# Application of Artificial Intelligence in Predicting Bacterial Antibiotic Resistance with a Focus on Deep Learning Models and the Host Immune System

### Elisa Farahmand jahankhanmlu\* – Hoora Moharrami Nasrabadi Department of Microbiology, Ard.C., Islamic Azad University, Ardabil, Iran

#### **Abstract**

Antibiotic resistance is a significant global health issue. It is driven by the fast evolution of bacterial pathogens and the complex interactions between microbes and the host immune system. Artificial intelligence, especially deep learning, has become an important tool for analyzing large biological and clinical datasets. It can predict antibiotic resistance patterns more accurately and quickly. This review summarizes recent advancements in AI-driven resistance prediction, focusing on deep learning models and their ability to incorporate host immune responses as predictive markers. The review gathers findings from recent studies published over the last decade. It includes research on machine learning and deep learning methods for predicting antimicrobial resistance (AMR). The sources cover genomic and phenotypic bacterial data, clinical information, electronic health records, immunological markers, and multi-omics datasets. Particular attention is given to models that consider the dynamics of the host immune system. Evidence shows that deep learning architectures, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and transformer-based models, achieve high accuracy in predicting AMR from genomic sequences, bacterial gene expression, and clinical variables. Including host immune signatures, such as cytokine profiles, inflammatory markers, and immune cell activity, further improves predictive performance. This is especially true when distinguishing between resistant and susceptible infections. Multimodal AI models that use both microbial and host features tend to generalize better than single-source models. However, challenges remain. These include data variety, limited access to curated immune datasets, and the need for clear AI models that can be used in clinical settings. Deep learning-based AI provides a new way to predict bacterial antibiotic resistance, especially when combined with information about the host immune system. These methods could enhance diagnostic accuracy, tailor antimicrobial therapy, and aid real-time clinical decision-making. Progress in this field will require larger multimodal datasets, greater transparency of models, and thorough clinical validation to integrate AI-driven AMR prediction into everyday medical practice.

### **Keywords**

Antimicrobial Resistance (AMR), Artificial Intelligence (AI), Host Immune System, Clinical Decision Support Systems, Predictive Modeling, Bacterial Pathogens

