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Abstract The canonical function method (CFM) is a

powerful accurate and fast method that solves the Schro-

dinger equation for the eigenvalues directly without eval-

uating the eigenfunctions. In this work, it is applied to the

solution 1D Schrodinger equation specializing to the linear

potential that is perturbed by electric field. The linear and

square Stark effects are perturbation terms. Finally, the

CFM results will be compared with the exact results. The

CFM method is superior to many standard techniques that

have been used to solve the Schrodinger equation such as

Numervo.

Keywords Linear potential � Stark effect � Canonical

function method

Introduction

In quantum mechanics, the analysis of systems with vari-

ous potentials is important. A system with a symmetrical

linear potential V zð Þ ¼ F zj j is a simple model to analyze

neutron quantized balances in the gravity field of earth. A

particle with this potential is studied as ‘‘a quantum

bouncing ball’’ in [4–6].

The Canonical Function Method (CFM) can handle a

large variety of quantum problems [1], also the eigenvalues

problem making it an extremely versatile, fast and highly

accurate.

The CFM turns the two-point boundary value Schro-

dinger problem into initial value of Schrodinger problem

and allows full and accurate determination of the spectrum.

This is done by expressing the solution as a sum of two

linearly independent functions (the canonical functions)

with specific values at some arbitrary point belonging to

the interval defined by the two boundaries. The integration

proceeds simultaneously from this point toward the left and

right boundaries evaluating at each step a corresponding

ratio. It stops when the difference between the left and right

ratio is below a given desired precision [2].

In this work, we discuss the application of CFM to a system

with a linear potential; we consider the Stark effect as a

perturbation term of desired potential (the second-order shifts

in the energy spectrum due to an external constant force) in a

one-dimensional model quantum mechanical system descri-

bed by the linear potentials, the so-called quantum bouncer

(defined by V (z) = Fz for z [ 0 and V (z) = ? for z \ 0)

and the symmetric linear potential (given by V (z) = F|z|).

We show how straightforward use of the most obvious

properties of the Airy function solutions gives closed form

results for the Stark shifts in this system [3].

This article is organized as follows: the next section is a

description of the CFM and exact solutions of Schrodinger

Equation with the Linear Potential in 1D with the appropriate

boundary conditions. In Sect. 3, the Stark effect for 1D

quantum mechanical system described by the linear poten-

tials and the CFM is applied to the Stark effect in the quantum

bouncer and the CFM results will be compared with analyt-

ical solution of the Stark effect in quantum bouncer (Airy

functions). Finally, Sect. 4 bears our conclusions.
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Solving Schrodinger equation with linear potentials

Terrestrial objects are confined by the Earth’s gravitational

field. Since the gravitational interaction is weak, the

quantum effects of gravity are not observed in the macro-

world. Evidence for the quantized gravitational energy

levels is the quantum bouncer (to a so-called ‘‘The quan-

tum bouncer’’) [4]. It has been a favorite example in the

repertoire of solvable one-dimensional problem for those

who teach quantum physics. This academic problem has

received renewed attention as the simplest model for

quantum states of neutrons in the Earth’s gravitational field

[5].

Now, if we consider the Schrodinger equation for a

particle under the influence of gravity which is bounced on

a perfectly reflecting surface, the particle has this linear

potential

V zð Þ ¼ FZ Z � 0

1 Z\0

�
ð1Þ

This problem has been solved by Airy special functions

Ai xð Þ and Bi xð Þ [6]. The Airy functions are solutions of the

differential Equation [7]:

��h2

2m

d2wn zð Þ
dz2

þ Fzwn zð Þ ¼ Enwn zð Þ ð2Þ

The Airy functions are the solutions of the Schrodinger

equation for a particle confined by a triangular well and for

a particle in a one-dimensional constant force field. Figure

(1) shows Ai xð Þ and Bi xð Þ [where Ai xð Þ and Bi xð Þ are the

Airy functions].

The exact solution

The Schrodinger equation for the quantum bouncer is:

w
00

n xð Þ ¼ x � fnð Þwn xð Þ ð3Þ

Using the change of variable and the definitions:

fn ¼ En

Fq
� En

e0

; z ¼ qx; q ¼ �h2

2mF

� �1=3

ð4Þ

The solutions of Eq. (3) are two linearly independent

Airy functions Ai x � fnð Þ and Bi x � fnð Þ. The Bi x � fnð Þ
solution diverges for large positive argument and does not

satisfy the boundary condition w z ! 1ð Þ ¼ 0, therefore it

is excluded. The energy eigenvalues are determined by the

boundary condition imposed by the infinite wall at the

origin, namely that w z ¼ 0ð Þ ¼ Ai �fnð Þ ¼ 0 (Fig. 2).

