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Abstract Fibonacci fractal structures have been already

studied. However, more special fractal structures could be

beneficial in specific applications. In this paper, we create

three variations of Fibonacci fractal photonic crystals as

well as original structure, including: inverse Fibonacci

fractal photonic crystal, mirror symmetry Fibonacci fractal

photonic crystal (MSFFPC), and finally folded Fibonacci

fractal photonic crystal. The transmission spectra of these

structures are simulated and analyzed. Our findings show

that presented structures have their own characteristics,

therefore, can be used for different applications according

to required specifications. Some MSFFPC structures, for

instance, could be used to develop resonant microcavities

with high Q factor that can be applicable in design and

construction of ultrasensitive optical sensors with very high

quality factor requirements. The narrower resonance peaks

and the smaller amount of interfaces lead to a higher sen-

sitivity for this structure.
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Introduction

The structure of the photonic crystal (PC) has a great

impact on the performance of a one-dimensional (1D) PC

[1, 2]. Different structures of PCs lead to different trans-

mission spectra, group velocity, and dispersion. These PCs

can be used as optical filters [3–5], optical switches [6–8],

optical logic devices [9, 10], and optical buffers [11, 12].

All of the mentioned studies are based on Euclidean

geometry. Whereas the knowledge on the propagation of

light waves in completely ordered and disordered struc-

tures is now rapidly improving, little is known about the

behavior of optical waves in the huge intermediate regime

between total order and disorder. The Fibonacci fractal

photonic crystal (FFPC) structures as non-Euclidean geo-

metrical structures have fascinating optical properties. The

transmission spectrum of a Fibonacci system contains

forbidden frequency regions called ‘‘pseudo band gaps’’

similar to the band gaps of a photonic crystal [13]. In the

frequency regime outside these Fibonacci band gaps, the

light waves are critically localized. In contrast with the

fully disordered (Anderson) localized case, these critically

localized states decay weaker than exponentially, most

likely by a power law, and have a rich self-similar structure

[14]. This makes these systems very interesting for light

localization studies, as proposed by Kohmoto et al. [15].

Also the FFPCs have been successfully used to develop

devices such as high-quality resonant microcavities [16]

and mirrors with large omnidirectional photonic band gap

(PBG) [17, 18].

The first Fibonacci sequence for electron transport

studies was realized by Merlin et al. [19], which was fol-

lowed by several experiments and theoretical studies on

electron propagation in these systems. The experimental

work on light transport in this fascinating class of struc-

tures is limited so far. Important pioneering experiments

were performed by Gellermann et al. [20] who observed

self-similarity in the transmission spectrum of Fibonacci

dielectric multilayers and by Hattori et al. [21] who mea-

sured the Fibonacci dispersion curves. The FFPC structures

have been already addressed [22]. However, these struc-

tures have a great potential to be further studied.
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In this paper, therefore, we will consider three new as

well as noble structures based on the Fibonacci fractal

arrangements namely, the inverse Fibonacci fractal pho-

tonic crystal (IFFPC), the mirror symmetry Fibonacci

fractal photonic crystal (MSFFPC), and finally the folded

Fibonacci fractal photonic crystal (FFFPC) as well as the

original one (FFPC), given in Xu et al. [22], which was

addressed for comparison. These Fibonacci fractal struc-

tures were used in PCs and their optical characteristics were

analyzed such as the transmission spectra. We also discuss

the rules of the transmission peak of these fractal PCs.

In this study, an optical transmission matrix formulation

[23–25] has been utilized and implemented to calculate the

transmittance and reflectance through these PC structures.

The descriptive definition of the Transfer-Matrix Method

(TMM) [22] is as follows. For an N-layer system, the

refractive index, relative permittivity, permeability, and

thickness of the j layer are noted as nj, ej, lj, and hj,

respectively. If hj indicates the angle of incidence for a TE

wave, the transmission matrix of the j layer can be

expressed in Eq. (1):

Mj ¼
cos dj � i

gj

sin dj

�igj sin dj cos dj

2
4

3
5: ð1Þ

In matrix Mj, the meanings of the parameters are

expressed in Eq. (2):

dj ¼ �x
c

ffiffiffiffi
ej

p
hj cos hj

gj ¼
ffiffiffiffiffi
e0

l0

r ffiffiffiffi
ej

p
cos2 hj

8><
>:

: ð2Þ

According to Eq. (1), for a multilayer dielectric, we can

obtain the total transmission matrix as in Eq. (3):

E1

H1

� �
¼ M1M2 � � �MN

ENþ1

HNþ1

� �
¼ M

ENþ1

HNþ1

� �

¼ A B

C D

� �
ENþ1

HNþ1

� �
: ð3Þ

Therefore, the transmittance and reflectance of the total

layers can be expressed in Eqs. (4) and (5):

t ¼ Et;Nþ1

Ei;1
¼ 2g0

Ag0 þ Bg0gNþ1 þ C þ DgNþ1

ð4Þ

r ¼ Er;1

Ei;1
¼ Ag0 þ Bg0gNþ1 � C � DgNþ1

Ag0 þ Bg0gNþ1 þ C þ DgNþ1

: ð5Þ

The transmitted and reflected power of the total layers

can be expressed in Eqs. (6) and (7):

T ¼ t � t� ð6Þ
R ¼ r � r�: ð7Þ

Then, the transmitted and reflected spectrum can be

calculated by Eqs. (6) and (7).

