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Abstract
In this work, the non-relativistic wave equation via the Schrödinger wave equation under the influence of the
Aharonov-Bohm flux field Subject to physical potentials of various kinds is investigated. These potentials are
modified Coulomb potential, modified harmonic oscillator potential, the Kratzer-Feus potential, and the Mie-type
potential which have wide applications in different branches of physics and chemistry. We solve the Schrodinger
wave equation using the Nikiforov-Uvarov (NU) method and obtain the energy profiles and the wave-function of
the non-relativistic particle, and analyze the effects of potential and the quantum flux on them. We show that
each non-relativistic energy level gets modified in comparison to the known results obtained in the literature.
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1. Introduction
The Schrodinger equation is a linear partial differential equa-
tion that governs the wave function of a quantum mechanical
system. It is the key result in quantum mechanical system and
its discovery was a significant landmark in the development
of the subject. The time-dependent Schrödinger equation is
represented by [1–4]

ih̄
dΨ

dt
=− h̄2

2M
∇

2
Ψ+V Ψ (1)

The time-independent non-relativistic wave equation is given
by

[∇2 +
2M
h̄2 (E −V (r))]Ψ = 0 (2)

Here, ∇2 is the Laplacian operator in a coordinate system, Ψ

is the wave fuvction that assigns a complex number. The pa-
rameter M is the mass of the particle, and V (r) is the potential
that represents the environment in which the particle exists.
Over several decades, there has been a growing interest among
researchers to obtain the analytical solutions of the Schrodinger
equation for physical potential in quantum mechanical sys-
tems. The exact solution of the Schrödinger equation (SE)
with spherically symmetric potential plays a vital role in dif-
ferent branches of physics including nuclear physics, atomic
and molecular physics, and in modern physics. These po-
tentials play important roles in different fields of physics
such as; plasma, solid state and atomic physics [5]. Some

of these potentials include the Cornell potential [6, 7], mixed
between the Cornell potential and the harmonic oscillator po-
tential [8, 9], generalized Morse potential [10], Yukawa poten-
tial [11], Wood-Saxon potential [12], Hulthen potential [13],
Eckart potential [14], Makorov potential [15], Hellmann po-
tential [16], Coulomb potential [17], the harmonic oscillator
potential [18], Pseudo-harmonic potential [19], Mie-type po-
tential [20], quark-antiquark interaction potential [21].
Several Researchers have been solved the Schrödinger equa-
tion using different methods [22–26], which includes asymp-
totic iteration method (AIM) [27–33], the super-symmetric
shape invariance method [34–39], the Nikiforov-Uvarov (NU)
method [24,40–47], the variational method [48]. For instance,
Ita [49] solved the Schrödinger equation with the Hellmann
potential and obtained the energy eigenvalues and the corre-
sponding wave functions using both 1/N expansion method
and the NU method. Kocak et al. [50] in their work solved
the Schrödinger equation with the Hellmann potential using
the asymptotic iteration method and obtained energy eigen-
values and the wave functions. Mesa et al. [51] in their study,
obtained bound state spectrum of the Schrödinger equation
with generalized Morse potential and Poschle-Teller poten-
tial respectively. Arda et al. [52] solved one-dimensional
Schrödinger equation for the generalized Morse potential with
the NU method and obtained the bound state solutions for
the effective mass for some diatomic molecules. Similarly,
Zhang et al. [11] solved any state solutions of the Schrödinger
equation with the generalized Morse potential using the basic
concept of the super symmetric shape invariance formalism
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and the function analysis method. It is important to note
that the solutions of a combination of two or more of these
potentials give a significant result with diverse applications.
For instance, Onate et al. [53] obtained the solutions of the
radial Schrödinger equation with a combination of Coulomb
potential, Yukawa potential and inversely quadratic Yukawa
potential (class of Yukawa potentials) which has application
in plasma physics, solid state physics and atomic physics.
Awoga et al. [54] obtained the solutions of the Schrödinger
equation with generalized inverted hyperbolic potential. Onate
et al. [55, 56], obtained analytical solutions of both Dirac
equation and Klein Gordon equation with Hellmanne-Froste-
Musulin potential (combination of Hellmann potential and
Froste-Musulin potential) and combined potential (combina-
tion of general Manninge-Rosen potential, hyperbolical po-
tential and Pöschle-Teller potentials). The HellmanneFroste-
Musulin potential has application in condense matter physics,
atomic and molecular physics while the combined poten-
tial has application in high energy physics, nuclear physics,
atomic and molecular physics. Since the combination of two
or more potentials gives better result especially when a sta-
bilizing potential like the Yukawa is added, stability of the
nucleus is achieved and has been used extensively in nuclear
physics [57–61]. For instance, Hamzavi et al. [58] applied the
inversely quadratic Yukawa potential and a tensor interaction
term to the solutions of the approximate spin and pseudo-spin
symmetries of the Dirac. Their results show that by applying
the tensor interaction term, the degeneracy between spin and
pseudo-spin state doublets were removed. The harmonic os-
cillator potential is used in many branches of physics.
In this paper we have used few modified known potentials in
literature as follows:
(a) Modified Coulomb potential

