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Pretend model of traveling wave solution of
two-dimensional K-dV equation
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Abstract

Traveling wave resolution of Korteweg-de Vries (K-dV) solitary and numerical estimation of analytic solutions have
been studied in this paper for imaginary concept. Pretend model of traveling wave deals with giant waves or series
of waves created by an undersea earthquake, volcanic eruption or landslide. The concept of traveling wave is
frequently used by mariners and in coastal, ocean and naval engineering. We have found some exact traveling
wave solutions with relevant physical parameters using new auxiliary equation method introduced by Pang et al.
(Appl. Math. Mech-Engl. Ed 31(7):929–936, 2010). We have solved the imaginary part of exact traveling wave
equations analytically, and numerical results of time-dependent wave solutions have been presented graphically.
This procedure has a potential to be used in more complex system for other types of K-dV equations.
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Introduction
Traveling wave is a wave in which the medium moves in
the direction of propagation of the wave. In this wave,
energy is transported from one part of a medium to an-
other. The traveling wave carries energy away from its
source. It is the wave that is not bounded by a given
space but can propagate freely. In case of this wave, the
vibration is in the direction of propagation. Karim et al.
studied numerical estimation of traveling wave solution
of two-dimensional K-dV equation using a new auxiliary
equation method [1]. They studied the numerical esti-
mation of traveling wave solution of K-dV equations for
real cases. A tsunami is a giant wave (or series of waves)
created by an undersea earthquake, volcanic eruption or
landslide. Tsunami waves are totally uncertain. These are
not like a normal sea waves. Tsunamis are often called
tidal waves, but this is not an accurate description
because tides have little effect on giant tsunami waves.
In this research, we defined this sorts of giant waves
are the traveling wave of imaginary concept. Herman's
numerical experiment shows that their method has high
accuracy. A model of an incompressible flow through a
cylindrical metal pipe and the fundamental physical
and mathematical facts presented in [2] are used to
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show how a solitary velocity wave (solution) can arise in
this system; Rukavishnikov and Tkachenko are studied [3].
Although the resulting asymptotic expression in the radial
co-ordinate differs considerably from the classical expan-
sion in depth for shallow-water waves, they are able to de-
rive the K-dV equation. They also show how to proceed
back from the K-dV equation to the velocity function and
present the numerical results obtained for a model prob-
lem. Smaoui and Al-Jamal studied the boundary control
problem of the generalized Korteweg-de Vries Burger
(GKdVB) equation on the interval [0, 1], [4]. They pre-
sented numerical results supporting the analytical ones for
both the controlled and uncontrolled equations using a
finite element method. Pang et al. studied the method of
finding the traveling wave solution to K-dV equation using
a new auxiliary equation method [5]. They got a set of
traveling wave solution for a specific third-order K-dV
equation. Zaiko studied the presence of a singularity re-
sults in that the velocity of long wave perturbations in
the system becomes imaginary, which corresponds to
the wave propagation in the range of nontransparency
[6]. Stefano et al. studied that their work is to start up a
thorough investigation of earthquake-related tsunamis
in the Mediterranean area and a systematic assessment
of the associated hazards [7]. They begin by focusing on
the expected tsunami impact on the coasts of Southern
Italy. Although other source types, such as large submarine
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landslides [8] or volcanic activity [9,10], have been invoked
to explain large historical and pre-historical tsunamis in the
Mediterranean, they focused on strictly earthquake-gener-
ated tsunamis because their impact can be systematically
addressed based on existing knowledge.
In this research, two-dimensional third-order K-dV

equations have been studied. Using a new auxiliary
equation method, we got the 15 sets of travelling wave
solution of K-dV equation. There are three cases to be
arises, two of them are real sense and the other is im-
aginary concept. In our study, we solve the imaginary
part of exact traveling wave equations analytically, and
numerical results of time-dependent wave solutions have
been presented graphically.

The physical configuration of K-dV equation
In Figure 1, u is the displacement of wave, g is the accel-
eration due to gravity and h0 is depth of the channel.

