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  INTRODUCTION 
Lighting is a critical environmental factor that directly in-
fluences physiological processes such as metabolism, 
growth, and reproduction, as well as productivity traits in 
poultry (Pandey, 2019; Zhao et al. 2019). In recent years, 
various artificial lighting programs have been widely im-

plemented to improve broiler (Gallus gallus domesticus) 
production performance. These programs commonly mod-
ify parameters such as light intensity, photoperiod, and col-
our (wavelength) (Sayin et al. 2022), all of which signifi-
cantly influence reproductive functions in poultry. While 
changes in photoperiod affect reproductive physiology 
(Siopes and Pyrzak, 1990; Geng et al. 2022; Guo et al. 

 

Environmental factors, especially light duration and wavelength (colour), affect reproductive physiology in 
broilers. In birds, light is perceived especially by extraretinal photoreceptors in the brain, including the hy-
pothalamus, which regulates reproductive function. Gonadotropin-inhibitory hormone (GnIH), expressed in 
both the hypothalamus and gonads, suppresses gonadotropin release and modulates reproductive activity. 
Its expression is influenced by photoperiod and light colour. Rooster fertility is economically important, as 
one male can inseminate many females. This study investigated how green light and intermittent lighting 
affect GnIH levels and testicular development in prepubertal broiler males. 288 one-day-old male commer-
cial broilers (Ross-308) were divided into four groups (n=12) and exposed to: Group I, 18 hours light - 6 
hours dark (18L:6D) with white light; Group II, 18L:6D with green light; Group III, 17L:3D:1L:3D with 
white light; and Group IV, 17L:3D:1L:3D with green light. The study was conducted in four identical ex-
perimental rooms, each consisting of six pens (replicates). Two male broilers were randomly selected from 
each pen. A total of 48 chickens, 2 males from each pen (replicate group), were randomly selected for 
analysis. After 42 days under standard conditions, GnIH levels were measured in the hypothalamus and 
testes via ELISA. Testicular development was assessed histologically by evaluating seminiferous tubule 
diameter and epithelial height. Results showed that intermittent lighting and green light significantly in-
creased testicular GnIH levels but had no effect on hypothalamic GnIH. The most pronounced increase in 
testicular GnIH was observed in Group IV, which received both intermittent lighting and green light. No 
significant differences were observed in testicular morphology. These findings suggest that intermittent 
lighting and green light may selectively influence gonadal GnIH levels without affecting central GnIH or 
morphology, offering insight into how lighting strategies may be optimized in poultry production. 
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2022), variations in light colour have been shown to impact 
the development of sexual organs and the timing of sexual 
maturity (Hassan et al. 2013; Baxter et al. 2014). 

In birds, light perception is mediated by both retinal and 
extraretinal photoreceptors (ERPR), which are involved in 
light detection and located in various brain regions, includ-
ing the pineal gland, pituitary gland, and hypothalamus 
(Rozenboim et al. 2022). Consequently, lighting conditions 
can modulate reproductive behaviour and egg production in 
birds by altering the hypothalamic release of key reproduc-
tive hormones such as gonadotropin-releasing hormone 
(GnRH) and gonadotropin-inhibitory hormone (GnIH) 
(Mobarkey et al. 2010). Dixit et al. (2022) reported that 
house sparrows exposed to short photoperiods followed by 
only one day of long photoperiod exhibited increased 
GnRH and decreased GnIH expression in the hypothala-
mus. 

GnIH was first identified in the hypothalamus of quail by 
Tsutsui et al. (2000) and was described as a key inhibitor of 
gonadotropin release and a suppressor of reproduction pa-
rameters in poultry. GnIH shows an inhibitory effect on 
GnRH activity (Bédécarrats, 2015) and reduces the secre-
tion of LH and FSH (Tsutsui et al. 2000). In mammals, 
exogenous GnIH administration has been shown to sup-
press the hypothalamic-pituitary-gonadal axis by down-
regulating key reproductive genes and proteins involved in 
steroidogenesis and spermatogenesis (Dai et al. 2024). 
GnIH and its receptors are predominantly expressed in the 
hypothalamus (Kriegsfeld et al. 2006), but their presence 
has also been confirmed in the peripheral tissues such as 
bone (You et al. 2025), pituitary gland, and gonads 
(Tsutsui, 2016), suggesting that GnIH may act not only 
centrally but also peripherally (Figure 1(A)). Studies have 
reported that short photoperiod exposure upregulates go-
nadal GnIH levels in quail (Zhou et al. 2022) (Figure 1(B)). 
In addition to photoperiod, different light colours have been 
shown to alter GnIH expression in birds (Tsutsui and 
Ubuka, 2021), mice and humans (You et al. 2025). For in-
stance, Zhang et al. (2017) demonstrated that green light 
treatment significantly increased hypothalamic GnIH 
mRNA and protein levels in male Beijing Huadu chickens 
compared to white and other light treatments (Figure 1(B)). 
Moreover, in a study on gonadal development, Ubuka et al. 
(2006) found that GnIH administration reduced the size of 
seminiferous tubules and induced testicular apoptosis, 
thereby suppressing testicular growth and development 
(Figure 1(C)). 