V (r) = a− b
r

(3)

(b) Modified harmonic oscillator potential

V (r) = a+br2 (4)

(c) The Kratzer-Feus potential (Inverse square plus Coulomb
potential)

V (r) =−b
r
+

c
r2 (5)

(d) The Mie-type Potential (constant plus inverse square and
Coulomb potential)

V (r) = a− b
r
+

c
r2 (6)

We solve the non-relativistic wave equation under the effects
of above mentioned potentials in the presence of Aharonov-
Bohm flux field with the help of the Nikiforov-Uvarov method.

We show that the presence of quantum flux modified the
energy level and wave function of a Schrodinger particle.

2. Brief review of the Nikiforov-Uvarov
method:

The Nikifrove-Uvarov metho is helpful in order to find eigen-
value and eigenfunctions of the Schrödinger equation, as
well as other second-order differential equations of physi-
cal interest. This NU method has been successfully applied
in solving the quantum mechanical problems by several re-
searchers [24, 40–47, 62–68].
According to this method, eigenfunction second-order differ-
ential equations [69–71]

d2Ψ(s)
ds2 +

(α1 −α2s)

s(1−α3s)
dΨ(s)

ds
+
(−ξ1s2 +ξ1s−ξ3)

s2(1−α3s)2 Ψ(s) = 0

(7)

are given by

Ψ(s)= sα12(1−α3s)(−α12 −
α13

α3
)P

(α10−1, α11
α3

−α3−1)
n (1−2α3s)

(8)

And that the eigen energy eigen values equations

α2n− (2n+1)α2 +(2n+1)(
√

α9 +α3
√

α8)

+n(n−1)α3 +α7 +2α3α8 +2
√

α8α9 = 0 (9)

The parameters α4, ...,α13 are obtained from the six parame-
ters α1, ...,α3 and ξ1, ...,ξ3 as follows:

α4 =
1
2
(1−α),

α5 =
1
2
(α2 −2α3),

α6 = α
2
5 +ξ1,

α7 = 2α4α5 −ξ2,

α8 = α
2
4 +ξ3,

α9 = α6 +α3α7 +α
2
3 α8

α10 = α1 +2α4 +2
√

α8,

α11 = α2 −2α5 +2(
√

α9 +α3
√

α8),

α12 = α4 +
√

α8,
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α13 = α5 − (
√

α9 +α3
√

α8). (10)

A special case where α3 = 0, we find

lim
α3→0

P
(α10−1, α11

α3
−α10−1)

n (1−2α3s) =

Lα10−1
n (α11s),⇒ lim

α3→0
(1−α3s)−α12−

α13
α3 = eα13s (11)

Therefore the wave-function from (A.2) becomes

Ψ(s) = sα12 eα13sLα10−1
n (α11s), (12)

where L(β )
n (x) denotes the generalized Liguerre polynomial.

