, we have used the expressions for the optical properties obtained by the compact-density matrix
formalism. Here, we have investigated the intersubband optical absorption coefficients and refractive index changes
as a function of the structure parameter of the wire (side length) and the incident optical intensity. According to the
obtained results, it is found that (1) the total refractive index changes increase and shift towards lower energies when
the side length increases and that (2) the total absorption coefficient decreases as the side length increases. Also, the
resonance peak shifts towards lower energies by increasing the side length.
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Background
The studies on the physics of low-dimensional semicon-
ductor structures open a new field in fundamental science
such as chemistry, physics, and engineering. Examples of
these structures are superlattices, quantum wires, single
and multiple quantum wells, and quantum dots [1-7]. The
physical properties of these structures have been exten-
sively studied both experimentally and theoretically [1,2].
The structures confine charge carriers in one, two, and
three dimensions. Quantum confinement of the charge
carriers in these structures leads to the formation of dis-
crete energy levels, the enhancement of the density of
states at specific energies, and the drastic change of optical
absorption spectra.
One of themost intensively explored classes of semicon-

ductor structures is the class of quantumwires.With tech-
nological progresses in the fabrication of semiconductor
structures like chemical lithography, molecular beam epi-
taxy, and etching, it has been made possible to fabricate
a wide variety of quantum wires with well-controlled
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shape and composition. Among heterostructures, quan-
tum wires with rectangular, T-shaped, V-groove, triangu-
lar, and other cross sections have received lots of attention
by researchers during the last decade [4-7].
The linear and nonlinear optical properties of low-

dimensional semiconductor structures are of considerable
current interest in connection with their potential appli-
cations in optoelectronic and photonic devices [8, 9]. It is
worth mentioning that there are many novel optical prop-
erties in the low-dimensional semiconductor structures
which are not in their bulk materials [10-12]. The linear
and nonlinear optical properties of nanostructures have
been widely studied theoretically by several authors [13,
14].
The linear intersubband optical absorption within the

conduction band of a GaAs quantum well without and
with an electric field has been experimentally studied [15,
16]. Nonlinear intersubband optical absorption in a semi-
conductor quantum well also was calculated by Ahn and
Chuangin [17]. In 1991, Rappen et al. [18] studied the non-
linear absorption for two-dimensional magnetoexcitons
in InxGa1−xAs/InyAl1−yAs quantum wells. In 1992, Bock-
elman and Bastard [19] discussed interband absorption
in quantum wires with a magnetic field case and without
a magnetic field case [20]. Intersubband optical absorp-
tion in coupled quantum wells under an applied electric
field was studied by Yuh and Wang [21]. In 1993, Cui et
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al. [22] experimentally studied the absorption saturation
of intersubband optical transitions in GaAs/AlxGa1−xAs
multiple quantum wells. Recently, we have studied the
optical properties of a quantum disk in the presence of
an applied magnetic field [23]. Also, we have investigated
the optical properties of amodifiedGaussian quantum dot
under hydrostatic pressure [24].
In the last years, the intersubband optical absorption

coefficients and refractive index changes in nanostruc-
tures have attracted considerable and continuous atten-
tion [25]. For example, Wang et al. [26] examined the
refractive index changes induced by the incident opti-
cal intensity in a semiparabolic quantum well. Ünlü et
al. [27] investigated the optical rectification in a semi-
parabolic quantum well. To obtain information about the
optical properties of low-dimensional systems, the reader
can refer to [28-31].
In this paper, we intend to study the optical absorp-

tion coefficients and refractive index changes of a quan-
tum wire with a parallelogram cross section. The theory
and calculations are briefly presented in the ‘Theory and
model’ section. Analytical expressions for the linear and
nonlinear intersubband optical absorption coefficients
and refractive index changes are presented in the ‘Opti-
cal absorption coefficients and refractive index changes’
section. The results and discussion are presented in the
‘Results and discussion’ section.

Results and discussion
In this section, we have carried out the numerical calcu-
lations for a GaAs parallelogram quantum wire. The used
parameters in the present work are as follows: nr = 3.2,
T12 = 0.2 ps, �12 = 1/T12, and συ = 3.0 × 1016 cm−3.
In Figure 1, we have presented the typical cross section

of a parallelogram quantum wire.

(a) (b)
Figure 1 Typical cross section of a parallelogram quantumwire
(a) and typical reference tile (b).
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Figure 2 Linear, nonlinear, and total refractive index changes as
function of photon energy.With I = 0.4 MW/cm2 and L = 10 nm.

