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Abstract

A formalism which enables one to strictly conserve the number of particles when taking into account the isovector
pairing correlations is presented in the case of odd mass nuclei. With this aim, we had to first establish the expression
of the projector for such systems. Expressions of the ground state and its energy have been exhibited. The model has
been numerically tested in the framework of a schematic model.
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Background
During the last two decades, many works have been
devoted to the study of neutron-proton (np) pairing cor-
relations (see e.g., [1-17] ). Indeed, the region of N � Z
medium mass nuclei is now accessible to experiments
and this fact led to renewed interest of theoreticians for
this kind of nuclei. In the latter, one expects that neu-
trons and protons occupy the same levels and thus that
the np pairing effect would be important. This effect is
often treated within the Bardeen-Cooper-Schrieffer (BCS)
approximation [1-8]. However, it is well known that the
major defect of the BCS theory is its violation of the
particle-number conservation symmetry, in the pairing
between like-particles case [18-22] as well as in the np
pairing case.
The particle-number symmetry may be restored using

a projection method. Several methods have been already
proposed in the np pairing case, such as the quasipar-
ticle random phase approximation (QRPA) [23-31], the
Lipkin-Nogami method [32], the generator coordinate
method [33], and the PBCS-type projection methods [34]
of FBCS-type [35], or the isospin and particle-number
projection method [36]. In previous papers [37-40], we
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proposed and applied a generalization of the SBCS (sharp-
BCS) projection method [41-43]. However, this general-
ization is valid only for even-even nuclei and has not been
yet extended to odd mass systems. The goal of the present
work is to propose a formalism which could be applied
to odd mass nuclei. It is based on the Wahlborn blocking
method [44,45].
In seeking coherence, the method for the diagonal-

ization of the Hamiltonian and the BCS formalism are
recalled in the first two sections. The particle-number
conservationmethod is then presented in the next section.
The formalism is numerically applied to a schematic
model in the ‘Numerical results and discussion’ Section.
Main conclusions are summarized in the last section.

Hamiltonian diagonalization
Let us consider a system constituted by N neutrons and
Z protons. In the second quantization and isospin formal-
ism, the Hamiltonian which describes this system is given
in the isovector pairing case by [5,8]

H =
∑
ν>0,t

ενt(a+
νtaνt + a+

ν̃taν̃t) (1)

− 1
2
∑
tt′

Gtt′
∑

ν,μ>0
(a+

νta
+
ν̃t′aμ̃t′aμt + a+

νta
+
ν̃t′aμ̃taμt′ )

where the subscript t corresponds to the isospin compo-
nent (t = n, p), and a+

νt and aνt respectively represent the
creation and annihilation operators of the particle in the

© 2014 Berbiche et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:nallal@usthb.dz


Berbiche et al. Journal of Theoretical and Applied Physics 2014, 8:2 Page 2 of 14
http://www.jtaphys.com/content/8/1/2

state |νt〉, of energy ενt ; |̃νt〉 is the time-reverse of |νt〉,
and Gtt′ characterizes the pairing-strength (one assumes
that Gtt′ is constant and Gnp = Gpn). The neutrons and
protons are supposed to occupy the same energy levels.
In order to conserve, on average, the number of particles

(i.e., neutrons and protons), let us introduce the Lagrange
parameters λt (t = n, p) and diagonalize the auxiliary
Hamiltonian:

H −
∑
t

λtNt (2)

where Nt are the particle-number operators given by

Nt =
∑
ν>0

(
a+

νtaνt + a+
ν̃t ãνt

)
, t = n, p. (3)

Using the Wick theorem, the linearized part of the
auxiliary Hamiltonian (2), denoted as H′, may be written
in a matricial form:

H
′ = E0+

∑
ν>0,t

ξνt+
∑
ν>0

(
a+

νp a+
νn aν̃p aν̃n

)
Aν

⎛⎜⎜⎝
aνp
aνn
a+

ν̃p
a+

ν̃n

⎞⎟⎟⎠
(4)

where E0 is the constant term, Aν is the excitation matrix
given by

Aν =

⎛⎜⎜⎝
ξνp 0 −�pp −�np
0 ξνn −�np −�nn

−�pp −�np −ξνp 0
−�np −�nn 0 −ξνn

⎞⎟⎟⎠ (5)

and where we set

ξνt = ε̃νt − 1
2
∑
r
Grt(1 + δrt)

�
a+

ν̃taν̃t , ε̃νt = (ενt − λt)

(6)

and

�tt′ = Gtt′
∑
ν>0

�
a+

νta
+
ν̃t′ = Gtt′

∑
ν>0

�aν̃taνt′ . (7)

Using the generalized Bogoliubov-Valatin transformation⎧⎪⎨⎪⎩
α+

ντ = ∑
t=n,p

(uντ ta+
νt + vντ taν̃t)

αντ = ∑
t=n,p

(uντ taνt + vντ ta+
ν̃t)

τ = 1, 2, (8)

the Hamiltonian (4) becomes

H
′ = E0 +

∑
ν>0,t

ξνt + tV

⎛⎜⎜⎝
Eν1 0 0 0
0 Eν2 0 0
0 0 −Eν1 0
0 0 0 −Eν2

⎞⎟⎟⎠V

with the notations

E2ντ = 1
2

[(
E2νp + E2νn + 2�2

np

)
+ (−1)τ

√
Rν

]
, τ = 1, 2

Rν =
(
E2νp − E2νn

)2
+ 4�2

np

[
E2νp + E2νn − 2

[
ξνnξνp − �nn�pp

]]
E2νt = ξ2νt + �2

tt , t = n, p

V =

⎛⎜⎜⎝
αν1
αν2
α+

ν̃1
α+

ν̃2

⎞⎟⎟⎠ .