Method of solution
The remarkable form of Korteweg-de Vries nonlinear
partial differentiable equation [11] is

ut þ C0 1þ 3u
2h0

� �
ux þ σuxxx ¼ 0; ð�Þ

which was first introduced by Dutch mathematics Diederik
Korteweg and Gustav de Vries in 1895, to describe long
water waves in a channel of depth h0, where σ ¼ 1

6 c0h0
2 is

a constant for fairly long waves, c0 ¼ gh0ð Þ12 , u is displace-
ment of wave and g is the acceleration due to gravity. In
this section, we introduce the method of finding the ana-
lytic wave solution to nonlinear evolution equation due to
Pang et al. [5]. First, a given nonlinear partial differential
equation has the form.

p u; ut ; ux; utt ; uxx; … ::::ð Þ ¼ 0 ð1Þ

This method mainly consists of four steps:
y t

h0

Flow
xu

g

wave length

x

Channel

Figure 1 Physical model and co-ordinate system.
Step1: Take the complex solutions of (1) in the form

u x; tð Þ ¼ u ξð Þ; ξ ¼ x−vt; ð2Þ
where v is a real constant. Under the transformation (2),
(1) becomes an ordinary differential equation

Q u; u0; u00;… …ð Þ ¼ 0: ð3Þ
Step2: Take the solutions of (3) in the more general

form:

u ξð Þ ¼ a0 þ
Xm
i¼1

ai
G ξð Þ
G0 ξð Þ
� �i

þ bi
G ξð Þ
G0 ξð Þ
� �−i

ð4Þ

where am and bm are not zero at the same time, and a0,
ai and bi (i = 1, 2, 3,….. ….m) are constants to be deter-
mined later. The integer m in (4) can be determined by
balancing the highest order nonlinear terms and the
highest order linear terms of u(ξ) in (3). G =G(ξ) satis-
fies the second-order linear ordinary differential equa-
tion

G00 þ λG0 þ μG ¼ 0; ð5Þ
where λ and μ are constants for the general solution of
(5) are as follows:

When λ2−4μ > 0; G ξð Þ ¼ c1 exp
−λþ

ffiffiffiffiffiffiffiffiffi
λ2−4μ

p
2 ξ

� �
þ

c1 exp
−λ−

ffiffiffiffiffiffiffiffiffi
λ2−4μ

p
2 ξ

� �
;

When λ2−4μ ¼ 0; G ξð Þ ¼ c1 þ c2ξð Þ exp − λ
2 ξ

� �
;

When λ2−4μ < 0; G ξð Þ ¼ exp − λ
2 ξ

� �
c1 cos

ffiffiffiffiffiffiffiffiffi
4μ−λ2

p
2 ξþ

�

c2 sin
ffiffiffiffiffiffiffiffiffi
4μ−λ2

p
2 ξ

�
Note: Let ai = 0, i = 1, 2, ….. …. ….m. Equation (4)

changes to

u ξð Þ ¼ a0 þ
Xm
i¼1

bi
G ξð Þ
G0 ξð Þ
� �−i

: ð6Þ

The form of (6) has been used in study of Pang et al. If
we set bi = 0(i = 1, 2 ……m), (4) changes to

u ξð Þ ¼ a0 þ
Xm
i¼1

ai
G ξð Þ
G0 ξð Þ
� �i

: ð7Þ

Step3: Substitute (4) into (3) and collect all terms with
the same order of G

G′ together. The left-hand side of (3)

is converted into a polynomial in G
G′. Then, let each coef-

ficient of this polynomial to be zero to derive a set of
over-determined partial differential equations for a0, ai,
bi (i = 1, 2,… … ,m), λ, μ, and v.
Step4: Solve the algebraic equations obtained in Step3

with the aid of a computer algebra system (such as
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Mathematica or Maple) to determine these constants.
Moreover, the solutions of (5) are well known. Then,
substituting a0, ai, bi (i = 1, 2,… … ,m), v and the solu-
tions of (5) into (4), we can obtain the exact analytical/
traveling wave solutions of (1).