In addition to photoperiod and light colour, reproductive 
stage is also believed to influence GnIH levels. 
Manoochehri et al. (2021) reported that GnIH expression 
was more intense in prepubertal turkeys compared to other 
stages.  

This finding was supported by Zubair et al. (2022), who 
observed similar results in male Rhesus monkeys. Further-
more, it has been suggested that light manipulations during 
the prepubertal period may reduce fertilization rates by 
prematurely triggering sexual development (Briere et al. 
2011).  

Efficient egg production is a primary objective in layer 
chicken breeding, and the fertility of roosters is considered 
even more critical than that of hens, as one rooster can fer-
tilize eggs from multiple hens (Mohammadi et al. 2021). 
While previous studies have mainly focused on the effects 
of light conditions on reproduction in laying hens or sexu-
ally mature poultry, little is known about how photoperiod 
and light colour affect GnIH levels in prepubertal male 
broilers.  

Although studies addressing GnIH expression in broiler 
chickens are limited, some research has demonstrated its 
physiological relevance in this species. For example, 
Ciccone et al. (2004) showed that GnIH suppresses gonad-
otropin subunit expression in the pituitary of domestic 
chickens, while Hadinia et al. (2020) investigated GnIH 
and GnIH receptor gene expression in Ross 308 broiler 
breeder pullets in response to energy intake and photo-
stimulation. To our knowledge, this is one of the first stud-
ies to investigate the combined effects of intermittent light-
ing and green light on both hypothalamic and gonadal 
GnIH expression in broilers prior to sexual maturity. Based 
on this, the present study aimed to investigate the effects of 
intermittent lighting and green light treatments on hypotha-
lamic and gonadal GnIH levels during the prepubertal pe-
riod in male broiler chickens. Additionally, the histological 
impact of these treatments on testicular development was 
examined.  
 

  MATERIALS AND METHODS 
Experimental animals 
This study was approved by the Aydın Adnan Menderes 
University Animal Experiments Local Ethics Committee 
(Ethics Committee Approval No: 64583101/2023/41). 

A total of 288 one-day-old male commercial broiler 
chicks (Ross 308) were randomly allocated into four groups 
based on their body weight. The study was conducted in 
four identical trial rooms, each containing six compart-
ments (replicates) with a floor area of 1.65 m² (1.1×1.5 m) 
per compartment. After subtracting the area occupied by the 
feeder and drinker (0.65 m²), the remaining usable move-
ment area was 1 m². Each compartment housed 12 animals, 
corresponding to a maximum stocking density of 33 kg/m² 
(European Union, 2007) (Table 1). Wood shavings, evenly 
spread to a height of 5–7 cm, were used as bedding mate-
rial.  
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Temperatures of the trial rooms were initially maintained 