The energy eigenvalues equation reduces to

nα2−(2n+1)α5+(2n+1)
√

α9+α7+2
√

α8α9 = 0 (13)

3. Motion of non-relativistic particle under
spherically symmetric potential in the

presence of AB-Flux field:
The time independent Schrödinger equation in spherical sys-
tem is described by the Eq. (2) given by

∇
2
Ψ(r,θ ,φ)+

2M
h̄2 (E −V (r))Ψ(r,θ ,φ) = 0 (14)

As potential is spherically symmetric, it is convenient work in
spherical polar coordinate, (r,θ ,φ) where r ≤ θ ≤∞, 0≤ θ ≤
π , 0 ≤ φ ≤ 2π . Expressing Laplacian operator in spherical
coordinates, we have

[
1
r2

d
dr

(r2 d
dr

)+
1

r2 sinθ

d
dθ

(sinθ
d

dθ
)

+
1

r2 sin2
θ

d2

dφ 2 +
2M
h̄2 (E −V (r))]Ψ(r,θ ,φ) = 0 (15)

Separation of the equation:// The wave function of Eq. (15)
can be written as

Ψ(r,θ ,φ) = R(r)Θ(θ)Φ(φ) (16)

Substituting this form of the wave-function Ψ into the Eq.
(15) and multiplying by (r2 sin2

θ)/(RΘφ) , we have obtained

sin2
θ

R
d
dr

(r2 dR
dr

)+
sinθ

Θ

d
dθ

(sinθ
dΘ

dθ
)+

2M
h̄2 [E −V (r)]r2 sin2

θ =− 1
Φ

d2Φ

dφ 2 (17)

The left hand side of Eq. (4) is a function of r and θ and right
side is a function of φ alone. This is possible when each side
is a constant, say m2. Then

d2Φ

dφ 2 =−mΦ
2 (18)

and

sin2
θ

R
d
dr

(r2 dR
dr

)+
sinθ

Θ

d
dθ

(sinθ
dΘ

dθ
)+

2M
h̄2 [E−V (r)]r2 sin2

θ =m2

(19)

Dividing both sides of Eq. (19) by sin2
θ and renaming we

get,

1
R

d
dr

(r2 dR
dr

)+
2M
h̄2 (E−V )r2 =−[

1
Θsinθ

d
dθ

(sinθ
dΘ

dθ
)− m2

sin2
θ
]

(20)

This is possible when both sides are equal to a constant, λ .
Consequently, we get the Θ− and the radial R-equation as
follows:

1
sinθ

d
dθ

(sinθ
dΘ

dθ
)+(λ − m2

sin2
θ
)Θ = 0 (21)

and

1
r2

d
dr

(r2 dR
dr

)+
2M
h̄2 [E −V (r)]R− λ

r2 R = 0

⇒ d2R
dr2 +

2
r

dR
dr

+
2M
h̄2 [(E −V (r))− λ h̄2

2Mr2 ]R = 0 (22)

Substituting R =U(r)/r1/2 into the Eq. (22), we have

⇒ ´́Ur−
1
2 −Úr−

3
2 +

3
4

Ur−
5
2 +

2
r
[−1

2
Ur−

3
2 +Ur−

1
2 ]

+
2M
h̄2 [E −V (r)− λ h̄2

2Mr2 ]Ur−
1
2 = 0

⇒ ´́Ur−
1
2 −Úr−

3
2 +

3
4

Ur−
5
2 −Ur−

5
2 +2Ur−

3
2

+
2m
h̄2 [E −V − λ h̄2

2mr2 ]Ur−
1
2 = 0

⇒ ´́Ur−
1
2 +Úr−

3
2 − 1

4
Ur−

5
2 +

2M
h̄2 [E−V − λ h̄2

2Mr2 ]Ur−
1
2 = 0

⇒ ´́U +Úr−1 − 1
4

Ur−2 +
2M
h̄2 [E −V − λ h̄2

2Mr2 ]U = 0

⇒ ´́U +
1
r

Ú +[
2M
h̄2 (E −V )− 1

r2 (λ +
1
4
)]U = 0

⇒ ´́U +
1
r

Ú +[
2M
h̄2 (E −V )− J2

r2 ]U = 0 (23)

where, we have written λ = l(l + 1) and J =
√

λ +1/4 =√
l(l +1)+1/4 = l + 1/2. Here prime denotes derivative

w.r.t. the radial coordinate r.
In the presence of an external field, one can perform a minimal
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substitution p2 → (p− eA)2 into the Schrodinger wave equa-
tion [2, 3, 5, 72], where A is the electromagnetic three-vector
potential given by

Ar = 0 = Aθ ,Aφ =
ΦAB

2πr sinθ
(24)

Therefore, Eq. (15) can be written as

[
1
r2

d
dr

(r2 d
dr

)+
1

r2 sinθ

d
dθ

(sinθ
d

dθ
)

