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Abstract

The two-dimensional XY model of contiqous SPigs on aSguare lattice is studied by Monte

between 0.02 and 2 .02, for square lattice sizes considered between 122 and 482,

with periodic bo i d for discrete values of the Tsallis entropic index g used

between 0. ound that the Kosterlitz-Thouless transition is well observed
and modifigd for g nd 0.9 ; its critical temperature decreases when q decreases. A
parti jor of @he system evolution is observed for g = 0.8 and 0.7. The absence of

was confirmed for g < 0.6.

Keywords: Wwo-dimensional XY model, Kosterlitz-Thouless transition, Tsallis statistics,

Monte Carlo simulation.
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1. Introduction

The application of a specific statistical approach to a physical system essentially depends on
the nature of the microscopic interactions, the microscopic memory [1][2]. For short-range-
interactions and for non-(multi)fractal boundary conditions, the usual Boltzmann-Gibbs
statistic is sufficient. However, for systems with dominant long-range-interactions, a more
generalized statistical approach will be needed [3]. Black holes and superstrings [4][5], granular

matter [6], two-dimensional turbulence [7][8], astrophysics and the many-body-gravitational

[12] such as biology [13][14], chemistry [15] and physics
Monte Carlo simulations are recently performed to s

are not yet studied by this method.
The objective of this paper is dy a Sgple clasdrcal model of continuous spins, which is
the two-dimensional XY an phaSe#ifansitions by Monte Carlo simulation in the
Tsallis statistical ap a siMple generalization of the Metropolis algorithm.

e calculated and studied over a temperature interval for

ex called “Tsallis entropic index”, which depends on the

difference @Etwee ibbs and Tsallis statistics.

eM8ional AY model and Kosterlitz-Thouless transition

The XY cribes a system of two-dimensional unit spin vectors located at sites of a
two-dimens¥@nal or three-dimensional lattice, with nearest-neighbor interactions. The spin
Si(six = cos6;,s;,, = sin@;) with |S;| = 1 located in site i can rotate in a plane at an angle
0; € [0, 2m] with respect to a specified direction [23][24]. The Hamiltonian of this model is
given by:
H= _]Z cos(@i - 9]-) + hz cos 6; (1)
(i) i

where J is the spin-spin coupling interaction and h is the external field interaction. The notation

(ij) means a summation over the nearest neighbor sites only. In this work we take h = 0 to



eliminate the source term breaking the symmetry. In this case the energy is of O(2) symmetry,
that is to say a rotation of all the spins by the same angle, does not change the energy of the
system [23].

The two-dimensional XY model is widely used to study the physical and critical behavior of a
few two-dimensional systems such as superfluid helium thin films [25], superconducting thin
films [26], ferromagnetic layers [27], crystal surfaces [28] and two-dimensional Coulomb gas
[29]. Although it can be rigorously proven that the order parameter (the magnetization) of the

XY model is zero at any finite temperature in two dimensions, and that tpg

Two-dimensional XY model undergoes a very specific transition o
the "Kosterlitz-Thouless transition™ [30][31]. Experimentally,

superconducting materials seem to show this transition. N

carried out to confirm the predictions of this transition and Wpat critical temperature.

Most of them are Monte Carlo studies. Some author§g istence of the classical

cases [32][33]. Kosterlitz and Thouless [34

that takes the system from its ordered

critical point of ss transition. However, no specific thermal anomaly is

observed of an isolated vortex is much higher than that of a pair of

energy becomes more prominent and able to untie the vortex pair. The critical temperature in
the Kosterlitz-Thouless transition at which the vortices begin to untie is estimated to be Ty =
0.8929 J /kg, where ] is the spin-spin coupling constant and kg is the Boltzmann constant.

The absence of long-range order, the presence of topological defects called "vortices", and the
Kosterlitz-Thouless transition are some of the important properties of the two-dimensional XY

model for which it is markedly different from other two-dimensional classical systems.

3. Tsallis statistical approach



In order to include long-range-interactions in the statistical description of complex systems, a
generalization of the usual Boltzmann-Gibbs statistics was proposed by Tsallis in 1988 [11],
which is based on the following entropy formula:

1—2?=1Piq 2
— @

where kg is the Bolzmann constant, Q is the number of possible microstates of the system, q is

Sq:kB

a real parameter characterizes the degree of the deformation of the statistics or of the

nonextensivity, called “Tsallis entropic index” and p; (0 < p; < 1) is the

of g < 1 in this paper. Note that in Monte Carlo simulations w
of q.