In our study, the central wavelength is assumed to be

k0 = 1.5 lm and the frequency can be obtained as

x0 = 2pc/k0, where c is the vacuum speed of light. The

individual layer of the PC is designed in quarter-wave

layers for which the quasi-periodicity is expected to be

more effective, viz., nada = nbdb = k0/4.

Fractal structure creation

As we mentioned earlier, we use different Fibonacci-base

sequences to create different fractal structures to be applied

to one-dimensional PCs.

FFPC is based on original Fibonacci sequence. Fibo-

nacci sequence is a specific sequence of binary digits (or

symbols from any two-letter alphabet). The Fibonacci word

is formed by repeated concatenation in the same way that

the Fibonacci numbers are formed by repeated addition.

Let S0 be ‘‘0’’ and S1 be ‘‘1’’. Now, having Sn ¼ Sn�1 þ
Sn�2 (the concatenation of the previous sequence and the

one before that), we have:

S0 0

S1 1

S2 10

S3 101

S4 10110

S5 10110101

S6 1011010110110

. . .

:

IFFPC is based on inverse Fibonacci sequence. Inverse

code is simply inverted binary code of a number. That is all

zeroes become ones and all ones become zeroes (for

example binary code Sn ¼ 00001100 ? inverse code
�Sn ¼ 11110011). We define inverse Fibonacci sequence as

Sn ¼ Sn�1 þ �Sn�2. So, we have:

S0 0

S1 1

S2 11

S3 110

S4 11000

S5 11000001

S6 1100000100111

. . .

MSFFPC is based on mirror symmetry Fibonacci

sequence. Mirror symmetry is simply reflected binary code

of a number (for example binary code Sn ¼ 00001100

? reflected code ~Sn ¼ 00110000). We define mirror
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symmetry Fibonacci sequence as Sn ¼ Sn�1 þ ~Sn�2. So, we

have:

S0 0

S1 1

S2 10

S3 101

S4 10101

S5 10101101

S6 1010110110101

. . .

Therefore, We have three different FFPC structures:

FFPC Sn ¼ Sn�1 þ Sn�2, IFFPC Sn ¼ Sn�1 þ �Sn�2, and

MSFFPC Sn ¼ Sn�1 þ ~Sn�2. Using A to replace ‘‘1’’ and B

to replace ‘‘0’’ in the FFPC series, we can determine

sequence of A and B layers in the structure. In our study,

the refractive index of layer A is nA = 1.45 (SiO2) and the

refractive index of layer B is nB = 2.3 (TiO2).

At the end, we offer a folded Fibonacci fractal photonic

crystal (FFFPC) structure which is defined as follows:

F1 ¼ Sn

F2 ¼ Sn þ ~Sn

F3 ¼ Sn þ ~Sn þ Sn

F4 ¼ Sn þ ~Sn þ Sn þ ~Sn

F5 ¼ Sn þ ~Sn þ Sn þ ~Sn þ Sn

F6 ¼ Sn þ ~Sn þ Sn þ ~Sn þ Sn þ ~Sn

. . .

Simulation and results

At first, we calculate the transmission spectrum of two-

period (P2) FFPC with series ranging from 3 to 8 (S3–S8)

for FFPC, IFFPC, and MSFFPC. Figures 1, 2, 3 show the

results, respectively.

The transmission peak is defined as the one that nearly

reaches the unit transmission of the forbidden band. We

count the transmission peaks in Fig. 1 and draw the rule

that the number of transmission peaks of the two-period

FFPC is in the law of Ms = Ms-1?Ms-2, which is in

accordance with the structure of the FFPC where Ms rep-

resents the number of transmission peaks of the two-period

FFPC with the S series. This finding conforms to the pre-

vious work reported by [22].

Considering Fig. 2, we find that the number of trans-

mission peaks of the two-period IFFPC follows the same

law of FFPC. As shown in Fig. 3, the number of trans-

mission peaks of the two-period MSFFPC is in the law of

M0
s = M0

s-1?M0
s-2?1, where M0

s represents the number

of transmission peaks of the two-period MSFFPC with the

S series.

Then, we calculate the transmission spectrum of sixth

series (S6) of the structure with period ranging from 2 to 7

(P2–P7). Figures 4, 5, 6 show the results, respectively.

We can see from the Figs. 4 and 5 that transmission

peaks split to multiple peaks as the period P increases. If

period P is even, the number of transmission peaks is in the

law of Mp = 3*(P - 1), otherwise, the number of trans-

mission peaks is in the law of Mp = 3*(P - 1) ? 1, where

Mp represents the number of transmission peaks of the sixth

series FFPC and IFFPC structures with period P. As Fig. 6

shows, the number of transmission peaks is in the law of

M0
p = 3*P - 1, where M0

p represents the number of

transmission peaks of the sixth series MSFFPC with period

P.