+
1

r2 sin2
θ
(

d
dφ

− iα)2+
2M
h̄2 (E−V (r))]Ψ(r,θ ,φ) = 0 (25)

where α = φAB/φ0 the amount of quantum flux and φ0 =
2πe−1 is the quantum flux. Here φAB =const is the Aharonov-
Bohm magnetic flux [2, 3, 5, 72–81]. Note that for the above
mentioned flux field, there is no magnetic field B=∇×A= 0,
that is, no direct interaction of the non-relativistic particle with
the magnetic field but the particle is confined to the flux field.
Following the previous procedure, one can find the following
radial wave equation

⇒ ´́U +
1
r

Ú +[
2M
h̄2 (E −V )−

J2
0

r2 ]U = 0 (26)

where J0 = l0+1/2, l0 = (l−α), and replacing m by m0 with
m0 = (m−α) and λ0 = l0(l0 +1).

4. (A) Effects of modified
coulomb-potential V = a− (b/r)

In this section, we consider a potential which is the sum
of a constant plus attractive Coulomb potential given in Eq.
(3). This type of potential we called the modified Coulomb
potential and have wide application in physics and chemistry.
We use this type of potential in the above mentioned quantum
mechanical problem and obtained the eigenvalue solution.
Therefore, substituting the modified Coulomb potential into
the Eq. (26), we have

´́U(r)+
1
r

Ú(r)+ [
2M
h̄2 (E −a+

b
r
)−

J2
0

r2 ]U(r) = 0

⇒ ´́U(r)+
1
r

Ú(r)+ [
2M
h̄2 (E −a)+

2Mb
h̄2r

−
J2

0
r2 ]U(r) = 0

⇒ ´́U(r)+
1
r

Ú(r)+ [∆+
ω2

r
+

J2
0

r2 ]U(r) = 0 (27)

where

∆ =
2M
h̄2 (E −a),ω2 =

2Mb
h̄2 (28)

Equation (27) can be written as

⇒ ´́U(r)+
1
r

Ú(r)+
1
r2 [∆r2 +ω

2r+ J2
0 ]U(r) = 0 (29)

Comparing equation (29) with Eq. (7), we have

ξ1 =−∆,ξ2 = ω
2,ξ3 = J2

0 ,

α1 = 1,α2 = 0,α3 = 0,α4 = 0,α5 = 0,α6 = α
2
5 +ξ1 = ξ1,

α7 = 2α4α5−ξ2 = 2,0,0−(ω2)=ω
2,α8 =α

2
4 +ξ3 = 0+ξ3 = J2

0 ,

α9 = α6 +α3α7 +α
2
3 α8 =−∆+0(ω2)+0 =−∆,

α10 = α1 +2α4 +2
√

α8 = 1+2×0+2J0 = 1+2J0,

α11 = α2 −2α5 +2(
√

α9 +α3
√

α8) = 0−2×0+

2(
√
−∆+0

√
J2

0 ) = 2
√
−∆,

α12 = α4 +
√

α8 = 0+
√

J2
0 = J0,

α13 = α5− (
√

α9+α3
√

α8) = 0− (
√
−∆+0) =−

√
−∆

(30)

Substituting Eq. (30) into the energy equation (8), we have

⇒ (2n+1)
√
−∆−ω

2 +2J0
√
−∆ = 0

⇒ (2n+1+2J0)
√
−∆ = ω

2

⇒ En,l = a− Mb2

2h̄2(n+1+ l −α)2
(31)

where the radial quantum number n= 0,1,2,3, . . . // Therefore
the wave function becomes,

U(r) = rα12 eα13Lα10−1
n α11r

⇒ Rn,l(r) = rJ0− 1
2 · e−

√
−∆rL(1+2J0)−1

n (2
√
−∆r)

⇒Rn,l(r) =−rl−α e
− Mbr

2h̄2(n+1+l−α) L2
n[

Mb
h̄2(n+1+ l −α)

] (32)

Equation (32) is the non-relativistic energy eigenvalue and
Eq. (32) is the un-normalized radial wave function of a
Schrodinger particle in the presence of Aharonov-Bohm flux
field subject to the modified Coulomb potential.
For a → 0, the modified potential becomes Coulomb potential.
In that case, the energy expression Eq. (31) reduces to