BCS formalism
Ground state
The BCS ground state is obtained by eliminating all
the quasiparticles from the actual vacuum, i.e., |
〉 ∝∏
ν,τ

αντ |0〉 . Using the Bogoliubov-Valatin transformation

(8), this state may be written after normalization in the
particle representation:

|
〉 =
∏
j>0

∣∣
j
〉

(9)

with∣∣
j
〉 = [

Bj
1A

+
jpA

+
jn + Bj

pA+
jp + Bj

nA+
jn (10)

+ Bj
4

(
a+
j̃pa

+
jn + a+

j̃na
+
jp

)
+ Bj

5

]
|0〉

where A+
jt = a+

j̃t a
+
jt refers to the creation operator of

a particle pair. However, the state (9) can only describe
even-even systems since it is a superposition of even
states. For an even-odd system, if one assumes that the
blocked level is νT (T = n or p), the ground state is given
by [46,47]

|νT〉 = a+
νT
∏
j>0
j �=ν

∣∣
j
〉

(11)

where
∣∣
j
〉
is defined by (10).

It is worth noticing that in the latter expression, the
coefficients Bj

i that appear in (10) depend on ν, this depen-
dence has not been explicited in order to simplify the
notations.
Let us note that the limits when �np → 0 of all

expressions in the np pairing case are given in Appendix 1.

Gap equations - energy
Even-even system
The gap equations, as well as the energy expression, are
well established in the framework of the BCS formalism
for an even-even system. In the following, we will briefly
recall them so as to show later the differences with the
even-odd systems.
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The total particle-number operator is defined by N =∑
t
Nt . Using Equation (9), the particle-number conserva-

tion condition reads

〈
|N |
〉 = 2
∑
j>0

[
2
(
Bj
1

)2+(Bj
p
)2+(Bj

n
)2+2

(
Bj
4

)2]
.

(12)

In the same way, the gap parameters defined by (7)
become

�tt = −Gtt
∑
j>0

(
Bj
1B

j
t + Bj

5B
j
t′
)

(t = n, p, t′ �= t)

�np = 2Gnp
∑
j>0

Bj
4

(
Bj
1 − Bj

5

)
. (13)

Finally, the system energy is given by

E0 = 2
∑
j>0

{[(
Bj
1

)2 +
(
Bj
4

)2] (
εjp + εjn

)
(14)

+
∑
t

[(
Bj
t

)2
εjt − 1

2
Gtt

((
Bj
1

)2 +
(
Bj
t

)2)]
− 1

2
Gnp

[(
Bj
1

)2 + 2
(
Bj
4

)2]}
−
∑
j,l>0
j �=l

{∑
t

Gtt
(
Bj
1B

j
t′ + Bj

tB
j
5

) (
Bl
1B

l
t′ + Bl

tB
l
5

)

+ 2GnpB
j
4

(
Bj
1 − Bj

5

)
Bl
4

(
Bl
1 − Bl

5

)}

where t′ �= t (i.e., t′ = n(p) if t = p(n)).

Even-odd system
In the case of an even-odd system, the particle-number
conservation condition reads, using the state (11)

〈νT |N |νT〉=1 + 2
∑
j>0
j �=ν

[
2
(
Bj
1

)2+(Bj
p
)2 +

(
Bj
n
)2 + 2

(
Bj
4

)2]
.

(15)

As for the gap parameters, they are given by

�
(ν)
tt = −Gtt

∑
j>0
j �=ν

(
Bj
1B

j
t + Bj

5B
j
t′
)

(t =, n, p, t′ �= t)

�(ν)
np = 2Gnp

∑
j>0
j �=ν

Bj
4

(
Bj
1 − Bj

5

)
. (16)

The system energy is given in this case by

EνT
0 = ενT + 2

∑
j>0
j �=ν

{[(
Bj
1

)2 +
(
Bj
4

)2] (
εjp + εjn

)
(17)

+
∑
t

[(
Bj
t

)2
εjt − 1

2
Gtt

((
Bj
1

)2 +
(
Bj
t

)2)]
− 1

2
Gnp

[(
Bj
1

)2 + 2
(
Bj
4

)2]}
−
∑
j,l>0
j �=l �=ν

{∑
t

Gtt
(
Bj
1B

j
t′ + Bj

tB
j
5

) (
Bl
1B

l
t′ + Bl

tBl
5

)

+ 2GnpB
j
4

(
Bj
1 − Bj

5

)
Bl
4

(
Bl
1 − Bl

5

)}
where t′ �= t. Expressions (15) to (17) are similar to their
homologues (12) to (14) of the even-even case. One can
clearly see that the blocked level is occupied by the sin-
gle particle and that the index ν is excluded from the
summations over j.

Particle-number projection
Ground state
It is well established that the states (9) and (11) are not
eigen-states of the particle-number operator. However,
the particle-number symmetry may be restored using a
particle-number projection method. In the present work,
we use the Sharp-BCS (SBCS) one [37-40].

Even-even system
The operator that enables one to project the conventional
BCS state (i.e., in the pairing between like-particles case)
on the good particle number is given by [45]

P = 1
2π

∫ 2π

0
exp(iϕ(N − 2P))dϕ , (18)

with P being the number of pairs of particles and N the
particle-number operator of the considered system.
Its discrete form is given by [42]

Pm = 1
2(m + 1)

⎧⎨⎩
m+1∑
k=0

ξkz−P
k

∏
j

[
1 + a+

j aj
(√

zk − 1
)]+ c.c.