Now, we calculate the transmission spectrum of sixth

series (S6) FFPC with Folds ranging from 2 to 7 (F2–F7).

The result is shown in Fig. 7.

We can see from the Fig. 7 that transmission peaks split

to multiple peaks as the fold F increases. The number of

transmission peaks is in the law of MF = 2*F?1 for even

F and MF = 2*F-1 for odd F, where MF represents the

number of transmission peaks of the sixth series FFFPC

with fold F.

Conclusion

This article introduces new variations of Fibonacci fractal

structure into a 1D PC. Inverse Fibonacci fractal photonic

crystal (IFFPC), mirror symmetry Fibonacci fractal pho-

tonic crystal (MSFFPC), folded Fibonacci fractal photonic

crystal (FFFPC) as well as original FFPC are studied.

Through theoretical analysis of the transmission spectrum

it is found that the number of transmission peaks of a two-

period FFPC is in the law of Ms = Ms - 1?Ms - 2 in

accordance with the structure of an FFPC where Ms rep-

resents the number of transmission peaks of an FFPC with

the S series. There is also the same rule for IFFPC. The

number of transmission peaks of the two-period MSFFPC

is in the law of M0
s = M0

s - 1?M0
s - 2?1, where M0

s

represents the number of transmission peaks of the two-

period MSFFPC with the S series.

When we fix the series, the transmission peaks of the

sixth series FFPC and IFFPC split as the period increases.

The number of transmission peaks is in the law of

Mp = 3*(P - 1) for even P and Mp = 3*(P - 1) ? 1 for

odd P, where Mp represents the number of transmission

peaks of the sixth series FFPC and IFFPC structures with

period P. When we consider the sixth series MSFFPC, the
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Fig. 1 Transmission spectrum of two-period (P2) FFPC (Sn ¼ Sn�1 þ Sn�2) with series ranging from 3 to 8 (S3–S8). a FFPC S3, b FFPC S4,

c FFPC S5, d FFPC S6, e FFPC S7, f FFPC S8
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Fig. 2 Transmission spectrum of two-period (P2) IFFPC (Sn ¼ Sn�1 þ �Sn�2) with series ranging from 3 to 8 (S3–S8). a IFFPC S3, b IFFPC S4,

c IFFPC S5, d IFFPC S6, e IFFPC S7, f IFFPC S8
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Fig. 3 Transmission spectrum of two-period (P2) MSFFPC (Sn ¼ Sn�1 þ ~Sn�2) with series ranging from 3 to 8 (S3–S8). a MSFFPC S3,

b MSFFPC S4, c MSFFPC S5, d MSFFPC S6, e MSFFPC S7, f MSFFPC S8

113 Page 6 of 12 J Theor Appl Phys (2014) 8:113

123



Fig. 4 Transmission spectrum of sixth series (S6) FFPC (Sn ¼ Sn�1 þ Sn�2) with period ranging from 2 to 7 (P2–P7). a FFPC P2, b FFPC P3,

c FFPC P4, d FFPC P5, e FFPC P6, f FFPC P7
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Fig. 5 Transmission spectrum of sixth series (S6) IFFPC (Sn ¼ Sn�1 þ �Sn�2) with period ranging from 2 to 7 (P2–P7). a IFFPC P2, b IFFPC P3,

c IFFPC P4, d IFFPC P5, e IFFPC P6, f IFFPC P7
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Fig. 6 Transmission spectrum of sixth series (S6) MSFFPC (Sn ¼ Sn�1 þ ~Sn�2) with period ranging from 2 to 7 (P2–P7). a MSFFPC P2,

b MSFFPC P3, c MSFFPC P4, d MSFFPC P5, e MSFFPC P6, f MSFFPC P7
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Fig. 7 Transmission spectrum of sixth series (S6) FFFPC with folds ranging from 2 to 7 (F2–F7). a FFFPC F2, b FFFPC F3, c FFFPC F4,

d FFFPC F5, e FFFPC F6, f FFFPC F7
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number of transmission peaks is in the law of

Mp = 3*P - 1. We come to the conclusion that a fractal

structure can bring PC special properties in accordance

with the special structure. These rules and results are of

great importance for structure design of fractal PCs and a

good theoretical direction to the application of fractal PCs.

Our findings show that presented structures have their

own characteristics, therefore, can be used for different

applications according to required specifications. For

example MSFFPC S6-P2 could be used to develop high-

quality resonant microcavities or narrow band pass filters

with high Q factor (see Fig. 8). This structure can be

applicable in design and construction of ultrasensitive

optical sensors with very high quality factor requirements.

The narrower resonance peaks and the smaller amount of

interfaces lead to a higher sensitivity for the nonperiodic

structure [26].
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