at 32 ± 1 °C at chick-back level using electric thermostatic 
radiant heaters for the first three days and then gradually 
reduced by 3 °C per week until day 21. Afterward, it was 
kept constant until the end of the study. Relative humidity 
was controlled between 50% and 60% throughout the trial. 
The chickens were fed ad libitum using hanging-type feed-
ers (2.5 cm feeder length per animal). Starter feed providing 
3000 kcal/kg metabolizable energy (ME) and 230 g/kg 
crude protein (CP) was provided between days 0–10, 
grower feed (3100 kcal/kg ME, 215 g/kg CP) between days 
11–24, and finisher feed (3200 kcal/kg ME, 195 g/kg CP) 
from days 25–42. Water was supplied ad libitum via hang-
ing-type waterers. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Figure 1 The role of GnIH and the effects of light treatments on testicular development. (A) Gonadotropin-inhibitory 
hormone (GnIH) is secreted by the hypothalamus, pituitary gland, and testes (Tsutsui, 2016), gonadotropin-releasing 
hormone (GnRH) is secreted by the hypothalamus (Mobarkey et al. 2010), and gonadotropins secreted by the pituitary 
gland (Tsutsui et al. 2000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Light treatments 
Chicks were assigned into four groups based on photope-
riod and light colour treatments (Table 1). To facilitate the 
adaptation and promote water and feed intake between days 
0-6, a 23-hour light: 1-hour darkness (23L:1D) was applied. 
From day 7 to 42, Group I and II received an 18L:6D light-
ing program (European Union, 2007), while Group III and 
IV were exposed to 17L:3D:1L:3D intermittent lighting 
schedule. The 17L:3D:1L:3D program was selected over 
other intermittent regimens, such as 16L:2D:1L:2D:1L:2D, 
based on prior studies indicating its more pronounced anti-
oxidant and immune-enhancing effects (Zheng et al. 2013; 
Zhao et al. 2019). Lighting was regulated by an automatic 
timer in each room.  

). (B) Exposure to green light (Zhang et al. 2017) and shorter photoperiods (Zhou et al. 2022) 
reduce GnIH secretion. (C) Reduced GnIH levels lead to a decrease in GnRH (Bédécarrats, 2015) and gonadotropins 
(Tsutsui et al. 2000), ultimately suppressing testicular development (Ubuka et al. 2006) 

Table 1 Overview of experimental groups and treatment conditions 

Replicate group 
size 

Total sample 
size 

Groups Photoperiod Light colour Replicate group number Sample size (n) 

Continuous1 

White 6 12 72 12 Group I 
(18L:6D) 

Continuous 
Group II Green 6 12 72 12 

(18L:6D) 

Intermittent 
Group III White 6 12 72 12 

(17L:3D:1L:3D) 

Intermittent 
Group IV Green 6 12 72 12 

(17L:3D:1L:3D) 

Total2    288 48  
1 Photoperiods indicate the number of hours of light (L) and dark (D) within a 24-h cycle; for example, 18L:6D means 18 hours of light and 6 hours of dark, and 
17L:3D:1L:3D means 17 hours of light, 3 hours of dark, 1 hour of light, and 3 hours of dark. 
2 For this study, 48 broiler chickens (2 from each replicate group) were selected from a total of 288. The remaining chickens were used in other research projects. 
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White LED bulbs were used for Groups I and III, and 
green LED bulbs for Groups II and IV. To isolate the effect 
of light wavelength, the light intensity was kept constant at 
20 lx at the eye level of the broilers. 
 
Tissue sampling 
On day 42 of the study, two chickens from each of the six 
replicate groups (12 chickens per group, 48 in total) were 
euthanized by decapitation. Testicular tissues and the brain 
region containing the hypothalamus were collected from the 
euthanized animals. Hypothalamic tissues and a portion of 
the testicular tissues were stored at -80 °C for subsequent 
ELISA analyses. The remaining testicular tissues were 
fixed in Bouin's solution for histological examination. 
 
Determination of GnIH levels by ELISA analysis 
To determine GnIH levels, 0.4 grams of hypothalamic tis-
sue and testicular follicles were isolated, diluted threefold 
with cold phosphate-buffered solution (pH 7.4), and ho-
mogenized at 15000 rpm using a homogenizer (Isolab® 
621.11.001, Light Load). The homogenates were then cen-
trifuged at +4 °C for 10 minutes (Hettich® Mikro 220R). 
The resulting supernatants were analysed for GnIH levels 
using ELISA (CK-bio-22542, Shanghai Coon Koon Bio-
tech Co. LTD) following the manufacturer’s instructions.  
 

Hypothalamic and gonadal GnIH concentrations (pg/mL) 
were measured spectrophotometrically at 450 nm. The 
manufacturer reports a detection sensitivity of <10 pg/mL, 
with intra- and inter-assay coefficients of variation below 
10% and 15%, respectively. 
 