⎫⎬⎭
(19)

where

zk = exp
(

ikπ
m + 1

)
and ξk =

{ 1
2 if k = 0 or k = m + 1
1 otherwise

}
(20)

wherem is a non-zero integer which represents the extrac-
tion degree of the false components and ‘c.c.’ means the
complex conjugate with respect to zk .
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In the isovector pairing case, the ground state (9) is
simultaneously projected on the good neutron and proton
numbers, i.e., [38-40]

∣∣
mm′
〉 = PnPp |
〉

= Cmm′
m+1∑
k=0

m′+1∑
k′=0

ξkξk′
{
z−PN
k z−PZ

k′
∣∣
(zk , zk′ )

〉
(21)

+ z̄−PN
k z−PZ

k′
∣∣
(z̄k , zk′ )

〉+ c.c.
}

where∣∣
(zk , zk′ )
〉 = ∏

j>0

∣∣
j(zk , zk′ )
〉

(22)

with∣∣
j(zk , zk′ )
〉 = {

zkzk′Bj
1A

+
jpA

+
jn + zk′Bj

pA+
jp + zkB

j
nA+

jn

+√
zkzk′Bj

4(a
+
j̃pa

+
jn + a+

j̃na
+
jp) + Bj

5

}
|0〉
(23)

Cmm′ is the normalization constant.

Even-odd system
In the pairing between like-particles case for an odd sys-
tem which constituted of (2P + 1) particles, the projector
on the good particle-number is given by

P = 1
2π

∫ 2π

0
exp(iϕ(N − 2P − 1))dϕ. (24)

Its discrete form is given by

Pm= 1
2(m + 1)

⎧⎨⎩
m+1∑
k=0

ξkz
−(P+ 1

2
)

k

∏
j

[
1+a+

j aj
(√

zk − 1
)]+c.c.

⎫⎬⎭.
(25)

One then obtains

∣∣νTmm′
〉 =C

νmm′
m+1∑
k=0

m′+1∑
k′=0

ξkξk′a+
νT

{
z−PN
k z−PZ

k′
∣∣
(zk , zk′ )

〉
ν

+ z̄−PN
k z−PZ

k′
∣∣
(zk , zk′ )

〉
ν

+ c.c.
}

, T = n, p
(26)

where∣∣
(zk , zk′ )
〉
ν

=
∏
j>0
j �=ν

∣∣
j(zk , zk′ )
〉

(27)

and
∣∣
j(zk , zk′ )

〉
being defined by (9). Let us however recall

that in this case the coefficients Bj
i depend on ν. C

νmm′ is
the normalization constant.

Expectation values
Even-even system
The calculation of the expectation value of a given opera-
tor O that conserves the particle-number is simplified by
the use of the property [37]:〈


mm′
∣∣O ∣∣
mm′

〉 = 4(m+1)(m
′ +1)Cmm′ 〈
|O ∣∣
mm′

〉
.

(28)

In particular, if O is the identity operator, the normaliza-
tion condition of the wavefunction (21) leads to

C−2
mm′ = 4(m + 1)(m

′ + 1)
m+1∑
k=0

m′+1∑
k′=0

ξkξk′ (29)

×
⎧⎨⎩z−PN

k z−PZ
k′

∏
j>0

Aj(zk , zk′ )

+z̄−PN
k z−PZ

k′
∏
j>0

Aj(z̄k , zk′ ) + c.c.

⎫⎬⎭
with the notation

Aj(zk , zk′ ) =
{
zkzk′

(
Bj
1

)2 + zk′
(
Bj
p
)2 + zk

(
Bj
n
)2

+ 2
√
zkzk′

(
Bj
4

)2 +
(
Bj
5

)2}
(30)

with z̄k being the complex conjugate with respect to zk .
PN (respectively PZ) represents the number of pairs of
neutrons (respectively protons).
In the same way, the expectation value of the

Hamiltonian (1) over the state
∣∣
mm′

〉
reads

Emm′ = 4(m + 1)(m
′ + 1)C2

mm′
m+1∑
k=0

m′+1∑
k′=0

ξkξk′ (31)

×
[
z−PN
k z−PZ

k′ E(zk , zk′ ) + z̄−PN
k z−PZ

k′ E(z̄k , zk′ )+c.c.
]

with

E(zk , zk′ )=
∑
j>0

[
Ej0(zk , zk′ ) − GnnE

j
n(zk′ ) − GppE

j
p(zk)

− GnpE
j
np(zk , zk′ )

]∏
i>0
i�=j

Ai(zk , zk′ )

−
∑
j,l>0
j �=l

[
GnnzkF

j
n(zk′ )Fl

n(zk′ )+Gppzk′ Fj
p(zk)Fl

p(zk)

+ 2Gnp
√
zkzk′ Fj

np(zk , zk′ )Fl
np(zk , zk′ )

]∏
i>0
i�=j,l

Ai(zk , zk′ )

(32)
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where

Ej0(zk , zk′ ) = 2
{(

Bj
n
)2

zkεjn +
(
Bj
p
)2

zk′ εjp

+
[(

Bj
1

)2
zkzk′ +

(
Bj
4

)2√
zkzk′

] (
εjn + εjp

)}
Ejn(zk′ ) = zk

[(
Bj
1

)2
zk′ +

(
Bj
n
)2]

Fj
n(zk′ ) = Bj

1B
j
pzk′ + Bj

nB
j
5

Ejp(zk) = zk′
[(

Bj
1

)2
zk +

(
Bj
p
)2]

Fj
p(zk) = Bj

1B
j
nzk + Bj

pB
j
5

Ejnp(zk , zk′ ) = √
zkzk′

[(
Bj
1

)2√
zkzk′ + 2

(
Bj
4

)2]
Fj
np(zk , zk′ ) = Bj

4

(
Bj
1
√
zkzk′ − Bj

5

)
(33)

and where Ai(zk , zk′ ) is given by Equation (30).
The real parts of Equations (29) and (31) are given in

Appendix 2.