The quantized energies are then given in terms of the

zeros of the well-behaved Airy function Aið�fnÞ with

En ¼ e0fn. The quantized energies become

En ¼ e0

3p
8
ð4n � 1Þ

� �2=3

1 þ 5

48

3p
8
ð4n � 1Þ

� ��2
"

� 5

36

3p
8
ð4n � 1Þ

� ��4
#

ð5Þ

The eigenfunctions of this potential are:

wn zð Þ ¼ NnAi
z

q
� fn

� �
; Nn ¼ 1ffiffiffi

q
p

A
0
ið�fnÞ

ð6Þ

A
0
i �fnð Þ is differential of Ai �fnð Þwhere wn zð Þj j2 is the

probability distribution for a particle that bounces near the

surface. All the eigenfunctions for this problem are pieces

of the same function, the Airy function Ai, shifted in each

case so that it has a zero at z = 0 and by z\0 part trun-

cated. In Table 1, eigenvalues of the linear potential for the

first five levels are illustrated.

The CFM solution

For solving by CFM method, we start from a point z0 2
½z1; z2� and indicate the solution as a superposition of two

linearly independent functions a E; zð Þ; b E; zð Þ depending

on the energy E and the abscissa z such that [7]:

Fig. 1 Plot of eigenfunction Ai xð Þ

Fig. 2 Plot of eigenfunction Bi xð Þ
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w zð Þ ¼ w z0ð Þa E; zð Þ þ w0 z0ð Þb E; zð Þ ð7Þ

And its derivative is:

w0 zð Þ ¼ w z0ð Þa0 E; zð Þ þ w0 z0ð Þb0
E; zð Þ ð8Þ

Two linear independent functions a E; zð Þ; b E; zð Þ are:

a E; zð Þ ¼ Aw1 zð Þ þ Bw2 zð Þ
bðE; zÞ ¼ Cw1 zð Þ þ Dw2 zð Þ

�
ð9Þ

The CFM is based on the extraction of eigenvalues from

the zeros of the eigenvalues function F Eð Þ which is defined

from the solution of the left (z ! z1) and right (z ! z2).

Functions lþ Eð Þ and l� Eð Þ by the ratio of canonical func-

tions a E; zð Þ; b E; zð Þ or their derivatives are obtained.

F Eð Þ ¼ lþ Eð Þ � l� Eð Þ ¼ w0 z0ð Þ
w z0ð Þ

� �
þ
� w0 z0ð Þ

w z0ð Þ

� �
�

ð10Þ

There are several types of the eigenvalues functions

defined as the differences between left and right ratio

function [7].

The initial condition could be used in this problem:

w z1ð Þ ¼ w z2ð Þ ¼ 0

The functions lþ Eð Þ; l� Eð Þ are:

l� Eð Þ ¼ lim
z!z1

� a E; zð Þ
b E; zð Þ

lþ Eð Þ ¼ lim
z!z2

� a E; zð Þ
bðE; zÞ

Equations (9) are simplified to:

a E; zð Þ ¼ A w1 zð Þ � w
0

1 z0ð Þ
w

0

2 z0ð Þ
w2 zð Þ

( )
ð11Þ

b E; zð Þ ¼ A w1 zð Þ � w1 z0ð Þ
w2 z0ð Þw2 zð Þ

� �
ð12Þ

By considering to Eqs. (10), (11) and (12), we get to:

F Eð Þ ¼
A w1 z1ð Þ � w

0
1 z0ð Þ

w
0
2 z0ð Þ

w2 z1ð Þ
� �

C w1 z1ð Þ � w1 z0ð Þ
w2 z0ð Þw2 z1ð Þ

n o �
A w1 z2ð Þ � w

0
1 z0ð Þ

w
0
2 z0ð Þ

w2 z2ð Þ
� �

C w1 z2ð Þ � w1 z0ð Þ
w2 z0ð Þw2 z2ð Þ

n o

¼ 0

By simplification:

w1 z0ð Þ
w2 z0ð Þ �

w
0

1 z0ð Þ
w

0

2 z0ð Þ

( )
� w2 z1ð Þw1 z2ð Þ � w1 z1ð Þw2 z2ð Þ½ � ¼ 0

ð13Þ

Equation (13) has two factors, one of them contains only

values at z ¼ z0 and the other contains values z1 and z2 that

we should put it equal to zero:

w2 z1ð Þw1 z2ð Þ � w1 z1ð Þw2 z2ð Þ ¼ 0 ð14Þ

The eigenfunctions of the linear potential (6) are:

wn zð Þ ¼ NnAi
z

q
� fn

� �
; Nn ¼ 1ffiffiffi

q
p

A
0
ið�fnÞ

Therefore, Eq. (14) becomes:

Bi z1 � fnð ÞAi z2 � fnð Þ � Ai z1 � fnð ÞBi z2 � fnð Þ½ � ¼ 0

ð15Þ

Equation (15) is an equation from fn Enð Þ, z1 and z2

where fn Enð Þ is unknown, but z1 and z2 are known and

arbitrary (Table 2).

The aim is to find those values of En for which the left

side of (15) vanished.

By solving Eq. (15), we get Table 1. (Supposed

z1 ¼ 0; z2 ¼ 20). To find the zeros of Eq. (15), we have

used ‘‘Newton method’’ in Mathematica by ‘‘Find Root’’

method as a numerical method.

The results of the CFM method are so near to the exact

results, it means that this method is so useful and accurate;

the results of CFM method in all of the levels of energies

are so near to the exact result.

The Stark effect in linear potentials

Consider a particle (electron) is subject to the influence of

gravity (g) and electric field 20. In this case, the level of

energy is shifted due to this electric field (Table 3).

Table 1 Eigenvalues of the

linear potential for the first five

levels

n EðJouleÞ

1 2.33 (-32)

2 4.08 (-32)

3 5.52 (-32)

4 6.78 (-32)

5 7.94 (-32)

Table 2 The first five levels of the eigenvalues of the linear potential

are given by the CFM method exact results

Level of

energy

EðJoule) CFM results EðJoule) Exact results

1 2.3381074104597674 (-32) 2.3381074104597674 (-32)

2 4.087949444130971 (-32) 4.087949444130970 (-32)

3 5.520559828095551 (-32) 5.520559828095552 (-32)

4 6.7867080900717600 (-32) 6.786708090071759 (-32)

5 7.944133587120853 (-32) 7.944133587120853 (-32)
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Hamiltonian of particle in the gravity of earth is:

H0 ¼ p2

2m
þ mgz ð16Þ

Considering first-and second-order stark effect:

H ¼ H0 þ H1 ¼ p2

2m
þ mgz þ e 20 z þ 1

2
e2 22

0 z2 ð17Þ

The Exact solution

On the basis of Eq. (17), the Schrodinger equation is

written as follows:

��h2

2m

d2

dz2
wn zð Þ ¼ � 1

2
e2 22

0 z2 � mg þ e 20ð Þz þ En

� �
wn zð Þ

ð18Þ

Equation (18) can be written as follows:

That can be written as:

w00
n zð Þ � az2 þ bz � c

	 

wn zð Þ ¼ 0 ð19Þ

Where

a ¼ me2 22
0

�h2
; b ¼ 2m

�h2
mg þ e 20ð Þ; c ¼ 2m

�h2
En ð20Þ

Using the change of variables:

n ¼ z þ b=2a; u ¼
ffiffiffi
4

p
an ð21Þ

Equation (19) becomes:

d2w
du2

þ
c � b2

4affiffiffi
a

p � u2

 !
w uð Þ ¼ 0 ð22Þ

The harmonic oscillator Schrodinger’s equation is [8]:

w00 zð Þ þ 2n þ 1 � z2
	 


w zð Þ ¼ 0 ð23Þ

Where value of energies is:

2E

�hw
¼ 2n þ 1 ð24Þ

Or

En ¼ n þ 1

2

� �
�hw; n ¼ 0; 1; 2; . . . ð25Þ

Comparison of Eq. (22), (23) and considering the

boundary condition w z ! 1ð Þ ¼ 0, we have:

c ¼ 2n þ 1ð Þ
ffiffiffi
a

p
þ b2

4a
ð26Þ

Substituting Eq. (20) in Eq. (26), the exact eigenvalues are:

En ¼ n þ 1

2

� �
e 20 �hffiffiffiffi

m
p þ mg þ e 20ð Þ2

2e2 22
0

ð27Þ

Supposing that n ¼ 1;20 ¼ 10�11v=m and �h ¼ 1:054 �
10�34j:s; me ¼ 9:11 � 10�31kg; e ¼ 1:6 � 10�19C; g ¼
9:8m

�
s2:

Exact value of first level of energy becomes:

E ¼ 0:81 � 10�48j ð28Þ

The Perturbed solution

According to the Subsect. (2.1), the normalized eigen-

functions of the unperturbed linear potential is:

wn zð Þ ¼ NnAi
z

q
� fn

� �
;Nn ¼ 1ffiffiffi

q
p

A
0
ið�fnÞ

By assuming linear stark effect, the Perturbed Hamil-

tonian becomes:

H ¼ H0 þ H1 ¼ p2

2m
þ mgz þ e 20 z ð29Þ

The first-order energy shift is:

DEð1Þ
n ¼ wnjH1jwnh i ð30Þ

By replacing the perturbed potential, we have [8]:

DEð1Þ
n ¼ e 20

Z1

0

zdz

q A
0
ið�fnÞ

� 
2 Ai
z

q
� fn

� �2

ð31Þ

Or

DEð1Þ
n ¼ e 20 q

2

3
fn

� �
¼ 2

3

e 20

mg

� �
e0fn ¼ 2

3

e 20

mg

� �
En

ð32Þ

Now, considering the square stark effect, Hamiltonian

becomes:

H ¼ p2

2m
þ mgz þ e 20 z þ 1

2
e2 22

0 z2 ð33Þ

Then, the perturbed potential caused by the square stark

effect is:

V ¼ 1

2
e2 22

0 z2 ð34Þ

Hence, the shift of energy is:

DEð1Þ
n ¼ wnj

1

2
e2 22

0 z2jwn

� �
ð35Þ

Table 3 Shift of first-order

energy (linear stark effect)
n DEðJoule)

1 0.27 (-32)

2 0.44 (-32)

3 0.60 (-32)

4 0.74 (-32)

5 0.84 (-32)
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Or

DEð1Þ
n ¼ 1

2
e2 22

0

Z1

0

z2dz

q A
0
ið�fnÞ

� 
2 Ai
z

q
� fn

� �2

ð36Þ

So, Eq. (36) reduces to:

DEð1Þ
n ¼ � 8

30
e2 22

0 f2
nq

2 ¼ � e2 22
0 q2

	 
 8

30
f2

n

� �

¼ � 8

30

e 20

mg

� �2

En ð37Þ

where 20 ¼ 10�11v=m;me ¼ 9:11 � 10�31kg; e ¼ 1:6�
10�19C; g ¼ 9:8m

�
s2:

Table 4 illustrates shift of energy by the square stark

effect and Table 5 compares influence of the linear and

square stark effect on shift of energy.

The CFM Solution

To apply the CFM method, first we note that the exact

eigenfunction of harmonic oscillator with boundary con-

dition w z ! �1ð Þ ¼ 0, is as:

wn zð Þ ¼ ye�z2=2 ð38Þ

where y is Hermite function. The Hermite functions satisfy

the differential Eq. (23).

Therefore, the eigenfunction can be defined as follows

[9]:

wn zð Þ ¼ 22n!
ffiffiffi
p

p	 

e�z2=2Hn zð Þ; �1\z\ þ1 ð39Þ

Or

wn zð Þ ¼ 22n!
ffiffiffi
p

p

2

� �
e�z2=2Hn zð Þ; 0\z\ þ1 ð40Þ

where Hermite functions, Hn zð Þ; can be defined in terms of

the polynomials [9]:

y1 zð Þ ¼ 1 � 2n

2!
z2 þ 22n n � 2ð Þ

4!
z4 � 23n n � 2ð Þ n � 4ð Þ

4!
z6 þ . . .

ð41Þ
n ¼ 0; 2; 4; . . .

y2 zð Þ ¼ z � 2n n � 1ð Þ
3!

z3 þ 22 n � 1ð Þ n � 3ð Þ
5!

z5

� 23 n � 1ð Þ n � 3ð Þ n � 5ð Þ
7!

z7 þ . . . ð42Þ

n ¼ 1; 3; 5; . . .