Determination of testicular development by histological 
examination 
Following tissue fixation in Bouin’s solution, the samples 
were passed through a graded alcohol and xylene series and 
embedded in paraplast. The tissue blocks were stored at +4 
°C until analysis. Serial sections of 5–6 µm thickness were 
cut at 300 µm intervals using a microtome. Wrinkled sec-
tions were floated in a water bath at 45–50 °C and subse-
quently mounted on APES-coated slides. The slides were 
left to dry in an oven set at 37 °C overnight. The following 
day, the sections were deparaffinized with xylene and rehy-
drated through a graded alcohol series. They were then 
stained using a triple staining technique, where haematoxy-
lin, acid fuchsin, and aniline blue were used. After staining, 
the sections were mounted with Entellan (Merck®). The 
seminiferous tubules were visualized using the CellSens 
Entry (Olympus®) program with a microscope (Olympus®, 
BX43F) equipped with a digital microscope camera (Olym-
pus®, SC50). The diameters and epithelial heights of the 
tubules were measured at 20x magnification, scaled accord-

ing to Güleş et al. (2019), and photographed at 100x magni-
fication. All measurements were performed in a blind man-
ner by two independent observers. 
 
Statistical analysis 
Power analysis was conducted using G*Power® 3.1 soft-
ware to determine the appropriate number of animals per 
study group. With an alpha level of 0.05 and an effect size 
of 0.50, the required sample size (n) was calculated as 12. 
Data obtained during the study were statistically analysed 
using SPSS® 20.0 (SPSS, 2011). Appropriate correction 
methods were applied when the data did not meet the as-
sumptions of normality. No data transformation was re-
quired. A generalized linear model (GLM) was employed to 
evaluate the effects of the experimental factors. The model 
included lighting pattern and light colour as fixed effects, 
and individual birds as the experimental unit. All treatment 
combinations included 12 animals, ensuring a balanced 
design. Results are presented as mean ± SEM. Group dif-
ferences were assessed using Duncan’s multiple range test. 
While this method identified significant differences, future 
studies may consider using polynomial contrasts to better 
capture underlying trends. A P-value < 0.05 was considered 
statistically significant. 
 

  RESULTS AND DISCUSSION 
This study, conducted on prepubertal male broiler chickens 
(Ross 308), aimed to investigate the effects of intermittent 
lighting and green light treatments—both individually and 
in combination—on hypothalamic and gonadal GnIH lev-
els, as well as testicular development. Notably, it is one of 
the first to detect and quantify GnIH hormone levels at the 
testicular level in this population.  

As shown in Table 2, intermittent lighting led to a sig-
nificant increase (297±41.6 pg/mL) compared to continuous 
lighting (184±12.6 pg/mL) (P=0.003). Green light also sig-
nificantly elevated testicular GnIH levels (313±39.6 pg/mL) 
compared to white light (168±12.0 pg/mL) (P=0.000). The 
combination of intermittent lighting and green light pro-
duced a synergistic effect, as evidenced by Group IV show-
ing the highest testicular GnIH levels (414±66.1 pg/mL), 
significantly higher than Group I (157±14.2), Group II 
(212±18.3), and Group III (179±19.6) (P=0.013). No sig-
nificant differences were found among Groups I, II, and III.  
Unlike the pronounced changes in testicular GnIH levels, 
neither the lighting pattern and light colour, nor their inter-
action significantly affected hypothalamic GnIH levels 
(P>0.05).  

Histological analysis of the testes also revealed no sig-
nificant differences among groups in seminiferous tubule 
diameter and epithelial height (P>0.05) (Figure 2). 
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Table 2  Gonadotropin-inhibitory hormone (GnIH) levels in the hypothalamus and testes, seminiferous tubule diameters, and epithelial heights 
(mean±SE) 

Variables 

Seminiferous tubule 
diameters 

Seminiferous tubule 
epithelial height 

Factors Hypothalamic GnIH Testicular GnIH 

(pg/mL) (pg/mL) 
(µm) (µm) 

Lighting     

177±9.35 Continuous 184±12.6 84.4±5.28 29.8±1.29 

Intermittent 191±19.8 297±41.6 89.3±4.98 30.9±0.99 

Light colour     

White 201±18.6 168±12.0 85.7±5.17 29.7±1.08 

Green 167±10.5 313±39.6 87.9±5.14 31.0±1.21 

Lighting x light colour     

157±14.2b Continuous-white 196±14.2 75.7±3.90 27.4±1.20 

212±18.2b Continuous-green 158±9.96 93.1±9.37 32.2±2.13 

179±19.6b Intermittent-white 95.8±8.85 31.9±1.60 206±35.3 

414±66.1a Intermittent-green 175±18.7 82.8±4.24 29.8±1.18 

Significance (P-value)     