Even-odd system
In the case of an even-odd system, using an expression
similar to (28), one obtains for the normalization condi-
tion of the state (26)

C−2
νmm′ = 4(m + 1)(m

′ + 1)
m+1∑
k=0

m′+1∑
k′=0

ξkξk′ (34)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩z
−PN
k z−PZ

k′
∏
j>0
j �=ν

Aj(zk , zk′ )

+ z̄−PN
k z−PZ

k′
∏
j>0
j �=ν

Aj(z̄k , zk′ ) + c.c.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Aj(zk , zk′ ) being defined by (30).
The energy of the system is obtained using the wave-

function (26), i.e.,

EνT
mm′ = ενT + 4(m + 1)(m

′ + 1)C2
νmm′

m+1∑
k=0

m′+1∑
k′=0

ξkξk′

×
[
z−PN
k z−PZ

k′ Eν(zk , zk′ ) + z̄−PN
k z−PZ

k′ Eν(z̄k , zk′ ) + c.c.
]

(35)

where we set

Eν(zk , zk′ )=
∑
j>0
j �=ν

[
Ej0(zk , zk′ ) − GnnE

j
n(zk′ ) − GppE

j
p(zk)

− GnpE
j
np(zk , zk′ )

]∏
i>0
i�=ν

Ai(zk , zk′ )

−
∑
j,l>0
j �=l
j �=ν

(GnnzkF
j
n(zk′ )Fl

n(zk′ ) + Gppzk′ Fj
p(zk)Fl

p(zk)

+ 2Gnp
√
zkzk′ Fj

np(zk , zk′ )Fl
np(zk , zk′))

∏
i>0
i�=j,l
i�=ν

Ai(zk , zk′ ).

The terms Eji(zk , zk′ ), Fj
i(zk′ ), Fj

i(zk), and Fj
i(zk , zk′ ) ( i = n,

p, np) are given by the same expressions as in the even-
even case, i.e., by Equations in (33). Let us note that the
blocked particle does not contribute to the pairing energy,
but its energy, which is due to the occupation of the |ν〉
level of the single-particles model that appears in the total
energy.

Numerical results and discussion
The previously described formalism has been tested
within the schematic one-level model. In the latter, it is
assumed that there is only one level of energy ενt = 0 ∀
ν and for t = n, p. In all that follows, we used the total
degeneracy of level value 
 = 12.

Gap parameters
We have first studied the variations of the various gap
parameters as a function of the ratioGnp/Gpp in the even-
even case as well as in the odd one. We used the values
Z = 6 (see Figure 1) and Z = 8 (see Figure 2) with
(N − Z) = 0, 1, 2, 3. In each case, the neutron and pro-
ton pairing-strength values are Gnn = Gpp = 0.125 MeV.
The behavior of the �nn, �pp, and �np parameters in the
even-even case (upper part of Figures 1 and 2) is similar
to those of several works (see e.g., [3-5,7]). One notes that
there exists a critical value of Gnp (which will be hereafter
denoted

(
Gnp

)
c), under which there is no np pairing (i.e.,

�np = 0 and the �nn and �pp values are those of the
pairing between like-particles case).
In the odd case (lower part of Figures 1 and 2), the trends

of the three curves are very similar to those of the even-
even case, as underlined in [46,47].

Test of the projection method
In order to judge the efficiency of the projection method,
we have studied the overlap between the BCS wavefunc-
tion and the projected one in the even-even case (〈
 |

mm′ 〉) (see Table 1 for Z = 6, N = 6 and Table 2 for Z =
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Figure 1 Variation of the gap parameters versusGnp/Gpp within the one-level model for Z = 6withN − Z = 0, 1, 2, 3.

Figure 2 Variation of the gap parameters versusGnp/Gpp within the one-level model for Z = 8withN − Z = 0, 1, 2, 3.
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Table 1 Variation of overlap between the projected and
non-projected states for an even-even system (Z = 6,
N = 6)
m m′ 〈� | �mm′ 〉 m m′ 〈� | �mm′ 〉
0 0 0.267 1 0 0.224

0 1 0.224 1 1 0.222

0 2 0.223 1 2 0.222

0 3 0.223 1 3 0.223

2 0 0.223 3 0 0.223

2 1 0.222 3 1 0.223

2 2 0.223 3 2 0.224

2 3 0.224 3 3 0.224

Table 2 Variation of overlap between the projected and
non-projected states for an even-even system (Z = 8,
N = 8)
m m′ 〈� | �mm′ 〉 m m′ 〈� | �mm′ 〉
0 0 0.268 1 0 0.217

0 1 0.217 1 1 0.216

0 2 0.216 1 2 0.216

0 3 0.216 1 3 0.216

2 0 0.216 3 0 0.216

2 1 0.217 3 1 0.217

2 2 0.217 3 2 0.217

2 3 0.217 3 3 0.217

Table 3 Variation of the overlap between the projected
and non-projected states for an odd system (Z = 6,N = 7)
m m′ 〈νT | νTmm′ 〉 m m′ 〈νT | νTmm′ 〉
0 0 0.249 1 0 0.195

0 1 0.195 1 1 0.189

0 2 0.195 1 2 0.189

0 3 0.194 1 3 0.189

2 0 0.197 3 0 0.198

2 1 0.189 3 1 0.189

2 2 0.190 3 2 0.190

2 3 0.190 3 3 0.190

Table 4 Variation of the overlap between the projected
and non-projected states for an odd system (Z = 8,N = 9)
m m′ 〈νT | νTmm′ 〉 m m′ 〈νT | νTmm′ 〉
0 0 0.249 1 0 0.193

0 1 0.192 1 1 0.184

0 2 0.191 1 2 0.184

0 3 0.191 1 3 0.184

2 0 0.194 3 0 0.194

2 1 0.184 3 1 0.184

2 2 0.184 3 2 0.184

2 3 0.184 3 3 0.184

8, N = 8) as well as in the odd one (〈νT | νTmm′ 〉) (see
Table 3 for Z = 6, N = 7 and Table 4 for Z = 8,
N = 9) as a function of the extraction degrees of the false
components m and m′ . We used in each case the values
Gpp = 0.125 MeV, Gnn = 0.150 MeV, and Gnp = 0.137
MeV. One then notices a rapid convergence: in practice,
the convergence is reached as soon as m = m′ = 3 for all
considered systems.
In addition, there exists an important discrepancy

between the projected and non-projected states. Indeed,
the overlap between the projected and non-projected
wavefunctions is of the order of 0.22 for the even-even sys-
tems and 0.19 for the odd ones. This shows the necessity

