

Fungal Bioremediation and AI-Driven Strategies: Innovative Approaches for Mitigating Heavy Metal and Wastewater Pollution

Amirhossein Khadem* , Fatemeh Safari , Sana Hosseini Vasegh

Department of Microbiology, Ard.C., Islamic Azad University, Ardabil, Iran

Abstract

Environmental contamination from untreated wastewater and heavy metals presents major hazards for human health and ecosystems. It has been shown that pollutants from numerous industrial operations constitute major contamination for aquatic and soil systems. Once toxic materials enter the soil, they constantly absorb, break down, move, and modify within the physical, chemical, and biological parts of the soil. The soil receives a lot of pesticides, chlorophenols, heavy metals, oil and related products, polycyclic aromatic hydrocarbons (PAHs), and other compounds all of which pose a serious threat to human health and the environment. Employing fungi or their components to clean environmental pollutants, mycoremediation has proven to be a cheap, environmentally benign, and efficient approach of environmental restoration including organic, inorganic, and emergent chemicals (antibiotics, pharmaceuticals). *Trichoderma viride* and *Trichoderma harzianum* are multi-metal-adsorptive fungi. They can tolerate cadmium, lead, copper, zinc, nickel, and iron. Exploiting the natural metabolic capabilities of fungi to break down and detoxify a broad spectrum of pollutants, fungal bioremediation is a promising and sustainable method of addressing environmental contamination. To combat natural contamination caused by overwhelming metals and untreated wastewater, manufactured insights or AI is one of the ideal apparatuses to alter natural conditions. AI algorithms have become more and more popular in environmental research since they can handle huge and complex data, extract features, spot patterns, and offer prompt answers to environmental issues. However, realizing the full potential of AI faces hurdles such as a shortage of specialized AI experts in the environmental sector and challenges related to data access, control, and privacy. Despite these challenges, the future of AI in environmental monitoring looks promising. Advances in AI algorithms, data collection methods, and computing power are believed to further refine accuracy and efficacy in monitoring and managing pollution.

Keyword: Fungal Bioremediation, AI , polycyclic aromatic hydrocarbons , Heavy Metal , Wastewater Pollution

زیست پالایی قارچی و استراتژی های مبتنی بر هوش مصنوعی: رویکردهای نوآورانه برای کاهش آلودگی فلزات سنگین و فاضلاب

امیرحسین خادم، فاطمه صفری، ثنا حسینی و اثنا

گروه میکروبیولوژی، واحد اداری دانشگاه آزاد اسلامی، اردبیل، ایران.

چکیده

آلودگی محیط زیست ناشی از فاضلاب های تصفیه نشده و فلزات سنگین، خطرات عمدہ ای برای سلامت انسان و اکوسیستم ها ایجاد می کند و آلاینده های ناشی از بسیاری از فعالیت های صنعتی به عنوان منابع اصلی آلودگی سیستم های آبی و خاکی شناخته می شوند. وقتی مواد سمی وارد خاک می شوند، به طور مداوم جذب، تجزیه، جابجا و دستخوش تغییرات در اجزای فیزیکی، شیمیایی و زیستی خاک می شوند. خاک مقادیر زیادی آفت کش، کلروفنول ها، فلزات سنگین، نفت و محصولات وابسته، هیدروکربن های آروماتیک چند حلقه ای (PAHs) و ترکیبات دیگر را دریافت می کند که همه آن ها تهدید جدی برای سلامت انسان و محیط زیست محسوب می شوند. استفاده از قارچ ها یا اجزای آنها برای پاکسازی آلاینده های محیطی، به عنوان بیورم دیشن قارچی، به عنوان روشی کم هزینه، سازگار با محیط زیست و کارآمد برای بازسازی محیطی، شامل ترکیبات آلی، غیرآلی و شیمیایی نو ظهور (مانند آنتی بیوتیک ها و داروها) به اثبات رسیده است *Trichoderma harzianum* و *Trichoderma viride* قارچ هایی با قابلیت جذب چند فلز هستند و توان تحمل فلزات کادمیم، سرب، مس، روی، نیکل و آهن را دارند. با بهره گیری از توانایی های متابولیک طبیعی قارچ ها برای تجزیه و سمزدایی طیف گسترده ای از آلاینده ها، بیورم دیشن قارچی روشی امیدوار کننده و پایدار برای مقابله با آلودگی محیطی است. برای مقابله با آلودگی های طبیعی ناشی از فلزات غیر استاندارد و فاضلاب های تصفیه نشده، بینش ها و ابزارهای مبتنی بر هوش مصنوعی (AI) از جمله ابزارهای ایده آل برای تغییر شرایط طبیعی محسوب می شوند. الگوریتم های هوش مصنوعی در پژوهش های محیط زیستی روز ب روز محبوب تر شده اند، زیرا قادرند داده های حجمی و پیچیده را مدیریت کنند، ویژگی ها را استخراج کنند، الگوهای را شناسایی کرده و پاسخ های سریع به مسائل محیطی ارائه دهند. با این حال، استفاده کامل از پتانسیل هوش مصنوعی با موانعی مانند کمبود متخصصان AI در حوزه محیط زیست و چالش های مرتبط با دسترسی، کنترل و حریم داده ها مواجه است. با وجود این چالش ها، آینده هوش مصنوعی در پایش محیط زیست امیدوار کننده به نظر می رسد. پیشرفت در الگوریتم های AI، روش های جمع آوری داده و توان محاسباتی، انتظار می رود دقت و کارایی در پایش و مدیریت آلودگی را به طور قابل توجهی بهبود بخشد.