0.003* Lighting 0.535 0.491 0.495 

Light colour 0.123 0.000* 0.756 0.401 

Lighting x light colour 0.419 0.013* 0.173 0.138 
The means within the same column with at least one common letter, do not have significant difference (P>0.05). 
* (P<0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 2 Representative triple-stained testicular tissues at 100× magnification. No significant morphological differences were observed. (A) Con-
tinuous-white light (group I), (B) continuous-green light (group II), (C) intermittent-white light (group III), and (D) intermittent-green light (group 
IV) 
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The present study aimed to investigate how photoperiod 
and light colour affect GnIH levels and testicular develop-
ment in prepubertal male broiler chickens – an area that 
remains relatively underexplored. Previous studies have 
shown that GnIH expression is influenced by photoperiod 
(Dixit et al. 2020) and light colour (Mobarkey et al. 2013). 
You et al. (2025) found that green light exposure increased 
serum GnIH levels and mitigated bone loss in both mice 
and humans, supporting the light-induced peripheral activ-
ity of GnIH beyond the reproductive axis. For instance, 
Zhou et al. (2022) reported that short photoperiods upregu-
late gonadal GnIH levels in 8-week-old laying quails, lead-
ing to reduced egg production and follicle numbers. Simi-
larly, a study on Beijing You Chickens showed that con-
tinuous light exposure during the early laying period pro-
moted sexual development more effectively than intermit-
tent lighting (Geng et al. 2022). These findings are further 
supported by additional studies (Ubuka et al. 2005; 
Bédécarrats et al. 2009; Dixit et al. 2017; Ouyang et al. 
2021). 

The presence of GnIH and its receptors at the gonadal 
level is well established in previous researches (Oishi et al. 
2012; Tsutsui, 2016). In our study, intermittent lighting and 
green light both increased testicular GnIH levels and the 
combination of the two (Group IV) produced the highest 
levels. This finding, along with the lack of significant dif-
ferences among groups I-III, suggests a synergistic interac-
tion between photoperiod and light colour, indicating that 
dual manipulation of lighting conditions may be more ef-
fective in modulating reproductive neuroendocrine activity 
than either factor alone. Green and yellow light perceived 
through the retina have been shown to stimulate GnIH and 
subsequently inhibit reproduction in sexually mature broiler 
breeder hens (Mobarkey et al. 2013). In addition, photope-
riodic changes were found to alter melatonin receptor ex-
pression in GnIH neurons, indicating that the photoperiodic 
regulation of GnIH is mediated by melatonin (Soni et al. 
2021). It has also been demonstrated that melatonin can 
bind to its receptors at the gonadal level, influencing the 
GnIH system (McGuire et al. 2011), and that it suppresses 
testicular development by inhibiting testosterone secretion 
(Xu et al. 2023). In a study by Zhou et al. (2022), reproduc-
tive activity was suppressed in quails exposed to short 
photoperiods, accompanied by increased GnIH and GnIH 
receptor expression levels in the ovaries and follicles. 
Taken together, these findings indicate that GnIH expres-
sion is regulated within the gonads, and that both photope-
riod and green light exposure may modulate this regulation 
via melatonin signalling in poultry. 

In contrast to the significant differences observed in go-
nadal GnIH levels, no significant group differences were 
detected in hypothalamic GnIH levels in our study. This 

finding contradicts some previous reports (Dixit et al. 2022; 
Zhou et al. 2024; You et al. 2025). The hypothalamic-
pituitary-gonadal (HPG) axis in poultry functions through a 
feedback mechanism (Rose et al. 2022). For instance, injec-
tions of oestradiol or an oestradiol/progesterone combina-
tion in chickens have been shown to reduce GnIH receptor 
mRNA levels in the pituitary gland (Maddineni et al. 2008), 
suggesting that gonadal steroidal feedback regulates pitui-
tary function. It is also known that elevated GnRH levels in 
the gonads suppress hypothalamic GnRH expression 
(Maeda et al. 2010), implying that GnIH may be similarly 
regulated via gonadal feedback. Additionally, the presence 
of GnIH mRNA in the testes, along with GnIH receptors in 
the gonads, indicates that GnIH is synthesized not only in 
the hypothalamus but also in the testes. Exogenous admini-
stration of GnIH has been shown to significantly inhibit 
testicular function by suppressing testosterone biosynthesis 
in the testes (Bentley et al. 2008; McGuire and Bentley, 
2010). Considering the feedback mechanism of the HPG 
axis (Rose et al. 2022), the significant increase in testicular 
GnIH levels observed in this study – despite no change in 
hypothalamic levels – may reflect a compensatory feedback 
response from gonads. To confirm this hypothesis, further 
studies investigating other reproductive hormones are 
needed. The observed divergence between increased tes-
ticular GnIH and unchanged hypothalamic levels may be 
attributed to the developmental stage of the animals, as the 
responsiveness of different components of the HPG axis 
can vary with age. For instance, a study by Xin et al. (2024) 
on laying hens showed that the expression levels of GnRH 
and GnIH in the hypothalamus, as well as the receptor lev-
els of these hormones in the pituitary, are significantly af-
fected by age. GnRH expression increased from 9 to 40 
weeks and then declined, while GnIH expression peaked at 
70 weeks. These findings suggest that HPG axis activation 
may vary by age in broiler chickens. Moreover, since mela-
tonin can influence GnIH expression at the gonadal level 
(McGuire et al. 2011), the significant increase in testicular 
GnIH levels – despite the absence of changes in hypotha-
lamic expression – in animals exposed to intermittent light-
ing and green light in our study may be explained by this 
mechanism. 