Table 5 Variation of projected ground-state energy in case
of even-even system (Z = 6,N = 6); BCS energy
E0 = −7.733MeV

m m′ Emm′ (MeV) m m′ Emm′ (MeV)

0 0 −7.780 1 0 −8.172

0 1 −8.168 1 1 −8.206

0 2 −8.161 1 2 −8.201

0 3 −8.163 1 3 −8.201

0 4 −8.164 1 4 −8.202

2 0 −8.165 3 0 −8.167

2 1 −8.201 3 1 −8.202

2 2 −8.200 3 2 −8.200

2 3 −8.200 3 3 −8.200

2 4 −8.200 3 4 −8.199

4 0 −8.169

4 1 −8.202

4 2 −8.200

4 3 −8.199

4 4 −8.199
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Table 6 Variation of projected ground-state energy in case
of even-even system (Z = 8,N = 8); BCS energy
E0 = −9.349MeV

m m′ Emm′ (MeV) m m′ Emm′ (MeV)

0 0 −9.431 1 0 −9.844

0 1 −9.838 1 1 −9.924

0 2 −9.837 1 2 −9.933

0 3 −9.837 1 3 −9.935

0 4 −9.837 1 4 −9.936

2 0 −9.843 3 0 −9.844

2 1 −9.933 3 1 −9.936

2 2 −9.936 3 2 −9.937

2 3 −9.936 3 3 −9.937

2 4 −9.937 3 4 −9.937

4 0 −9.844

4 1 −9.937

4 2 −9.937

4 3 −9.937

4 4 −9.937

Table 7 Variation of projected ground-state energy in case
of odd system (Z = 6,N = 7); BCS energy EνT

0 = −6.311
MeV

m m′ EνT
mm′ (MeV) m m′ EνT

mm′ (MeV)

0 0 −6.287 1 0 −7.353

0 1 −7.459 1 1 −7.544

0 2 −7.508 1 2 −7.555

0 3 −7.515 1 3 −7.560

0 4 −7.519 1 4 −7.561

2 0 −7.277 3 0 −7.259

2 1 −7.552 3 1 −7.555

2 2 −7.563 3 2 −7.566

2 3 −7.567 3 3 −7.569

2 4 −7.569 3 4 −7.571

4 0 −7.252

4 1 −7.556

4 2 −7.567

4 3 −7.571

4 4 −7.571

Table 8 Variation of projected ground-state energy in case
of odd system (Z = 8,N = 9); BCS energy EνT

0 = −7.761
MeV

m m′ EνT
mm′ (MeV) m m′ EνT

mm′ (MeV)

0 0 −7.754 1 0 −8.551

0 1 −8.664 1 1 −8.832

0 2 −8.711 1 2 −8.875

0 3 −8.722 1 3 −8.881

0 4 −8.724 1 4 −8.884

2 0 −8.559 3 0 −8.549

2 1 −8.878 3 1 −8.880

2 2 −8.886 3 2 −8.889

2 3 −8.889 3 3 −8.892

2 4 −8.891 3 4 −8.893

4 0 −8.545

4 1 −8.881

4 2 −8.890

4 3 −8.893

4 4 −8.893

of eliminating the false components of the BCS wavefunc-
tions when calculating the physical observables.

Energy
We have first studied the convergence of the method for
the projected ground-state energy. As it can be seen in
Tables 5 and 6 (respectively Tables 7 and 8) where we
reported the variations of Emm′ (respectively EνT

mm′ ) as a
function of the extraction degrees of the false components
m and m′, in the case of even-even systems (respectively
odd systems), the convergence is also rapidly reached in
the case of the energy (as soon as m = m′ = 4 in all the
considered cases). However, the convergence seems to be
slightly faster in even-even cases than in the odd ones.
As a second step, we have studied the variations of the

energy, before (E0, (respectively EνT
0 )) and after (Emm′ ,

(respectively EνT
mm′ )) the projection as a function of the

ratio Gnp/Gpp. The corresponding results are shown in
Figure 3 for Z = 6 (respectively Figure 4 for Z = 8) with
(N − Z) = 0, 1, 2, 3. From these figures, one may con-
clude that the behavior of the energy as a function of Gnp
(before and after the projection) is similar in the even-
even case and the odd one. Here again, there appears two
regions: i.e., when Gnp <

(
Gnp

)
c and when Gnp >

(
Gnp

)
c.

The slope variation in the E0 (respectively EνT
0 ) and Emm′

(respectively EνT
mm′ ) curves corresponds to the valueGnp =(

Gnp
)
c . The fact that the energies are not constant when
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Figure 3 Variation of the energy as a function of the ratioGnp/Gpp for Z = 6withN − Z = 0, 1, 2, 3.

Figure 4 Variation of the energy as a function of the ratioGnp/Gpp for Z = 8withN − Z = 0, 1, 2, 3.



Berbiche et al. Journal of Theoretical and Applied Physics 2014, 8:2 Page 10 of 14
http://www.jtaphys.com/content/8/1/2

Gnp <
(
Gnp

)
c , even if �nn and �pp are constant, is due

to the additional term in Gnp in Equations (36 ), (38), (39),
and (40).
Moreover, in every case, the projection effect leads to

a lowering of the energy. One may also notice that the
discrepancy between the BCS and projected energy val-
ues is constant for a given region. We reported in Table 9
(respectively Table 10) the values of the relative discrep-
ancy δE(%) between the projected and non-projected
energies, as a function of (N − Z), for Z = 6 and Z = 8
when Gnp = 0.75 Gpp (respectively when Gnp = 1.5 Gpp)
in order to illustrate the region Gnp <

(
Gnp

)
c (respec-

tively Gnp >
(
Gnp

)
c). It then appears that the projection

effect is more important in the first region. It also appears
that the projection effect is more important in odd sys-
tems than in the even-even ones. Indeed, the average value
of δE is respectively 8% when Gnp <

(
Gnp

)
c and 4% when

Gnp >
(
Gnp

)
c in the even-even case, whereas it is 17%

when Gnp <
(
Gnp

)
c and 15% when Gnp >

(
Gnp

)
c in the

odd case. From the above discussion, we can conclude to
the necessity of the elimination of the false components in
the BCS states in the odd mass systems.