کلمات کلیدی: زیست پالایی قارچی، هوش مصنوعی، هیدروکربن های آروماتیک چند حلقه ای، فلزات سنگین، فاضلاب

References

Akpasi, Stephen Okiemute, Ifeanyi Michael Smarte Anekwe, Emmanuel Kweinor Tetteh, Ubani Oluwaseun Amune, Hassan Oriyomi Shoyiga, Thembisile Patience Mahlangu, and Sammy Lewis Kiambi. "Mycoremediation as a Potentially Promising Technology: Current Status and Prospects—a Review." *Applied Sciences* 13, no. 8 (2023): 4978. <https://www.mdpi.com/2076-3417/13/8/4978>.

Ayilara, Modupe S., and Olubukola O. Babalola. "Bioremediation of Environmental Wastes: The Role of Microorganisms." Review, *Frontiers in Agronomy* Volume 5 - 2023 (2023-May-30 2023). <https://dx.doi.org/10.3389/fagro.2023.1183691>.

Chen, Ming, Piao Xu, Guangming Zeng, Chunping Yang, and Danlian Huang. "Bioremediation of Soils Contaminated with Polycyclic Aromatic Hydrocarbons, Petroleum, Pesticides, Chlorophenols and Heavy Metals by Composting: Applications, Microbes and Future Research Needs." *Biotechnology advances* 33 (05/22 2015). <https://dx.doi.org/10.1016/j.biotechadv.2015.05.003>.

Dinakarkumar, Yuvaraj, Gnanasekaran Ramakrishnan, Koteswara Reddy Gujjula, Vishali Vasu, Priyadharshini Balamurugan, and Gayathri Murali. "Fungal Bioremediation: An Overview of the Mechanisms, Applications and Future Perspectives." *Environmental Chemistry and Ecotoxicology* 6 (2024/01/01 2024): 293-302. <https://dx.doi.org/https://doi.org/10.1016/j.enceco.2024.07.002>.

Husain, Raja, Nitin Vikram, Sonika Pandey, Kasinam Doruk, Sonbeer Chack, Atik Ahamad, Lipi Rina, Varun Dhiman, Kunvar Kumar, Deepak Kumar, Anurag Mishra, and Touseef Hussain. "Soil-Poor Challenges and Its Measures for Bioremediation." 2025.

Kumar, V., and S. K. Dwivedi. "Mycoremediation of Heavy Metals: Processes, Mechanisms, and Affecting Factors." *Environ Sci Pollut Res Int* 28, no. 9 (Mar 2021): 10375-412. <https://dx.doi.org/10.1007/s11356-020-11491-8>.

Olawade, David B., Ojima Z. Wada, Abimbola O. Ige, Bamise I. Egbewole, Adedayo Olojo, and Bankole I. Oladapo. "Artificial Intelligence in Environmental Monitoring: Advancements, Challenges, and Future Directions." *Hygiene and Environmental Health Advances* 12 (2024/12/01 2024): 100114. <https://dx.doi.org/https://doi.org/10.1016/j.heha.2024.100114>.

Ossai, Innocent Chukwunonso, Aziz Ahmed, Auwalu Hassan, and Fauziah Shahul Hamid. "Remediation of Soil and Water Contaminated with Petroleum Hydrocarbon: A Review." *Environmental Technology & Innovation* 17 (2020): 100526.

Siddique, Kashif R., Debajyoti Bose, Riya Bhattacharya, Raul Villamarin Rodriguez, and Aritra Ray. "Artificial Intelligence Driven Bioinformatics for Sustainable Bioremediation: Integrating Computational Intelligence with Ecological Restoration." 10.1039/D5VA00240K, *Environmental Science: Advances* (2025). <https://dx.doi.org/10.1039/D5VA00240K>.

Wartell, Brian, Michel Boufadel, and Lucia Rodriguez-Freire. "An Effort to Understand and Improve the Anaerobic Biodegradation of Petroleum Hydrocarbons: A Literature Review." *International Biodegradation & Biodegradation* 157 (2021): 105156.