The most important property of the Tsallis entropy is its sIvg nature. Indeed, for a

system consisting of two subsystems A; and A, tHeg al trO@y of the global system
is:

Sq(A1 + Az) = Sq( q(Al)Sq (AZ) (3)

For g = 1 the entropy S, therefoggec

In nonextensive statistics, the gZmedyvalu rmodynamic observable X is given by:
piXi (4)

where p; are the

Zip? ©)
the ageNglue ofgthe generalized internal energy U, is defined as:
Uq = (H)q = Z piE; (6)
i

where H is tffe Hamiltonian of the system and E; is the energy of possible state i.

the canonical distribution adapted to Monte Carlo simulations [22] is given by:
1

1 1
pi = Z, [1-(1-q@pBE]a @)

with
_ B
Yip! + (1 —q)BU, (8)

ﬁl



1
F=trT )

2 1
Zy= ) 11— (- p'EJT (10)
=1

L

where B’ is the Lagrange multiplier associated with the energy constraint, kg is the Boltzmann
constant, T is the thermostat temperature and Z,, is the generalized canonical partition function.
The choice of temperature in the Tsallis statistic poses a problem during the simulation. In this
work, we have chosen 1/ as the temperature scale, as they did the a of references
[16][22].

4. Metropolis algorithm in the Tsallis statistical approach

The implementation of the XY model using the simple Metropolis
-
in the non-extensive statistics approach is done by the following steps:
1) Choose a random initial configuration of the studied spin lattice.
2) Randomly change the orientation of each spin in the lattice.
3) Calculate the difference AE in energy due to the change in spin orientation using the

Hamiltonian of the XY model.

ori on. v
be 0, 1], and calculate the probability p of

iC:
1-(1-q)p'E] "
ll -(1- q)ﬁ'Eil (1)
orientation.

If rﬁ kegp the neﬂ

4) Repeat N, times the steps 2 and 3 until thermal equilibrium is reached. N, is the
number of Monte Carlo steps needed to reach thermal equilibrium.
5) Calculate the statistical g-mean on the possible configurations of the thermodynamic

quantities X and on a number of Monte Carlo steps N — N.g With N > N, i.e.:

(X)gdmc = (X)q,i (12)

(N - Neq) i

i=Negq
where (... ), means the statistical g-mean over the possible configurations and (... )y means
the mean over a number N — N,, of Monte Carlo steps.

In this generalized Metropolis algorithm, the transition probability of the Boltzmann-Gibbs

statistic has been replaced by that of the Tsallis statistic as the case of the references [16][22].



5. Simulation results

Monte Carlo simulations using the Metropolis algorithm [34] in the Tsallis statistical approach
are performed on a square lattice of N = L? spins, which is described by the two-dimensional
XY model. Periodic boundary conditions have been applied to edge spins. The quantities
calculated are:

the energy per spin:

N

1
eWT,0) = (g ) | =1 cos(0u = 0,0) Produc 13

I=1 )

the magnetization per spin:

N
1
— (= . (14)
m(L,T,q) ((N (Z cos 6;
the magnetic susceptibility:
1 2
x(L, T, q) = kB_T Mc — )q )MC) (15)
the heat capacity:
Cr(LT (e )N — ((€)g"Iuc) (16)
the Binder cumulant of th tizalilQQ:
(m*) g duc
(LT, q)=1-——F"7F— 17
32 e ()
and the Binder clipulant oT%e ay:
L ’ (e qdmc
U, (LT,q=1—-——F-55—
) = S e (49)
™ ) !

To simplify, we have taken the coupling constants / = 1 and the Boltzmann constant kz = 1,
in this case the temperature and the calculated quantities are given in reduced units. Square
lattice sizes are chosen between 122 and 482. A temperature interval is chosen between 0.02
and 2 with a step of 0.02. A total number of Monte Carlo steps N = 6 - 10* is used, of which
Neg = 10* is associated to reach thermal equilibrium. The calculations are made in the case of
the extensive Boltzmann-Gibbs statistic and in the case of the nonextensive Tsallis statistic for
values of the Tsallis entropic index q between 0.99 and 0.5.