Conclusions
A formalism that enables one to take into account
the isovector pairing interaction, with inclusion of the
particle-number conservation, in odd systems has been
established. The Wahlborn blocking method has been
used [44,45].
The most general form of the isovector pairing

Hamiltonian has been approximately diagonalized using
the Wick theorem. A discrete expression of the projec-
tion operator has been constructed. A projection of the
BCS wavefunction on both the good proton and neu-
tron numbers has been performed. The expression of the
ground-state projected energy has been deduced.
The method has been numerically tested using the one-

level schematic model. The convergence of the method as
a function of the extraction degrees of the false compo-
nents has been studied. The rapidity of this convergence
shows the efficiency of the projection method. On the
other hand, it has been shown that the behavior of the

Table 9 Variation of the relative discrepancy δE(%)

between the projected and non-projected energies when
Gnp = 0.75Gpp

Z = 6 N − Z δE(%) Z = 8 N − Z δE(%)

0 8.03 0 7.89

1 21.93 1 15.94

2 7.94 2 7.79

3 18.71 3 13.85

Table 10 Variation of the relative discrepancy δE(%)

between the projected and non-projected energies when
Gnp = 1.5Gpp

Z = 6 N − Z δE(%) Z = 8 N − Z δE(%)

0 3.02 0 3.18

1 19.09 1 13.58

2 5.19 2 5.08

3 15.71 3 10.58

energy as a function of the neutron-proton pairing con-
stant in odd systems is analogous to that of even-even
ones. However, this effect seems to be more important in
odd systems.

Appendix 1
Limit when�np → 0
Before projection

At the limit when �np → 0, the coefficients Bj
i which

appear in Equation (10) become

Bj
1 = vjpvjn , Bj

t = vjtujt′

Bj
4 = 0 , Bj

5 = ujpujn

where t = n, p and t′ �= t.
uνt and vνt are the occupation and inoccupation prob-

ability amplitudes of the ν state in the conventional BCS
theory (i.e. in the pairing between like-particles case).
It may be easily shown that the wavefunction |
〉

defined by (9) in the even-even case is then the product of
the usual BCS wavefunctions of the proton and neutron
systems.
The energy of the system given by (14) reads in this case:

lim
�np→0

E0 =
∑
t

⎡⎣2∑
j>0

εjtv2jt − Gtt
∑
j>0

v4jt − �2
tt

Gtt

⎤⎦ (36)

− Gnp
∑
j>0

v2jpv
2
jn.

This means that in this case, E0 is not only the sum of the
energies of the proton and neutron systems, but also there

is an additional term
(

−Gnp
∑
j>0

v2jpv
2
jn

)
.

In the same way, the wavefunction in the even-odd case
defined by (11) becomes

lim
�np→0

|νT〉 = a+
νT

∏
t,j>0
j �=ν

(
ujt + vjta+

jt a
+
j̃t

)
|0〉 . (37)

It is worth noticing that this expression does not exactly
reduce to its homologue of the conventional BCS theory.
Indeed, in the latter, the neutron and proton systems are
considered separately. Thus, when a level of the t (say the
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proton) system is blocked, there is no consequence on the
t′
(
t′ �= t

)
(the neutron) system. On the opposite, in the

np pairing case, due to the definition of the wavefunction
(11), the blocked level νT is simultaneously excluded for
both types of nucleons (i.e., the protons and the neutrons).
As for the expression of the energy given by (17), it

becomes

lim
�np→0

EνT
0 =ενT+

∑
t

⎡⎢⎢⎣2∑
j>0
j �=ν

εjtv2jt−Gtt
∑
j>0
j �=ν

v4jt −
(
�

(ν)
tt

)2
Gtt

⎤⎥⎥⎦
− Gnp

∑
j>0
j �=ν

v2jpv
2
jn. (38)

As in the even-even case, the term

⎛⎜⎝−Gnp
∑
j>0
j �=ν

v2jpv
2
jn

⎞⎟⎠
appears in addition to the sum of the proton and neutron
system energies.

After projection
As it was the case before projection, one may easily verify
that in the even-even case,

∣∣
mm′
〉
, reduces to the product

of the projected wavefunctions of the neutron and proton
systems in the pairing between like-particles case defined
in [41].
The corresponding energy is given by

lim
�np→0

Emm′ =Em + Em′

− 4Gnp(m + 1)(m
′ + 1)C2

mC
2
m′

⎧⎨⎩
m+1∑
k=0

m′+1∑
k′=0

ξkξk′

×
⎡⎣z−PN+1

k z−PZ+1
k′

∑
j>0

v2jnv
2
jp
∏
i�=j

(u2in + zkv2in)

× (u2ip + zk′v2ip) + z−PN+1
k z−PZ+1

k′
∑
j>0

v2jnv
2
jp
∏
i�=j

× (u2in + zkv2in)(u
2
ip + zk′v2ip)

]
+ c.c.

⎫⎬⎭
(39)

where Em is the projected energy of the neutron system
and Em′ that of the proton system in the pairing between
like-particles case for an even system and Cm and Cm′
are the corresponding normalization constants (see [41]).
This means that at the limit when �np → 0, the energy
(31) does not only reduces to the sum of the proton and
neutron systems energies.

In the even-odd case, the wavefunction
∣∣νTmm′

〉
defined

by Equation (26) becomes

lim
�np→0

∣∣νTmm′
〉

= a+
νTCmν

⎧⎪⎪⎨⎪⎪⎩
m+1∑
k=0

ξk

⎡⎢⎢⎣z−PN
k

∏
j>0
j �=ν

(
ujn + zkvjnA+

jn+
)

|0〉 + c.c.