En,l =− Mb2

2h̄2(n+1+ l −α)2
(33)

Equation (33) is the modified eigenvalue expression of an elec-
tron in case of a hydrogen atom in the presence of Aharonov-
Bohm flux field subject to an attractive Coulomb potential.
Thus, we can see that the presence of a constant potential
(V0 = a) and magnetic flux modified the non-relativistic en-
ergy eigenvalue Eq. (31) of a Schrodinger particle in compari-
son to the case with a Coulomb potential.
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5. (B) Effects of modified harmonic
oscillator potential V = a+br2

In this section, we study the non-relativistic particle under
the influence of Aharonov-Bohm flux field with a physical
potential equal to a constant plus harmonic oscillator potential
called the modified harmonic oscillator potential. Substituting
this type of potential into the Eq. (26), we have

´́U(r)+
1
r

Ú(r)+ [
2M
h̄2 (E −a−br2)−

J2
0

r2 ]U(r) = 0

⇒ ´́U(r)+
1
r

Ú(r)+[
2M
h̄2 (E −a)− 2Mb

h̄2 r2−
J2

0
r2 ]U(r) = 0

⇒ ´́U(r)+
1
r

Ú(r)+ [∇−ω
2r2 −

J2
0

r2 ]U(r) = 0 (34)

where
∆ =

2ME
h̄2 (E −a),ω2 =

2Mb
h̄2

now, we introduce a new variable via s = ωr2 into the Eq.
(34) as follows:

Ú(r) = Ú(s)2ωr

∴ ´́U(r) = 2ωÚ(s)+ ´́U(s)(2ωr)2

⇒ ´́U(r) = 2ωÚ(s)+4ω
2r2 ´́U(s)

⇒ ´́U(r) = 2ωÚ(s)+4ωsÚ(s) (35)

From equation (11), we have

2ωÚ(s)+4ωs ´́U(s)+2ωÚ(s)+(∆−ωs−
J2

0 ω

s
)U(s) = 0

⇒ 4ωs ´́U(s)+4ωÚ(s)+(∆−ωs−
J2

0 ω

s
)U(s) = 0

⇒ ´́U(s)+
1
s

Ú(s)+
1

4ωs
(∆−ωs−

J2
0 ω

s
)U(s) = 0

⇒ ´́U(s)+
1
s

Ú(s)+
1
s2 (

∆

4ω
s− 1

4
s2 −

J2
0
4
)U(s) = 0

⇒ ´́U(s)+
1
S

Ú(s)+
1
s2 (−ξ1s2 +ξ2s−ξ3)U(s) = 0 (36)

where we have defined

ξ1 =
1
4
,ξ2 =

∆

4ω
,ξ3 =

J2
0
4

(37)

α1 = 1,α2 = 0,α3 = 0,α4 =
1
2
(1−α1) = 0,

α5 =
1
2
(α2−α3) = 0,α6 =

1
2
(α2

5 +ξ1) =
1
2
(0+

1
4
) =

1
4
,

α7 = 2α4α5 −ξ2 = 0− ∆

4ω
=− ∆

4ω
,

α8 = α
2
4 +ξ3 =

J2
0
4
,

α9 = α6 +α3α7 +α
2
3 α8 =

1
4
,

α10 = α1 +2α4 +2
√

α8 = 1+0+2

√
J2

4
= 1+ J0,

α11 = α2 −2α5 +2(
√

α9 +α3
√

α8) = 2

√
1
4
= 1,

α12 = α4 +
√

α8 =

√
J2

4
=

J0

2

α13 = α5 −
√

α9 +α3
√

α8 = 0−
√

1
4
=−1

2
(38)

Substituting Eqs. (37)...(38) into the energy equation (8), we
have

⇒ 1
2
(2n+1)− ∆

4ω
+

J0

2
= 0

⇒ ∆

2ω
= 2n+1+ J0

⇒ En,l = a+ h̄

√
2b
M

[2n+
3
2
+ l −α] (39)

and the radial wave-function is given by

U(s) = sα12 eα13sL(α10−1)
n (α11s)

⇒Un,l(s) = se−
s
2 LJ0

n (s)

⇒Un,l(r) = ωr2e−
1
2 ωr2

L
l0+ 1

2
n (ωr2) (40)