Figure 2 shows the linear, nonlinear, and total refractive
index changes as a function of the photon energy with I =
0.4 MW/cm2 and L = 10 nm. The linear and nonlinear
terms are of opposite signs. Therefore, the total refrac-
tive index change decreases. It is clear that the nonlinear
term is strongly dependent on the incident optical inten-
sity. Therefore, the cancelation of the nonlinear term for
the system operating with a high incident optical intensity
cannot be correct.
In Figure 3, we have plotted the total refractive index

change as a function of the photon energy for four dif-
ferent incident optical intensities as 0, 0.1, 0.2, and 0.3
MW/cm2 with L = 10nm. It is seen from the figure that
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Figure 3 Total refractive index changes as function of photon
energy for four different incident optical intensities.With L = 10
nm.
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the total refractive index change reduces when the inci-
dent optical intensity increases. As we know, the linear
term does not depend on the incident optical intensity, but
the nonlinear term changes with optical intensity. There-
fore, the higher optical intensity will cause to increase
the nonlinear term and increase the difference between
them. Since these two terms are of opposite signs, the total
change reduces.
Figure 4 displays the total refractive index changes as a

function of the photon energy for three different lengths
as L = 10, 11, and 12 nm with I = 0.4 MW/cm2.
It is observed from the figure that the total refractive
index changes will be decreased as the quantum size L
decreases. It is clear that the refractive index change is
dependent on the dipole matrix elementsMij. By decreas-
ing L, the wave function associated with the electron
is more compressed and localized. Therefore, the dipole
matrix elements and, thereby, the refractive index changes
reduce. From the figure, it is seen that the resonance peak
position shifts towards higher energies with decreasing
quantum size L. The main reason for this behavior is the
increase of the quantum confinement with decreasing L.
Also, the energy difference between two electronic states
increases by decreasing L. Therefore, the resonance peak
position shifts towards higher energies.
Figure 5 displays the linear, nonlinear, and total absorp-

tion coefficients as a function of the photon energy with
I = 0.4MW/cm2 and L = 10 nm. It is seen from the figure
that there is a resonance peak at a photon energy which
relates to the energy difference between the levels consid-
ered. The linear and nonlinear absorption coefficients are
of opposite signs. Therefore, the total absorption coeffi-
cient decreases. It is obvious that the nonlinear absorption
coefficient is dependent on the incident optical intensity,
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Figure 4 Total refractive index changes as function of photon
energy for three different side lengths.With I = 0.4 MW/cm2.
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Figure 5 Linear, nonlinear, and total absorption coefficients as
function of the photon energy.With I = 0.4 MW/cm2 and L = 10
nm.

but the linear term is independent of the incident optical
intensity.
In Figure 6, we have plotted the variations of the total

absorption coefficient as a function of the photon energy
for three different lengths as L = 10, 11, and 12 nm
with I = 0.4 MW/cm2. This figure clearly shows that
the total absorption coefficient decreases as the quantum
size L increases. One can see (Equations 25 and 26) that
the absorption coefficients are strongly dependent on the
dipole matrix elements Mij. When the quantum size L
increases, the wave function associated with the electron
is more spread and less localized. Therefore, the dipole
matrix elements and, thereby, the absorption coefficients
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Figure 6 Total absorption coefficient as function of photon
energy for three different side lengths.With I = 0.4 MW/cm2.
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increase. From the figure, it is clear that the resonance
peak position shifts towards lower energies with increas-
ing quantum size L. The main reason for this behavior is
the decrease of the quantum confinement with increas-
ing L. Also, the energy difference between two electronic
states reduces by increasing L. Therefore, the resonance
peak position shifts towards lower energies.
Figure 7 displays the total changes in the absorption

coefficient as a function of the photon energy for four
different incident optical intensities as 0, 0.2, 0.4, and
0.6 MW/cm2 with L = 10 nm. It is obvious from the
figure that the total absorption coefficient reduces when
the optical intensity increases. By increasing the optical
intensity, the nonlinear absorption coefficient increases.
Since the linear and nonlinear absorption coefficients are
of opposite signs, the total absorption coefficient will be
reduced. There is no shift in the resonance peak, but the
saturation begins at I = 0.6 MW/cm2.