Another possible age-related finding in our study is the 
lack of GnIH effect on gonadal development. Most studies 
examining the effect of photoperiod have reported a nega-
tive correlation between GnIH levels and gonadal develop-
ment (Ubuka et al. 2005; Bédécarrats et al. 2009; Dixit et 
al. 2017; Ouyang et al. 2021). In our study, no significant 
differences were observed on seminiferous tubule diameter 
or epithelial height. This finding contrasts with the study by 
Ubuka et al. (2006), which demonstrated that exogenous 
GnIH administration significantly reduced seminiferous 
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tubule diameter in the testes. Similarly, Jiang et al. (2023) 
observed significant reductions in testicular weight, vol-
ume, and semen quality following exogenous GnIH ad-
ministration in roosters. The main difference between these 
two studies and ours is that the former used mature quails 
(12 weeks old) and roosters (27 weeks old), whereas our 
study focused on broiler chickens that had not yet reached 
sexual maturity. This raises the question of whether the 
significant difference observed in testicular GnIH levels in 
our study is age-related, despite the absence of morphologi-
cal differences. A study on testicular development in Ross 
308 broilers reported that testicular diameter increases line-
arly with age. While no significant difference was found in 
seminiferous tubule diameters on days 14, 21, and 28, sig-
nificant increases were observed on days 35 and 42 com-
pared to earlier ages (Kara and Tekiner, 2024). These find-
ings suggest that seminiferous tubule development primar-
ily occurs after 5 weeks of age. In our study, the absence of 
histological differences may be attributed to the animals 
being euthanized at 6 weeks, potentially before statistically 
significant changes had time to develop. Further studies 
considering the age factor are needed to confirm this hy-
pothesis and to better delineate the timeline of light-induced 
morphological responses in broiler testes. 

A limitation of this study is that it was conducted on 
broilers that had not yet reached sexual maturity and are 
primarily raised for meat production. Therefore, hormonal 
and morphological outcomes may differ from those ob-
served in sexually mature or layer-type poultry, and the 
findings should be interpreted within this biological con-
text. Since most research on reproductive functions in poul-
try has focused on breeding animals, there are relatively 
few studies available for direct comparison with our find-
ings – particularly in broilers. One of the strengths of this 
study is that, to our knowledge, it is among the few that 
examine both hypothalamic and gonadal GnIH expression 
in prepubertal male broilers exposed to different light con-
ditions. The use of a balanced experimental design with 
equal group sizes adds to the reliability of the results. Fur-
thermore, the inclusion of both molecular (ELISA) and 
histological analyses enables a more comprehensive evalua-
tion of reproductive responses. 

 

  CONCLUSION 

In conclusion, this study demonstrates that intermittent 
lighting and green light exposure during the prepubertal 
period significantly increase gonadal GnIH levels in male 
broilers, while having no effect on hypothalamic GnIH ex-
pression or testicular morphology. These findings show that 
testicular GnIH levels are sensitive to light treatments, sug- 
 

gesting that GnIH may function as an early regulatory fac-
tor in the reproductive axis, acting before any morphologi-
cal changes become evident. The absence of testicular 
structural changes despite elevated GnIH levels suggests 
that hormonal responses to photoperiod and light colour 
may occur earlier than measurable tissue changes. Impor-
tantly, the results suggest that even in broilers—primarily 
raised for meat production—light regimes can influence 
reproductive endocrine pathways. This opens new possibili-
ties for understanding and optimizing lighting strategies in 
poultry management. 
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