Solution of mathematical problem
Consider the K-dV equation

ut þ uux þ uxxx ¼ 0 ð8Þ

describe the evolution of long wave (with large length
and measurable amplitude) down a canal with a rect-
angular cross section. Here, u represents the wave amp-
litude, and ut represents the vertical velocity of the wave
at (x, t), ux describes the rate of change in amplitude
with respect to x and uxxx is a dispersion term. This
means that if u is the amplitude of wave at some point
in space, then ux is the slope of the wave at the point
and uxx concavity near the point. The existence of soli-
tary waves is due to the balancing effects of uux and uxxx
in Equation (8). The nonlinear term uux in Equation (8)
is important because the amplitude of the wave depends
on its own rate of change in space; it also represents
steepening. The term uxxx implies dispersion of different
frequency components.
Now, we choose the traveling wave transformation (2),

i.e. u(x, t) = u(ξ), ξ = x − vt where v = constant.
Substituting these into (8), integrating it with respect

to ξ once and letting the integrating constant to be zero,
we have

uξξ þ 1
2
u2−vu ¼ 0: ð9Þ

According to Step2, we get m = 2. Therefore, we can
write the solution of (9) in the form

u ξð Þ ¼ a0 þ
X2
i¼1

ai
G ξð Þ
G0 ξð Þ
� �i

þ bi
G ξð Þ
G0 ξð Þ
� �i

;

that is

u ξð Þ ¼ a0 þ a1
G
G0 þ a2

G
G0

� �2

þ b1
G
G0

� �−1

þ b2
G
G0

� �−2

; ð10Þ

where a2 and b2 are not zero at the same time. By using
(5) and from (10), we have
u″ ξð Þ ¼ λa1 þ 2a2 þ λμb1 þ 2μ2b2
� �
þ λ2a1 þ 6λa2 þ 2μa1
� � G

G0

� �

þ 8μa2 þ 3λμa1 þ 4λ2a2
� � G

G0

� �
2

þ 2μ2a1 þ 10λμa2
� � G

G0

� �
3 þ 6μ2a2

G
G0

� �4

þ 2μb1 þ 6λμb2 þ λ2b1
� � G

G0

� �
−1

þ 3λb1 þ 4λ2b2 þ 8μb2
� � G

D0

� �−2

þ 2b1 þ 10λb2ð Þ G
G0

� �
−3 þ 6b2

G
G0

� �
−4:

ð11Þ
Substituting (10) and (11) into (9) and collecting the

coefficients of G
G′

� �
i ¼ 0;�1;�2;�3;�4ð Þ and letting it

be zero without loss of generality, we obtain the system:

λa1 þ 2a2 þ λμb1 þ 2μ2b2 þ 1
2
a0

2 þ a1b1 þ a2b2−va0 ¼ 0

ðiÞ

λ2a1 þ 6λa2 þ 2μa1 þ a0a1 þ a2b1−va1 ¼ 0 ðiiÞ

8μa2 þ 3λμa1 þ 4λ2a2 þ 1
2
a1

2 þ a0a2−va2 ¼ 0 ðiiiÞ

2μ2a1 þ 10λμa2 þ a1a2 ¼ 0 ðivÞ

6μ2a2 þ 1
2
a2

2 ¼ 0 ðvÞ

2μb1 þ 6λμb2 þ λ2b1 þ a0b1 þ a1b2−vb1 ¼ 0 ðviÞ

3λb1 þ 4λ2b2 þ 8μb2 þ 1
2
b1

2 þ a0b2−vb2 ¼ 0 ðviiÞ

2b1 þ 10λb2 þ b1b2 ¼ 0 ðviiiÞ

6b2 þ 1
2
b2

2¼ 0:

ðixÞ
From (ix), we get either b2 = 0 or b2 = −12 and from (v)

either a2 = 0 or a2 = −12μ2. So, there are three cases to be
arises. For b2 = 0 and a2 = 0 uses the system of Equations
(i) to (ix), we get trivial solutions.