### **کاربرد هوش مصنوعی در پیشبینی مقاومت آنتیبیوتیکی باکتریایی با تمرکز بر مدلهای یادگیری عمیق و سیستم** ایمنی میزبان

## الیسا فرهمند جهانخانملو\* - حورا محرمی نصرآبادی گروه میکروبیولوژی،واحداردبیل،دانشگاه آزاد اسلامی،لاهیجان،ایران.

چکیده

مقاومت آنتی بیوتیکی یک مسئله مهم بهداشت جهانی است. این مقاومت ناشی از تکامل سریع پاتوژنهای باکتریایی و تعاملات پیچیده بین میکروبها و سیستم ایمنی میزبان است. هوش مصنوعی، به ویژه یادگیری عمیق، به ابزاری مهم برای تجزیه و تحلیل مجموعه دادههای بزرگ بیولوژیکی و بالینی تبدیل شده است. این هوش مصنوعی میتواند الگوهای مقاومت آنتیبیوتیکی را با دقت و سرعت بیشتری پیش بینی کند. این بررسی، پیشرفتهای اخیر در پیش بینی مقاومت مبتنی بر هوش مصنوعی را با تمرکز بر مدلهای یادگیری عمیق و توانایی آنها در گنجاندن پاسخهای ایمنی میزبان به عنوان نشانگرهای پیشبینی کننده، خلاصه می کند. این بررسی یافتههای مطالعات اخیر منتشر شده در دهه گذشته را جمعآوری می کند. این بررسی شامل تحقیقاتی در مورد روشهای یادگیری ماشین و یادگیری عمیق برای پیشبینی مقاومت ضدمیکروبی (AMR) است. این منابع شامل دادههای ژنومی و فنوتیپی باكترپایی، اطلاعات بالینی، پروندههای الكترونیكی سلامت، نشانگرهای ایمونولوژیكی و مجموعه دادههای چند-امیكس هستند. توجه ویژهای به مدلهایی که پویایی سیستم ایمنی میزبان را در نظر می گیرند، معطوف شده است. شواهد نشان می دهد که معماریهای یادگیری عمیق، مانند شبکههای عصبی کانولوشن(CNN) ، شبکههای عصبی بازگشتی(RNN) ، شبکههای عصبی گراف (GNN) و مدلهای مبتنی بر ترانسفورماتور، در پیشبینی مقاومت دارویی (AMR) از توالیهای ژنومی، بیان ژن باکتریایی و متغیرهای بالینی به دقت بالایی دست می یابند. گنجاندن امضاهای ایمنی میزبان، مانند پروفایلهای سیتوکین، نشانگرهای التهابی و فعالیت سلولهای ایمنی، عملکرد پیش بینی را بیشتر بهبود می بخشد. این امر به ویژه در تمایز بین عفونتهای مقاوم و حساس صادق است. مدلهای هوش مصنوعی چندوجهی که از ویژگیهای میکروبی و میزبان استفاده میکنند، تمایل دارند بهتر از مدلهای تک منبعی تعميم دهند. با اين حال، چالشها همچنان باقي هستند. اين چالشها شامل تنوع دادهها، دسترسي محدود به مجموعه دادههاي ایمنی گزینششده و نیاز به مدلهای هوش مصنوعی واضح است که میتوانند در محیطهای بالینی استفاده شوند. هوش مصنوعی مبتنی بر یادگیری عمیق، روشی جدید برای پیشبینی مقاومت آنتیبیوتیکی باکتریایی، بهویژه هنگامی که با اطلاعات مربوط به سیستم ایمنی میزبان ترکیب شود، ارائه می دهد. این روشها می توانند دقت تشخیصی را افزایش دهند، درمان ضدمیکروبی را متناسبسازی کنند و به تصمیم گیری بالینی در زمان واقعی کمک کنند. پیشرفت در این زمینه نیازمند مجموعه دادههای چندوجهی بزرگتر، شفافیت بیشتر مدلها و اعتبارسنجی بالینی کامل برای ادغام پیشبینی مقاومت ضدمیکروبی مبتنی بر هوش مصنوعی در عمل پزشکی روزمره است.

### كلمات كليدي

مقاومت ضدمیکروبی (AMR) ، هوش مصنوعی (AI) ، سیستم ایمنی میزبان، سیستمهای پشتیبانی تصمیم گیری بالینی، مدلسازی پیشبینی کننده، پاتوژنهای باکتریایی

#### References

- 1) Nayak, D. S., Pati, A., Panigrahi, A., Moharana, B., Rath, A., Sahoo, S. K., & Swarnkar, T. (2023). Artificial intelligence in battle against antimicrobial resistance: opportunities and challenges. *Int J Recent Innov Trends Comput Commun*, 11, 427-437.
- 2) Sakagianni, A., Koufopoulou, C., Koufopoulos, P., Feretzakis, G., Anastasiou, A., Theodorakis, N., & Myrianthefs, P. (2025). Influence of Microbiome Interactions on Antibiotic Resistance Development in the ICU Environment: Insights and Opportunities with Machine Learning. *Acta Microbiologica Hellenica*, 70(2), 14.
- 3) Abhijit, G., & Mishra, V. (2024). Artificial Intelligence Tools to Address Challenges of Antimicrobial Resistance in Pathogenic Biofilm Systems. *Available at SSRN 4970499*.
- 4) Sun, S. (2025). Progress in the Identification and Design of Novel Antimicrobial Peptides Against Pathogenic Microorganisms. *Probiotics and Antimicrobial Proteins*, 17(2), 918-936.
- 5) Wang, X. W., Wang, T., & Liu, Y. Y. (2024). Artificial Intelligence for Microbiology and Microbiome Research. *arXiv* preprint arXiv:2411.01098.