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

× Cm′ν

⎧⎪⎪⎨⎪⎪⎩
m′+1∑
k′=0

ξk′

⎡⎢⎢⎣z−PZ
k′

∏
j>0
j �=ν

(
ujp + zk′vjpA+

jp

)
|0〉 + c.c.

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,

Cmν and Cm′ν being the normalization constants.
As it was already the case before the projection, this

expression does not exactly generalizes that of the pairing
between like-particles case. Indeed, the blocked level is
excluded from the products in both systems. In the same
way, the energy (35) reads

lim
�np→0

EνT
mm′

= ενT + Eν
m + Eν

m′

− 4Gnp(m + 1)(m
′ + 1)C2

mνC
2
m′ν

⎧⎨⎩
m+1∑
k=0

m′+1∑
k′=0

ξkξk′

×
⎡⎣z−PN+1

k z−PZ+1
k′

∑
j �=ν

v2jnv
2
jp
∏

i�=j �=ν

(
u2in+zkv2in

)(
u2ip+zk′v2ip

)

+ z−PN+1
k z−PZ+1

k′
∑
j �=ν

v2jnv
2
jp
∏

i�=j �=ν

(
u2in+zkv2in

)(
u2ip+zk′v2ip

)⎤⎦
+ c.c.

⎫⎪⎬⎪⎭
(40)

where

Eν
m = 2(m + 1)C2

mν

{m+1∑
k=0

ξkz−P+1
k

×
⎡⎣∑

j �=ν

2
(

εj − G
2

)
v2j
∏

i�=j �=ν

(
u2i + zkv2i

)

−2G
∑
l<i
l �=ν

ujvjulvl
∏
i�=ν,j,l

(
u2i + zkv2i

)⎤⎥⎥⎦+ c.c.

⎫⎪⎪⎬⎪⎪⎭ .

(41)

One notices that although �np → 0, there remains a term
in Gnp. Moreover, as before the projection, the blocked
level concerns both the proton and neutron systems.
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Appendix 2
Extraction of the real parts
Normalization constants
The real part of Equation (29) is given by

C−2
mm′ = 8(m + 1)(m

′ + 1)
m+1∑
k=0

m′+1∑
k′=0

ξkξk′

× [
ρ(xk , xk′ ) cos θ(xk , xk′ )+ρ(−xk , xk′ ) cos θ(−xk , xk′ )

]
(42)

with

xk = kπ
2(m + 1)

θ(xk , xk′ ) = −2PNxk − 2PZxk′ + ϕ(xk , xk′ )

ρ(xk , xk′ ) =
∏
j>0

ρj(xk , xk′ ) , ϕ(xk , xk′ ) =
∑
j>0

ϕj(xk , xk′ )

ρj(xk , xk′ ) =
√(

a(j))2 + (
b(j))2 , tanϕj(xk , xk′ ) = b(j)

a(j)

where

a(j) =
(
Bj
1

)2
cos(2xk+2xk′ )+

(
Bj
p
)2
cos 2xk′ +

(
Bj
n
)2
cos 2xk

+ 2
(
Bj
4

)2
cos(xk + xk′ ) +

(
Bj
5

)2
b(j) =

(
Bj
1

)2
sin(2xk+2xk′ )+

(
Bj
p
)2
sin 2xk′ +

(
Bj
n
)2
sin 2xk

+ 2
(
Bj
4

)2
sin(xk + xk′ )

In the same way, the real part of Equation (34) reads

C−2
νmm′ = 8(m + 1)(m

′ + 1)
m+1∑
k=0

m′+1∑
k′=0

ξkξk′ (43)

×
[

ρ(xk , xk′ )

ρν(xk , xk′ )
cos θν(xk , xk′ )

+ ρ(−xk , xk′ )

ρν(−xk , xk′ )
cos θν(−xk , xk′ )

]

where

θi...j(xk , xk′ ) = θ(xk , xk′ )−ϕi(xk , xk′ )− . . .−ϕj(xk , xk′ )

Energy
The real part of the energy for an even-even system
(Equation (31)) is given by

Emm′ = 8(m + 1)(m
′ + 1)C2

mm′
m+1∑
k=0

m′+1∑
k′=0

ξkξk′

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑[

εj(xk , xk′ ) + εj(−xk , xk′ )
]

+
∑
j,l>0
j �=l

[
εjl(xk , xk′ ) + εjl(−xk , xk′ )

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (44)

where

εj(xk , xk′ ) = ρ(xk , xk′ )

ρj(xk , xk′ )

{
Rj
0(xk , xk′ ) cos�

j
0(xk , xk′ )

− GnnR
j
n(xk′ ) cos�

j
n(xk , xk′ )

− GppR
j
p(xk) cos�

j
p(xk , xk′ )

− GnpR
j
np(xk , xk′ ) cos�

j
np(xk , xk′ )

}
(45)

and

εjl(xk , xk′ ) = ρ(xk , xk′ )

ρj(xk , xk′ )ρl(xk , xk′ )

×
{
−GnnQ

j
n(xk′ )Ql

n(xk′ ) cos�
jl
n(xk , xk′ )

− GppQ
j
p(xk)Ql

p(xk) cos�
jl
p(xk , xk′ )

− 2GnpQ
j
np(xk , xk′ )Ql

np(xk , xk′ ) cos�
jl
np(xk , xk′ )

}
(46)

with the notations

R0
j(xk , xk′ ) =

√(
a(j)
0

)2 +
(
b(j)
0

)2
η
j
0(xk , xk′ ) = arctan

(
b(j)
0

a(j)
0

)

Ri
j(xk , xk′ ) =

√(
a(j)
i1

)2 +
(
b(j)
i1

)2
η
j
i(xk , xk′ ) = arctan

(
b(j)
i1

a(j)
i1

)
(47)