Conclusion
In this work, we have solved the Schrödinger equation for
an electron confined in a parallelogram quantumwire.We
could obtain analytically the energy levels and wave func-
tions. We have tried to study the linear, nonlinear, and
total absorption coefficients and refractive index changes
of this system. For this purpose, we have only consid-
ered the two-level system for electronic transitions. In
summary, our results show that both the incident opti-
cal intensity and the structure parameter (L) have great
effects on the total absorption coefficient and refractive
index changes of a parallelogram quantum wire.
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Figure 7 Total absorption coefficient as function of photon
energy for four different incident optical intensities.With L = 10
nm.

Methods
Theory andmodel
The Hamiltonian of a charge carrier in a quantum wire is
given by

H = − �
2

2m∗ ∇2+V (x, y),

(1)

wherem∗ is the effective mass. Here, V (x, y) is the confin-
ing potential (see Figure 1):

V (x, y) =
{
0, Inside
∞, Outside . (2)

To obtain energy levels and wave functions, we should
solve the Schrödinger equation in the cartesian coordi-
nates.

− �
2

2m∗ [
∂2

∂x2
+ ∂2

∂y2
]ψ(x, y)+V (x, y)ψ(x, y) = Eψ(x, y).

(3)

Let us consider a superposition of a finite number N of
plane wave in two dimensions,

ψ(x, y) =
N∑
s=1

cs exp(iαsx + iβsy), (4)

where

α2
s + β2

s = λ = 2m∗Es
�2

, s = 1, 2, ...,N .

(5)

Amar et al. [32] applied a mathematical lemma to obtain
the coefficients αs, βs and the energy levels λ. They consid-
ered a set of particular tilings of the plane, precisely those
which are obtained by reflections of a single fundamental
region ( the reference tile). Using this procedure, we can
generate a parallelogram of the plane starting from the ref-
erence tile and reflecting it successively in its sides. In the
following paragraphs, we can explain this procedure
To generate a parallelogram, a copy of the reference tile

along any side, say ai, must necessarily exist due to the fact
that the number of possible different geometrical postures
which can be obtained by reflections of the reference tile
is finite. If ai and aj are two adjacent sides of lengths L(ai)
and L(aj), respectively, with reference to coordinate axes
ζ and η along them, we must have the translation [32]

ζ ′ = ζ + piL(ai), η′ = η, (6)

and

ζ ′ = ζ , η′ = η + pjL(aj), (7)
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where pi and pj are integers. Considering the smallest
pi and pj in Equations 6 and 7, a minimal parallelogram
is naturally defined corresponding to each pair of adja-
cent sides. It is worth mentioning that Richard et al. [33]
and Arnold et al. [34] used this procedure to generate
convex plane polygons. In terms of cartesian coordinate
axes x and y, if δ is the angle between ai and aj, the two
independent translations can be written as

x′ = x + piL(ai), y′ = y, (8)

and

x′ = x+piL(ai) cos δ, y′ = y+pjL(aj) sin δ.
(9)

With respect to Equations 4 to 9, the wave functions and
energy levels can be written as

ψ(x, y) = exp(αx + βy), (10)

where

α = 2nπ/piL(ai),

β = 2mπpiL(ai) − 2nπpjL(aj) cos δ

pipjL(ai)L(aj) sin δ
.

(11)

The corresponding eigenvalues are given by

2m∗E(n,m)

�2
= α2(n,m) + β2(n,m).

(12)

Using geometrical considerations, the eigenvalues and
eigenfunctions for a quantum wire with a parallelogram
cross section can be written as [32-36]

ψn,m(x, y) = sin[
2π

√
3

3L
nx] sin[

2π
3L

my]−(−1)(m+2)/2

× sin[
2π

√
3

3L
(m + n)

2
x] sin[

2π
3L

(3n − m)

2
y]

+ (−1)(m+n)/2 sin[
2π

√
3

3L
(n − m)

2
x]

sin[
2π
3L

(3n + m)

2
x] ,

and

E(n,m) = (
2π2

�
2

9L2m∗ )(3n2 + m2), (13)

where L is the side length. In the above equations, m and
n are integers and have the following conditions:

n �= 0, m �= 0, m �= ±3n, m �= ±n.
(14)

Optical absorption coefficients and refractive index
changes
In this section, we intend to use the density matrix formal-
ism to calculate the refractive index changes and optical
absorption coefficients of a quantum wire with a par-
allelogram cross section, related to an optical intersub-
band transition.
As we know, the system under study can be excited by

an electromagnetic field of frequency ω, such as

E(t) = Ẽeiωt + Ẽ∗e−iωt . (15)