Equation (39) is the energy profile and Eq. (40) is the un-
normalized radial wave-function of non-relativistic particle.
For a → 0, the eigenvalue expression Eq. (39) reduces to

En,l = h̄

√
2b
M

[2n+
3
2
+ l −α] (41)

The above energy eigenvalue is the modified energy profile of
a linear harmonic oscillator in quantum mechanics in three-
dimensional case given in many textbooks, where the oscil-
lator frequency is defined by ω0 =

√
2b/M. Thus, we can

see that the presence of a constant potential (V0 = a) in the
harmonic oscillator potential and the Aharonov-Bohm flux
field modified the energy eigenvalue and the wave-function of
a harmonic oscillator.
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6. (C) Effect of the Kratzer-Feus Potential
(Inverse Square plus Coulomb Potential)

V (r) =−b/r+ c/r2 [72,73,82–85]
In this section, we study the non-relativistic particle under the
influence of Aharonov-Bohm flux field subject to a physical
potential called the Kratzer-Feus potential (combination of
Coulomb plus inverse square potentials). For b → 0, we get
back an inverse square potential while for c → 0,one will have
an attractive Coulomb potential.
Thereby, substituting this type of potential into the Eq. (26),
we have

´́U(r)+
1
r

Ú(r)+ [
2M
h̄2 (E +

b
r
− c

r2 )−
J2

0
r2 ]U(r) = 0

⇒ ´́U(r)+
1
r

Ú(r)+[
2M
h̄2 E+

2M
h̄2

b
r
− 2M

h̄2
c
r2 −

J2
0

r2 ]U(r) = 0

⇒ ´́U(r)+
1
r

Ú(r)+[
2ME

h̄2 +
2Mb
h̄2

1
r
−(

2Mc
h̄2 +J2

0 )
1
r2 ]U(r)= 0

⇒ ´́U(r)+
1
r

Ú(r)+ [Λ+
ω2

r
− σ2

r2 ]U(r) = 0

⇒ ´́U(r)+
1
r

Ú(r)+
1
r2 (Λr2 +ωr−σ

2)U = 0 (42)

wgere

Λ =
2ME

h̄2 ,ω2 =
2Mb
h̄2 ,σ2 =

2Mc
h̄2 + J2

0 (43)

Comparing Eq. (42) with Eq. (7), we have

ξ1 =−Λ,ξ2 = ω
2,ξ3 = σ

2,

α1 = 1,α2 = 0,α3 = 0,α4 =
1
2
(1−α1) = 0,

α5 =
1
2
(α2 −2α3) = 0,α6 = ξ1 =−Λ,

α7 = 2α4α5 −ξ2 = 0−ξ2 =−ω
2,

α8 = α
2
4 +ξ3 = 0+ξ3 = ξ3 = σ

2,

α9 = α6 +α3α7 +α
2
3 α8 = ξ1 +0+0 = ξ1 =−Λ,

α10 =α1+2α4+2
√

α8 = 1+0+2
√

ξ3 = 1+2
√

ξ3 = 1+2σ ,

α11 = α2 −2α5 +2(
√

α9 +α3
√

α8) =

0−0+2(
√

ξ1 +0) = 2
√

ξ1 = 2
√
−Λ,

α12 = α4 +
√

α8 = 0+
√

ξ3 =
√

ξ3 = σ ,

α13 =α5−(
√

α9+α3
√

α8)= 0−(
√

ξ1+0)=−
√

ξ1 =−
√
−Λ.

(44)

Substituting Eq. (44) into the energy equation (8), we have

⇒ (2n+1)
√

ξ1 −ξ2 +2
√

ξ1ξ3 = 0

⇒ (2n+1)
√
−Λ−ω

2 +2
√
−Λσ2 = 0

⇒ En,l =− Mb2

2h̄2[n+ 1
2 +

√
2Mc
h̄2 +(l −α + 1

2 )
2]2

(45)

Therefore the wave-function becomes

U(r) = rα12 eα13rLα10−1
n (α11r)

⇒Un,l(r) = rσ e−
√
−∇rL(1+2σ)−1

n (2
√
−Λr)