That y1 zð Þ; y2 zð Þ are convergent for all of z:
As was determined in Sect. 2.2 by considering relations

(7–15) and (40), the Eq. (14) equals to:

H1 u2ð ÞH2 u1ð Þ � H1 u1ð ÞH2 u2ð Þ ¼ 0 ð43Þ

Therefore, by supposing initial conditions

z1 ¼ 0 and z2 ¼ 1, we have:

u1 ¼ b=2a3=4; u2 ¼
ffiffiffi
4

p
að1 þ b=2aÞ

So Eq. (43) equals to:

H1ð
ffiffiffi
4

p
að1 þ b=2aÞÞH2ðb=2a3=4Þ � H1ðb=2a3=4Þ

H2ð
ffiffiffi
4

p
að1 þ b=2aÞÞ ¼ 0 ð44Þ

By considering values a; b; c (20) and Eqs. (41) and

(42), we obtain:

H1ðb=2a3=4Þ ¼ 1;H2ðb=2a3=4Þ ¼ 0

Then, Eq. (44) reduces to:

H2

ffiffiffi
4

p
a 1 þ b=2a

� �� �
¼ 0 ð45Þ

Substituting the first three terms of Eq. (42) into Eq. (45)

yields:

ffiffiffi
4

p
a 1 þ b

2a

� �
� 2 n � 1ð Þ

3!

ffiffiffi
4

p
a 1 þ b

2a

� �� �3

þ 22 n � 1ð Þ n � 3ð Þ
5!

ffiffiffi
4

p
a 1 þ b

2a

� �� �5

¼ 0 ð46Þ

Table 4 Shift of energy (square

stark effect)
n DEðJoule)

1 -0.019 (-32)

2 -0.034 (-32)

3 -0.051 (-32)

4 -0.057 (-32)

5 -0.067 (-32)

Table 5 Illustration and

comparison of the first five

levels of unperturbed linear

potential and linear stark effect

and square stark effect

n EðJoule)Linear potential DEðJoule)Linear stark effect DEðJoule)square stark effect

1 2.33 (-32) 0.27 (-32) -0.019 (-32)

2 4.08 (-32) 0.44 (-32) -0.034 (-32)

3 5.52 (-32) 0.60 (-32) -0.051 (-32)

4 6.78 (-32) 0.74 (-32) -0.057 (-32)

5 7.94 (-32) 0.84 (-32) -0.067 (-32)
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Equation (46) can be rewritten as follows:

1 � 2 n � 1ð Þ
3!

ffiffiffi
4

p
a 1 þ b

2a

� �� �2

þ 22 n � 1ð Þ n � 3ð Þ
5!

�
ffiffiffi
4

p
a 1 þ b

2a

� �� �4

¼ 0 ð47Þ

To find the zeros of Eq. (47), we have used instruction of

‘‘Find Root’’ method in Mathematica software such as a

numerical method. Therefore, we obtain:

n ¼ 1:7 � 1010

By replacing value of n in Eq. (26) and considering

values of �h;m; e; g, the energy equals:

E ¼ 0:18 � 10�37j

Conclusion

In this paper, the perturbed linear potentials due to influ-

ence of electrical field were studied. The stark effect in the

linear potential was investigated in three methods (Exact,

CFM and Perturbed). We show that the Airy functions

(Ai xð Þ;Bi xð Þ) are eigenfunctions of the unperturbed linear

potential. Since the Bi xð Þ solution diverges for large

positive argument and it does not satisfy the boundary

condition w 1ð Þ ¼ 0, therefore it is excluded. Then, the

quantized energies are then given in terms of the zeros of

the well-behaved Airy function Aið�fnÞ with En ¼ e0fn.

Also, we investigated the stark effect in the linear potential

that is term of perturbation in the Schrodinger equation. The

exact solution leads to Hermite functions and eigenvalues

adherence relation of En ¼ n þ 1
2

	 

e20�hffiffiffi

m
p þ mgþe20ð Þ2

2e222
0

:

Finally, the eigenvalues were obtained by the perturbed

theory and CFM method. The eigenvalues of the system by

CFM method are so near to the exact results but the con-

sequence of perturbation predictions does not have this

precision.
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