The time evolution of the matrix elements of the one-
electron density operator, ρ, can be written as [26, 27]

∂ρ

∂t
= 1

i�
[H0 − qxE(t), ρ]−�(ρ − ρ(0)),

(16)

where H0 is the Hamiltonian for this system without the
electromagnetic field E(t), and q is the electronic charge.
The symbol [ , ] is the quantum mechanical commuta-
tor; ρ(0) is the unperturbed density matrix operator; � is
the phenomenological operator responsible for the damp-
ing due to the electron-phonon interaction, collisions
among electrons, and etc. It is assumed that � is a diag-
onal matrix, and its elements are equal to the inverse of
relaxation time T .
To solve Equation 17, Ahn et al. [37] applied the

standard iterative method by expanding ρ as ρ(t) =∑
n ρ(n)(t). Inserting this expansion into Equation 17, one

can obtain density matrix elements as seen below:

∂ρ
(n+1)
ij

∂t
= 1

i�
[H0, ρ(n+1)]ij −�ijρ

(n+1)
ij − 1

i�
[ qx, ρ(n)]ij E(t).

(17)

After obtaining the density matrix ρ, we calculated the
electronic polarization P(t) and susceptibility χ(t) as

P(t) = ε0χ(ω)Ẽe−iωt + ε0χ(−ω)Ẽ∗eiωt = 1
V
Tr(ρM),

(18)

where ρ andV are the one-electron densitymatrix and the
volume of the system, ε0 is the permittivity of free space,
and the symbol Tr (trace) denotes the summation over the
diagonal elements of the matrix.
Kuhn et al. [38] could obtain analytical forms of the lin-

ear χ(1) and the third-order nonlinear χ(3) susceptibility
coefficients using Equations 18 and 19. To obtain more
information about the calculation method of these coef-
ficients, the reader can refer to [37, 38]. Kuhn et al. also
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determined the refractive index changes using the real
part of the susceptibility as

�n(ω)

nr
= Re

[
χ(ω)

2n2r

]
, (19)

where nr is the refractive index. The linear and the third-
order nonlinear refractive index changes can be expressed
as [38]

�n(1)(ω)

nr
= συ | M21 |2

2n2r ε0

[
E21 − �ω

(E21 − �ω)2 + (��12)2

]
,

(20)

and

�n(3)(ω)

nr
= − συ | M21 |2

4n3r ε0
μcI[

(E21 − �ω)2 + (��12)2
]2

×
[
4(E21−�ω) | M21 |2 − (M22 − M11)2

(E21)2 + (��12)2

× {
(E21 − �ω)

[
E21(E21 − �ω) − (��12)

2]
−(��12)

2(2E21 − �ω)
} ]

,

where συ is the carrier density, μ is the permeability, Eij =
Ei − Ej is the energy difference, and Mij =|< ψi | qx |
ψj >| is the electric dipole moment matrix element. In
this present work, we have selected the polarization of the
electric field in the x direction. Using Equations 21 and 22,
one can write the total refractive index change as

�n(ω)

nr
= �n(1)(ω)

nr
+ �n(3)(ω)

nr
. (21)

The absorption coefficient α(ω) is also calculated from
the imaginary part of the susceptibility χ(ω) as

α(ω) = ω

√
μ

εR
Im [ε0χ(ω)] . (22)

The linear and third-order nonlinear absorption coeffi-
cients can be written as [27, 39]

α(1)(ω) = ω

√
μ

εR

[
συ��12 | M21 |2

(E21 − �ω)2 + (��12)2

]
,

(23)

α(3)(ω, I) = −ω

√
μ

εR

(
I

2ε0nrc

)
συ��12 | M21 |2

[ (E21 − �ω)2 + (��12)2]2

×
{
4 | M21 |2

−|M22−M11 |2 [
3E221−4E21�ω+�

2(ω2−�2
12)

]
E221 + (��12)2

}
,

(24)

where I is the optical intensity of the incident wave, and it
is given by

I = 2
√

εR
μ

| E(ω) |2= 2nr
μc

| E(ω) |2,
(25)

where c is the speed of light in free space. Using Equations
25 and 26, one can express the total absorption coefficient
α(ω, I) as [27, 37]

α(ω, I) = α(1)(ω)+α(3)(ω, I).
(26)
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