⇒Un,l(r) = rσ e
− Mb

h̄2(n+ 1
2 +σ) L(2σ)

n [
2Mb

h̄2(n+ 1
2 +σ)

r] (46)

since

√
−Λ=

Mb
h̄2(n+ 1

2 +σ)
=

Mb

h̄2(n+ 1
2 +

√
2Mc
h̄2 +(l −α + 1

2 )
2)

and

σ =

√
2Mc
h̄2 +(l −α +

1
2
)2

Equation (45) is the non-relativistic energy eigenvalue and
Eq. (46) is the un-normalized radial wave function. For zero
Aharonov-Bohm flux ΦAB → 0, that is, α → 0, the energy
profile Eq. (45) reduces to the results obtained in Ref. [82].
Thus, we can see that the presence the Aharonov-Bohm flux
field modified the energy eigenvalue and the wave-function of
a non-relativistic particle subject to the Kratzer-Feus potential.

7. (D) Effects of the Mie-type potential
(constant plus Coulomb and inverse

square potentials)
V = a−b/r+ c/r2 [20,85].

In this section, we study the non-relativistic particle under the
influence of Aharonov-Bohm flux field subject to the Mie-type
potential (combination of a constant plus attractive Coulomb
and inverse square potentials). For a → 0 and b → 0, we will
get back an inverse square potential. For b → 0 and c → 0,
one will have a constant potential. For a → 0 and c →, we get
back a Coulomb potential. In addition, for a → 0, we have
the Kratzer-Feus potential which we discussed in the previous
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section.
Thereby, substituting this type of potential into the Eq. (26),
we have

´́U(r)+
1
r

Ú(r)+ [
2M
h̄2 (E −a+

b
r
− c

r2 )−
J2

0
r2 ]U(r) = 0

´́U(r)+
1
r

Ú(r)+[
2M
h̄2 (E−a)+

2Mb
h̄2r

− 2Mc
h̄2r2

−
J2

0
r2 ]U(r) = 0

´́U(r)+
1
r

Ú(r)+ [∆+
ω2

r
− σ2

r2 ]U(r) = 0 (47)

where

∆ =
2M
h̄2 (E −a),ω2 =

2Mb
h̄2 ,σ2 =

2Mc
h̄2 + J2

0

Equation (47) can be expressed as

´́U(r)+
1
r

Ú(r)+
1
r2 [∆r2 +ω

2r−σ
2]U(r) = 0 (48)

Comparing equation (48) with Eq. (7), we have

ξ1 =−∆,ξ2 = ω
2,ξ3 = σ

2,

α1 = 1,α2 = 0,α3 = 0,α4 =
1
2
(1−α1) = 0,

α5 =
1
2
(α2 −2α3) = 0,

α6 = α
2
5 +ξ1 = 0+ξ1 = ξ1,

α7 = 2α4α5 −ξ2 = 2×0×0− (ω2) =−ω
2,

α8 = α
2
4 +ξ3 = 0+ξ3 = σ

2,

α9 = α6 +α3α7 +α
2
3 α8 =−∆+0(−ω

2)+0 =−∆,

α10 = α1 +2α4 +2
√

α8 = 1+2σ ,

α11 = α2 −2α5 +2(
√

α9 +α3
√

α8) =

0−2×0+2(
√
−∆+0

√
σ2) = 2

√
−∆,

α12 = α4 +
√

α8 = 0+
√

σ2 = σ ,

α13 = α5− (
√

α9+α3
√

α8) = 0− (
√
−∆+0) =−

√
−∆

(49)

Substituting Eq. (49) into the Eq. (8), we have

⇒ (2n+1)
√
−∆−ω

2 +2σ
√
−∆ = 0

⇒ En,l = a− Mb2

2h̄2(n+ 1
2 +

√
2Mc
h̄2 +(l −α + 1

2 )
2)2

(50)

where n =0,1,2,3,. . . . . .
Therefore the wave function becomes,

U(r) = rα12 eα13Lα10−1
n (α11r)

Un,l(r) = rσ · e−
√
−∆rL(1+2σ)−1

n (2
√
−∆r)

Un,l(r) = rσ e
− Mb

2h̄2(n+ 1
2 +σ) L2σ

n [
Mb

h̄2(n+ 1
2 +σ)

r] (51)

σ =

√
2Mc
h̄2 +(l −α +

1
2
)2

Equation (50) is the energy eigenvalue and Eq. (51) is the un-
normalized radial wave function of a non-relativistic particle
in the presence of Aharonov-Bohm flux field subject to the
Mie-type potential. For zero Aharonov-Bohm flux ΦAB → 0,
that is, α → 0, the energy profile Eq. (50) reduces to the re-
sults obtained in Ref. [82]. Thus, we can see that the presence
Aharonov-Bohm flux field modified the energy eigenvalue
and the wave-function of a non-relativistic particle subject to
the Mie-type potential.