Qi
j(xk , xk′ ) =

√(
a(j)
i2

)2 +
(
b(j)
i2

)2
δ
j
i(xk , xk′ ) = arctan

(
b(j)
i2

a(j)
i2

)
i = n, p, np
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�
j
0(xk , xk′ ) = θj(xk , xk′ ) + η

j
0(xk , xk′ )

�
j
n(xk , xk′ ) = θj(xk , xk′ ) + η

j
n(xk′ ) + 2xk

�
j
p(xk , xk′ ) = θj(xk , xk′ ) + η

j
p(xk) + 2xk′

�
j
np(xk , xk′ ) = θj(xk , xk′ ) + η

j
np(xk , xk′ ) (48)

�
jl
n(xk , xk′ ) = θjl(xk , xk′ ) + δ

j
n(xk′ ) + δln(xk′ ) + 2xk

�
jl
p(xk , xk′ ) = θjl(xk , xk′ ) + δ

j
p(xk) + δlp(xk) + 2xk′

�
jl
np(xk , xk′ ) = θjl(xk , xk′ ) + δ

j
np(xk , xk′ ) + δlnp(xk , xk′ )

+ xk + xk′

θ(xk , xk′ ) = −2PNxk − 2PZxk′ + ϕ(xk , xk′ ) (49)
θiqr(xk , xk′ ) = θi(xk , xk′ ) + qxk + rxk′

θi...jqr(xk , xk′ ) = θi...j(xk , xk′ ) + qxk + rxk′

a(j)
0 =2

(
Bj
1

)2(
εjn+εjp

)
cos(2xk+2xk′ )+2

(
Bj
p
)2

εjp cos 2xk′

+2
(
Bj
n
)2

εjn cos 2xk+2
(
Bj
4

)2(
εjn+εjp

)
cos(xk+xk′ )

b(j)
0 =2

(
Bj
1

)2(
εjn+εjp

)
sin(2xk+2xk′ )+2

(
Bj
p
)2

εjp sin 2xk′

+ 2
(
Bj
n
)2

εjn sin 2xk+2
(
Bj
4

)2 (
εjn+εjp

)
sin(xk+xk′ )

(50)

a(j)
n1 =

(
Bj
1

)2
cos 2xk′ +

(
Bj
n
)2

; b(j)
n1 =

(
Bj
1

)2
sin 2xk′

a(j)
p1 =

(
Bj
1

)2
cos 2xk +

(
Bj
p
)2

; b(j)
p1 =

(
Bj
1

)2
sin 2xk

(51)

a(j)
np1 =

(
Bj
1

)2
cos(2xk + 2xk′ ) + 2

(
Bj
4

)2
cos(xk + xk′ )

b(j)
np1 =

(
Bj
1

)2
sin(2xk + 2xk′ ) + 2

(
Bj
4

)2
sin(xk + xk′ )

(52)

a(j)
n2 = Bj

1B
j
p cos 2xk′ + Bj

nB
j
5 ; b(j)

n2 = Bj
1B

j
p sin 2xk′

a(j)
p2 = Bj

1B
j
n cos 2xk + Bj

pB
j
5 ; b(j)

p2 = Bj
1B

j
n sin 2xk

(53)

a(j)
np2 = Bj

1B
j
4 cos(xk + xk′ ) − Bj

4B
j
5

b(j)
np2 = Bj

1B
j
4 sin(xk + xk′ ). (54)

In the same way, for an even-odd system, the real part of
the energy (Equation ( 35)) is given by

EνT
mm′ = ενT + 8(m + 1)(m

′ + 1)C2
νmm′

×
m+1∑
k=0

m′+1∑
k′=0

ξkξk′

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑
j>0
j �=ν

[
εν
j (xk , xk′ ) + εν

j (−xk , xk′ )
]

+
∑
j,l>0
j �=l
j �=ν

[
εν
jl(xk , xk′ ) + εν

jl(−xk , xk′ )
]
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(55)

where

εν
j (xk , xk′ ) = ρ(xk , xk′ )

ρj(xk , xk′ )ρν(xk , xk′ )

×
{
Rj
0(xk , xk′ ) cos�

jν
0 (xk , xk′ )

− GnnR
j
n(xk′ ) cos�

jν
n (xk , xk′ )

− GppR
j
p(xk) cos�

jν
p (xk , xk′ )

−GnpR
j
np(xk , xk′ ) cos�

jν
np(xk , xk′ )

}
(56)

and

εν
jl(xk , xk′ )= ρ(xk , xk′ )

ρj(xk , xk′ )ρl(xk , xk′ )ρν(xk , xk′ ){
− GnnQ

j
n(xk′ )Ql

n(xk′ ) cos�
jlν
n (xk , xk′ )

− GppQ
j
p(xk)Ql

p(xk) cos�
jlν
p (xk , xk′ )

− 2GnpQ
j
np(xk , xk′ )Ql

np(xk , xk′ ) cos�
jlν
np(xk , xk′ )

}
(57)

with the notations

�
jν
0 (xk , xk′ ) = θjν(xk , xk′ ) + η

j
0(xk , xk′ )

�
jν
n (xk , xk′ ) = θjν(xk , xk′ ) + η

j
n(xk′ ) + 2xk

�
jν
p (xk , xk′ ) = θjν(xk , xk′ ) + η

j
p(xk) + 2xk′

�
jν
np(xk , xk′ ) = θjν(xk , xk′ ) + η

j
np(xk , xk′ ) (58)

�
jlν
n (xk , xk′ ) = θjlν(xk , xk′ ) + δ

j
n(xk′ ) + δln(xk′ ) + 2xk

�
jlν
p (xk , xk′ ) = θjlν(xk , xk′ ) + δ

j
p(xk) + δlp(xk) + 2xk′

�
jlν
np(xk , xk′ ) = θjlν(xk , xk′ ) + δ

j
np(xk , xk′ ) + δlnp(xk , xk′ )

+ xk + xk′ .
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