Karim et al. Journal of Theoretical and Applied Physics 2013, 7:64 Page 4 of 11
http://www.jtaphys.com/content/7/1/64
Trivial solution set is a0 = a1 = a2 = b1 = b2 = 0 and the
other solution sets are as follows:
For a2 = −12μ2 and b2 = 0, using the system of Equations

(i) to (ix), we get a set of solution is as follows:

a0 ¼ 0; a1 ¼ −12λμ; a2 ¼ −12μ2; b1 ¼ 0;
b2 ¼ 0; v ¼ λ2 þ 8μ: ðAÞ

For a2 = 0 and b2 = −12, using the system of Equations
(i) to (ix), we get a set of solutions are as follows:

a0 ¼ −12μ; a1 ¼ 0; a2 ¼ 0; b1 ¼ −12λ;
b2 ¼ −12; v ¼ λ2−4μ ðBÞ

a0 ¼ −2λ2−4μ; a1 ¼ 0; a2 ¼ 0; b1 ¼ −12λ;
b2 ¼ −12; v ¼ −λ2 þ 4μ: ðCÞ

For a2 = −12μ2 and b2 = −12, using the system of
Equations (i) to (ix), we get a set of solutions are as follows:

a0 ¼ 8μ; a1 ¼ 0; a2 ¼ −12μ2; b1 ¼ 0;
b2 ¼ −12; v ¼ 16μ; λ ¼ 0 ðDÞ

and

a0 ¼ −24μ; a1 ¼ 0; a2 ¼ −12μ2; b1 ¼ 0;
b2 ¼ −12; v ¼ −16μ; λ ¼ 0; ðEÞ

where λ and μ are arbitrary constants. By using (A to E),
Equation (10) can be written as:
Equations (A to E) and (10) imply, respectively, as

follows:

u ξð Þ ¼ −12λμ
G
G0

� �
−12μ2

G
G0

� �2

; ξ ¼ x− λ2 þ 8μ
� �

t ðFÞ

u ξð Þ ¼ −12μ−12λ
G
G0

� �−1

−12
G
G0

� �−2

;

ξ ¼ x− λ2−4μ
� �

t ðGÞ

u ξð Þ ¼ −2λ2−4μ−12λ
G
G0

� �−1

−12
G
G0

� �−2

;

ξ ¼ xþ λ2−4μ
� �

t ðHÞ

u ξð Þ ¼ 8μ−12μ2
G
G0

� �2

−12
G
G0

� �−2

;

ξ ¼ x−16μt; λ ¼ 0 ðIÞ

u ξð Þ ¼ −24μ−12μ2
G
G0

� �2

−12
G
G0

� �−2

;

ξ ¼ xþ 16μ t; λ ¼ 0: ðJÞ

Now, the second-order differential Equation (5) is as
follows:

00 0
G þ λG þ μG ¼ 0
when λ2−4μ > 0; G ξð Þ ¼ c1 exp
−λþ

ffiffiffiffiffiffiffiffiffi
λ2−4μ

p
2 ξ

� �
þ c2 exp

−λ−
ffiffiffiffiffiffiffiffiffi
λ2−4μ

p
2 ξ

� �
;

when λ2−4μ ¼ 0; G ξð Þ ¼ c1 þ c2ξð Þ exp − λ
2 ξ

� �
;

when λ2−4μ < 0; G ξð Þ ¼ exp − λ
2 ξ

� �
c1 cos

ffiffiffiffiffiffiffiffiffi
4μ−λ2

p
2 ξþ

�

c2 sin
ffiffiffiffiffiffiffiffiffi
4μ−λ2

p
2 ξ

�
:

In this paper, we presented the traveling wave reso-
lution of K-dV equation only for the imaginary case, that
is, λ2 − 4μ < 0.
For λ2 − 4μ < 0,

G ξð Þ ¼ exp −
λ

2
ξ

� �
c1 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

p
2

ξþ c2 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

p
2

ξ

 !
:

Let P ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

p
∴G ξð Þ ¼ e‐

λξ
2 c1 cos

Pξ
2
þ c2sin

Pξ
2

	 


and G0 ξð Þ ¼ 1
2 e

−λξ
2 −λc1 cos

Pξ
2 −λc2 sin

Pξ
2 −Pc1 sin

Pξ
2 þ Pc2 cos

Pξ
2

� �

∴
G
G0 ¼

2 cos Pξ2 þ 2c3 sin
Pξ
2

−λ cos Pξ2 −λc3 sin
Pξ
2 −P sin Pξ

2 þ Pc3 cos
Pξ
2

:

Therefore, Equation (F) becomes

u ξð Þ ¼ −24λμ
cos

Pξ
2
þ c3 sin

Pξ
2

−λ cos
Pξ
2
−λc3 sin

Pξ
2
−P sin

Pξ
2
þ Pc3 cos

Pξ
2

2
64

3
75

−48μ2
cos

Pξ
2
þ c3 sin

Pξ
2

−λ cos
Pξ
2
−λc3 sin

Pξ
2
−P sin

Pξ
2
þ Pc3 cos

Pξ
2

2
64

3
75
2

ξ ¼ x− λ2 þ 8μ
� �

t;P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
: ð12Þ

Equation (G) implies

u ξð Þ ¼ −12μ−6λ
−λ cos

Pξ
2
−λc3 sin

Pξ
2
−P sin

Pξ
2
þ Pc3 cos

Pξ
2

cos
Pξ
2
þ c3 sin

Pξ
2

2
64

3
75

−3
−λ cos

Pξ
2
−λc3 sin

Pξ
2
−P sin

Pξ
2
þ Pc3 cos

Pξ
2

cos
Pξ
2
þ c3 sin

Pξ
2

2
64

3
75
2

ξ ¼ x− λ2−4μ
� �

t;P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
: ð13Þ



cos
Pξ
2

3
75−3 −λ cos

Pξ
2
−λc3 sin

Pξ
2
−P sin

Pξ
2
þ Pc3 cos

Pξ
2

cos
Pξ
2
þ c3 sin

Pξ
2

2
64

3
75
2

ð14Þ

ξþ Pc3 cos
Pξ
2

ξþ c3 sin
Pξ
2

3
75
2

; ξ ¼ x−16μt; λ ¼ 0; P ¼ ffiffiffiffiffi
4μ

p

ð15Þ

t
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Figure 2 u wave (a) against t for different values of x (b) against x for different values of t.
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Equation (H) implies

u ξð Þ ¼ −2λ2−4μ−6λ
−λ cos

Pξ
2
−λc3 sin

Pξ
2
−P sin

Pξ
2
þ Pc3

cos
Pξ
2
þ c3 sin

Pξ
2

2
64

ξ ¼ xþ λ2−4μ
� �

t;P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
:

Equation (I) implies

u ξð Þ ¼ 8μ−48μ2
cos

Pξ
2
þ c3 sin

Pξ
2

−P sin
Pξ
2
þ Pc3 cos

Pξ
2

2
64

3
75
2

−3
−P sin

P
2

cos
P
2

2
64
-441.3
34

-441.3
34

-441.334

-39661.3

-441.334

t

x
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0
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Figure 3 u wave contour against t and x.



Pξ
2
þ Pc3 cos

Pξ
2

Pξ
2
þ c3 sin

Pξ
2

3
75
2

; ξ ¼ xþ 16μt; λ ¼ 0; P ¼ ffiffiffiffiffi
4μ

p
:

ð16Þ

Table 1 u wave against t for different values x for controlling parameter λ = 2.0, μ = 5.0 and c = 10.0

t x = 5.0 x = 10.0 x = 15.0 x = 20.0 x = 25.0

0.10 −107.1442 −51.4594 −53.0258 −120.6176 −4,176.9237

0.20 −94.8041 −50.0516 −55.2791 −140.5154 −2,000.8936

0.30 −85.0259 −49.0301 −58.0833 −167.0111 −5,422.6039

0.40 −77.1852 −48.3656 −61.5360 −203.2948 −1,045.0317

0.50 −70.8417 −48.0394 −65.7674 −254.7616 −3,028.7940

0.60 −65.6785 −48.0425 −70.9507 −331.1269 −1,424.2111

0.70 −61.4634 −48.3751 −77.3194 −451.3531 −828.8217

0.80 −58.0241 −49.0462 −85.1925 −656.6366 −544.5270

0.90 −55.2313 −50.0747 −95.0131 −1,050.9860 −387.0973

1.00 −52.9876 −51.4902 −107.4097 −1,964.3504 −290.9537

1.10 −51.2197 −53.3350 −123.2969 −4,957.7944 −228.0112

1.20 −49.8728 −55.6665 −144.0446 −2,979.3061 −184.6132

1.30 −48.9071 −58.5620 −171.7788 −1,439.9273 −153.4717

1.40 −48.2948 −62.1234 −209.9420 −8,182.3846 −130.4094

1.50 −48.0188 −66.4867 −264.4064 −2,646.9233 −112.8934

1.60 −48.0716 −71.8328 −345.8621 −1,298.3446 −99.3155

1.70 −48.4547 −78.4065 −475.4738 −772.7328 −88.6158

1.80 −49.1785 −86.5424 −700.1238 −514.8411 −80.0731

1.90 −50.2635 −96.7073 −1,141.5721 −369.5366 −73.1836

2.00 −51.7410 −109.5652 −2,204.1399 −279.7256 −67.5874
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Equation (J) implies:

u ξð Þ ¼ −24μ−48μ2
cos

Pξ
2
þ c3 sin

Pξ
2

−P sin
Pξ
2
þ Pc3 cos

Pξ
2

2
64

3
75
2

−3
−P sin

cos

2
64

Results and discussion
It can be seen that the potential has the form of the bore
(according to the terminology of [12]), which is a stand-
ard function of the nonlinear wave theory. The u wave
t
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Figure 5 u wave contour against t and x.
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sharply and the other cases as well. But in every wave, it
maintains at a surface level which depict a general phe-
nomena of a long water waves. The wave moves right
direction along x as t increases in Figure 2b. At a time
t = 0.1, waves fall sharply, and then, it maintains a
steady-state level. In other cases, wave behaviors are the
same. Figure 3 depicts the u wave contour against t and
x. For a particular wave, it is seen that the amplitude of
the wave is minimum at the mid-point of that wave. In
two-dimensional case, u wave contour is always the same
at the mid-point at time t = 0.2 and a position x = 5.0
is −441.33, which is minimum. The negative sign indicates
that the wave falls down below the surface level. For the
imaginary case, we chose the parameters as λ = 2.0,μ = 5.0
and c = 10.0 such that λ2 − 4μ < 0 (Table 1).
For the cases below, the numerical estimations are

based on the Equation (13). Figure 4a depicts the time
evolution of the solution u(x, t), with λ = 2.0, μ = 5.0 and
c = 10.0 so that λ2 − 4μ < 0 for the values x = 5.0, x = 10.0,
x = 15.0, x = 20.5 and x = 25.0. In case of x = 5.0, waves
fall down at t = 0.1 and goes up immediately. Wave de-
creases as increasing values of t to a certain level like t =
t
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Figure 6 u wave (a) against t for different values of x (b) against x for
0.5, and after that, it increases for that particular case
against t. Numerical representation of u wave against x
for the different values of t like t = 0.1, t = 0.5, t = 0.9, t =
1.3 and t = 1.7 is shown in Figure 4b. It gives the shape
of wave which is exact traveling wave solution of the
problem (8). For increasing values of t, wave moves to
the left but every wave maintaining same level against x
which shows the Figure 4b. Here, we see that the nu-
merical result is stable and reliable, and it keeps almost
the same shape as exact solution. For a specific wave, it
is seen that the amplitude is maximum at the mid-point
of that wave. Figure 5 represents the numerical estima-
tion of u wave contour against x and t simultaneously.
Figures 6a,b and 7 show the traveling wave solution of