8. Conclusion
The spectral problem of the Schrödinger equation with spheri-
cally symmetric potential is important in the spectroscopy of
complex chemical compounds and molecules. It is also impor-
tant in describing the spectra of hadrons reasons spherically
mesons Quarkoniums system. It is know that despite being
a rigorous theoretical approach, potential modes gives us a
satisfactory description of the mass spectra for such system
as quarkonium. The interaction in such system is usually
represented by confining type potential. As an example one
can take the sum of Carnell and inverse quadratic potential
consisting of three terms, one of the terms is responsible for
the coulomb interaction of quarks. Second to the string inter-
action and third terms corresponds inverse quadratic potential.
In this project, we have derived the radial wave equation of
the Schrödinger equation for a spherically symmetric poten-
tial in the presence of Aharonov-Bohm flux field. Then, we
have solved this radial wave equation under the influence of
some physical potential using the Nikiforov-Uvorov method
and obtained the eigenvalue solutions. We have shown that
for some physical potential, the eiegnvalue solution of the
non-relativistic particle gets modified due to the presence of
Aharonov-Bohm flux field in comparison to the known results
obtained in the literature. It is well-known that the dependence
of the eigenvalue solutions on the geometric quantum phase
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gives us an analogue of the electromagnetic Aharonov-Bohm
effect for bound states [74–81].
In sub-section 4(A), we have considered a modified Coulomb
potential of the form V (r) = a − (b/r) and solved the ra-
dial Schrödinger equation using the NU-method. The energy
profile given by the Eq. (31) and the un-normalized radial
wave-function given by the Eq. (19) are obtained. We have
seen that due to the presence of a constant potential term
in Coulomb potential and quantum flux modified the energy
spectrum of the non-relativistic particle.
In sub-section 4(B), we have considered a modified harmonic
oscillator potential of the form V (r) = a+ br2 and solved
the radial Schrödinger equation using the NU-method. The
energy profile given by the Eq. (39) and the un-normalized
radial wave-function given by the Eq. (40) are obtained. We
have seen that due to the presence of a constant potential with
the harmonic oscillator potential and the quantum flux mod-
ified the energy spectrum of the non-relativistic particle in
comparison to the known results for a linear harmonic oscilla-
tor potential in three dimensional cases.
In sub-section 4(C), we have considered the Kratzer-Feus po-
tential (Coulomb plus inverse square potential) V (r) =−b/r+
c/r2 [72, 73, 82–85] and have solved the radial Schrödinger
wave equation using the NU-method. The energy profile given
by the Eq. (45) and the un-normalized radial wave-function
given by the Eq. (46) are obtained. We have seen that the
energy spectrum of the non-relativistic particle gets modified
due to the presence of Aharonov-Bohm flux field in compar-
ison to the result known in the literature for Kratzer-Feus
potential.
In sub-section 4(D), we have considered the Mie-type poten-
tial (constant plus Coulomb and inverse square potentials)
V (r) = a− b/r + c/r2 [20, 85] in the quantum system and
solved the radial Schrödinger equation. The energy spectrum
given by the Eq. (50) and the un-normalized radial wave-
function given by the Eq. (51) are obtained. We have seen
that the energy spectrum of the non-relativistic particle gets
modified due to the presence of Aharonov-Bohm flux field in
comparison to the known results obtained in the literature.
We can conclude that our presented results in this study are
expected to enable possibilities for pure theoretical and ex-
perimental physicists because the results are exact and more
general. In each case, we have seen in the energy eigenvalue
expression that the angular quantum number l is shifted, l →
l0 = l − eΦAB/2π , an effective angular momentum quantum
number. Thus, we have that EAB(ΦAB±Φ0ϑ) =En,l∓ϑ (ΦAB),
that is, the energy eigenvalue is a periodic function of the geo-
metric quantum phase which gives us an analogue of the elec-
tromagnetic Aharonov-Bohm effect for bound-states [74–81].
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