Figure 1 shows the curves of variation of ; energy per spin e, magnetization per spin m, heat

capacity C, and magnetic susceptibility y as a function of temperature, for a square lattice size



L? = 482% with different values of the entropic index g and for the case of the Boltzmann-Gibbs
statistic. It can be seen that the Kosterlitz-Thouless transition is well observed for ¢ = 0.99 and
0.9. Specific behaviors are observed for g = 0.8 and 0.7; the curves of m (resp. the curves of
e) have a maximum (resp. a minimum) then an inflection, this is valid whatever the size of the
lattice square as shown in figure 2. The magnetization and the energy per spin strongly depend
on g at low temperatures, i.e. in the first phase of transition. Indeed, when g decreases m
decreases and e increases. The heat capacity curves have a maximum which moves to the left
when g decreases, the maximum disappears for g < 0.8. The same remark was observed for
the susceptibility curves, except that the maximums only disappear for g < 0.5. However, for
q = 0.8 there are two maxima, this is remarkable whatever the lattice size as shown in figure
2. Moreover, when the size of the system increases the peaks of the maximums become sharper.
We also notice that the critical temperature corresponds to the maximum of the heat capacity
decreases when q increases. For g < 6 the system have no phase transition. For g = 0.99 the
results obtained are very close to those obtained in the case of the extensive Boltzmann-Gibbs
statistics.

To estimate the critical temperature of the studied transition at the thermodynamic limit
(L — o), we plotted the Binder cumulant of the magnetization as a function of temperature
for L? = 482, for different values of g and for the case of the Boltzmann-Gibbs statistic on one
side (see figure 3 (a)), and for g = 0.9 with different values of L on the other side (see figure
3 (b)). From figure 3 (a) it was again found that the critical temperature T, strongly depends
on g, and for g = 0.7 and 0.8 a specific behavior is observed. The point of intersection of the
curves of figure 3 (b) corresponds to T, at the thermodynamic limit for g = 0.9. Estimated
values of T, by this method for different values of g are given in table 1. It has been found that
T, decreases as g decreases at the thermodynamic limit. Note that to obtain a value of T, close
to that of the Kosterlitz-Thouless transition Ty =~ 0.8929 J/kg by performing simulations in
the case of the Boltzmann-Gibbs statistics, it is necessary to choose large values of L, this
requires a machine powerful.

Another method is often used to estimate T, at the thermodynamic limit, which consists of the
linear fitting of the curves of T, according to (1/L?); the ordinate at the origin of the line
obtained by linear fitting is the critical temperature at the thermodynamic limit. Figure 4 shows
an example for g = 0.9 using the values of T, corresponding to the maximum of the heat
capacity curves. The results obtained by this method are also given in table 1.

In order to compare the Kosterlitz-Thouless transition with classical transitions, we plotted the

Binder cumulant of the energy U, as a function of the temperature; for L? = 482 with different

7



values of g and the case of the Boltzmann—Gibbs statistic on one side (see figure 5 (a)), and
for g = 0.9 with different values of L on another side (see figure 5 (b)). It has been found that
for the Kosterlitz-Thouless transition there is no minimum on the Binder cumulant of energy
curves unlike the case of classical transitions. Moreover, the appearance of this transition on

the curves of U, strongly depends on L and q.

6. Conclusions

A study by Monte Carlo simulations is carried out in the nonextensive statistical approach of

Metropolis algorithm by replacing the transition probability of

statistic by that of the nonextensive Tsallis statistic. The

terval of temperature

etween 122 and 482 with

Environment (LPCME), at Ziane Achour University, Djelfa, Algeria, and the Algerian General
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Figure 3 : Curves of variation of the Binder cumulant of the magnetization as a function of
temperature in the case of the XY model for: (a) L2 = 482 with different values of q and the
case of the Boltzmann—Gibbs statistic (BG) , (b) g = 0.9 with different values of L.
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Figure 5 : Curves of vai oNihe Bgler cumulant of energy as a function of temperature
in the case of the X a) L2 = 482 with different values of q and the case of the
Boltzmann-Gib i = 0.9 with different values of L.

Table1: al temperature T, at the thermodynamic limit, estimated in the
of -Gibbs statistic (BG) and in the case of the Tsallis statistic with
diffe entropic index q using: (a) the Binder cumulant of the magnetization

method, (b) the linear fitting method.

T
(a) (b)

BG 0.96 1.04
g=099 096 1.04
g =09 0.74 0.87
q=0.8 0.54 0.64
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