K-dV equation (14). Figure 6a represents the time evolu-
tion of u wave against t for different values of x. Waves
fall down at t = 0.1, which close to the surface level just
after the given values of t for x = 5.0. Wave decreases as
increasing values of t to a certain level like t = 0.5, and
after that, it increases against t. For increasing values of
t, wave moves to the right but every wave maintaining
same surface level against x which is shown in Figure 6b.
x
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Figure 7 u wave contour against t and x.
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But Figure 7 depicts the u wave contour against t and x.
For the graphical representation of the equation, we
consider the parameters λ = 2.0, μ = 5.0 and c = 10.0 so
that λ2 − 4μ < 0 but c does not depend on λ and μ. It is
found that the wave which is periodic for x = 5.0, x =
10.0, x = 15.0, x = 20.0 and x = 25.0 against t, oscillates
regularly. Here, the time t is defined over the interval [0,
1.2]. At the centre of the contour the amplitude of the
wave is minimum, and it increases gradually around the
centre.
Figure 8a shows u wave against t for different values of

x while the parameters λ = 2.0, μ = 2.5 and c = 10.0 so
that λ2 − 4μ < 0. For x = 5.0, water waves fall down at t =
0.1 and goes up immediately. Wave decreases as increas-
ing values of t to a certain level like t = 0.2 and after that
it increases up to t = 0.2 against x. Waves move in the
right direction against t as x increases. For a particular
value of x, amplitude of the wave fluctuates randomly
against t which is the general characteristics of the trav-
eling wave for imaginary case. Figure 8b shows the
graphical representation of traveling wave against x for
different values of t. In case of t increases wave moves to
t
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Figure 8 u wave (a) against t for different values of x (b) against x for
the right direction but every wave maintains same level
against x which is shown in Figure 8b. It gives the same
wave shape of the exact traveling wave solution for the
governing equation (8). For a particular wave, amplitude
gives a minimum value at the middle position. Figure 9
shows that the numerical representation of u wave con-
tour against t and x which is based on the result (15). In
two-dimensional case, u wave contour is always same at
the mid-point for a particular value of t = 1.0 and x = 7.6
is −340,685,275.74. The negative sign indicates that the
wave falls down below the surface level. Drastic falls in-
dicate the general phenomena of tsunami wave.
Now we consider the numerical estimation of (16) for

an imaginary case where the parameters λ = 2.0, μ = 5.0
and c = 10.0 such that λ2 − 4μ < 0. Figure 10a shows the
numerical representation of u wave against t for different
values of x = 5.0, x = 10.0, x = 15.0, x = 20.0 and x = 25.0.
We have seen that wave increases against t to a certain
time t = 0.3, and later, it gradually decreases. While in
every case, wave maintains the surface level. In tsunami,
it could be really impossible which indicate that this is a
pretend model of K-dV equation. Here, we see that u
x
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Figure 9 u wave contour against t and x.
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wave is solitary, and it is very much regular that we ex-
pect in analytical sense. As t increases, wave moves to
the right but every wave maintains same surface level
against x which is shown in Figure 10b. Figure 11 shows
that the u wave contour against x and t. In two-
dimensional case, u wave contour is always same at the
mid-point for a particular value of t = 1.0 and x = 3.0
is −629.68. Other cases have the same analysis. In tsu-
nami, the wave moves over large amount of obstacle
with huge energy. Thus, in tsunami, it is quite difficult
to predict what happens in the waves.
u wave against t for different values of x for controlling

parameter λ = 2.0, μ = 5.0 and c = 10.0 such that λ2 − 4μ < 0.
But c does not depend on other two. In this case, wave
length analysis is totally imaginary concept. At x = 5.0, u
wave gradually increases up to t = 1.5, and after that, it
gradually decreases. The maximum value of wave length
is −48.0188 at t = 1.50 and minimum value is −107.1442 at
t = 0.10. For x = 10.0, u wave gradually increases as t in-
crease to a certain level t = 0.5, and after that, u wave
t
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Figure 10 u wave (a) against t for different values of x (b) against x fo
gradually decreases. The maximum value of u wave
is −48.0394 at t = 0.5 and minimum is −109.5652 at t =
2.0. The same analysis was observed in the other cases
(Table 2).
u wave against x for different values of t for control-

ling parameter λ = 2.0, μ = 5.0 and c = 10.0 such that
λ2 − 4μ < 0. Because of the imaginary concept, u wave
against x for different values of behaves abruptly. For a
particular value of t = 0.1, the maximum wave length
is −48.1083 and minimum value is −4,176.9329 at x =
40.00 and x = 25.00, respectively. For t = 0.5, the max-
imum value of u wave is −48.0117 and minimum value
is −3,028.7656 at x = 65.00 and x = 25.00, respectively.
When t = 0.9, the maximum value of u wave is −48.0127
and minimum value is −5,405.6342 at x = 90.00 and x =
50.00, respectively.

Conclusion
In this research, numerical estimation of traveling wave
solution of two-dimensional K-dV equation using a new
x
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auxiliary equation method has been studied. The K-dV
equation for the present problem comes from the third-
order two-dimensional governing equation (*) after some
suitable transformation. It is found that there are five
exact traveling wave solutions (12 to 16) of K-dV equa-
tion exist for pretend model depends on different values
related physical parameters. Numerical results of five
analytical solutions for imaginary case obtained by using
Table 2 u wave against x for different values t for controlling

x t = 0.1 t = 0.5

1.00 −69.2666 −103.3328

5.00 −107.1442 −70.8416

10.00 −51.4594 −48.0394

15.00 −53.0258 −65.7674

20.00 −120.6176 −254.7622

25.00 −4,176.9329 −3,028.7656

30.00 −236.0514 −115.2622

35.00 −64.3096 −52.4043

40.00 −48.1083 −52.0018

50.00 −361.6669 −2,491.2159

55.00 −1,188.5972 −269.1723

60.00 −97.5294 −66.8345

65.00 −50.3558 −48.0117

70.00 −54.6859 −69.5964

75.00 −135.1805 −309.5533

80.00 −1,205.5359 −1,667.6017

85.00 −199.9270 −104.2689

90.00 −61.2333 −51.1262

95.00 −48.4061 −53.4623

100.00 −77.7520 −124.4042
FORTRAN program have been shown graphically and
discussed accordingly. While employing the Fortran-
Scheme for the numerical estimation of K-dV equa-
tions, we presented those graphically when λ2 − 4μ < 0.
Note that the real life examples of imaginary concept
may be seen in Tsunami waves. Further study is needed
to use its potentiality for more complex types of K-dV
equations.
parameter λ = 2.0, μ = 5.0 and c = 10.0

t = 0.9 t = 1.3 t = 1.7

−196.9882 −617.1715 −2,000.0882

−55.2313 −48.9070 −48.4547

−50.0747 −58.5620 −78.4067

−95.0133 −171.7797 −475.4796

−1,050.9963 −1,439.4922 −772.7206

−387.0951 −153.4710 −88.6155

−74.1368 −56.6806 −49.3884

−48.1761 −49.4680 −56.9077

−63.3541 −89.3836 −155.6213

−5,405.6342 −462.5096 −169.2358

−124.6014 −77.8288 −58.3076

−53.4850 −48.4117 −48.9710

−51.1098 −61.1930 −84.4061

−104.1274 −199.4816 −632.5715

−1,655.5162 −1,229.2940 −563.5778

−310.4619 −135.4094 −81.9742

−69.6551 −54.7115 −48.7481

−48.0127 −50.3418 −59.2588

−66.7820 −97.4053 −178.8625

−268.4490 −1,181.3621 −5,105.9182
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