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Abstract

The advent of artificial intelligence (Al) has ushered in a transformative era in genomic medicine, en-
abling the analysis of vast and complex genomic datasets for disease diagnosis, personalized medicine
and genome editing. This paper explores the development and application of Al algorithms—spanning
machine learning, deep learning and generative models—in interpreting genomic sequences, classifying
variants, predicting phenotypes and guiding precision therapies. We review the foundational technologies,
map current methodologies and present a hypothetical dataset illustrating algorithmic workflow and out-
comes. The results highlight improvements in diagnostic yield, stratification for personalized treatment
and 1dentification of editing targets, while also outlining persistent challenges such as data bias, interpret-
ability, regulatory hurdles and ethical concerns. The discussion underscores how Al-driven genomics is
transitioning from research to clinical utility, and identifies future perspectives including multimodal data
integration, real-time genome editing feedback loops and equitable deployment across populations. In
conclusion, while significant barriers remain, the synergy of Al and genomics offers unprecedented prom-
ise for earlier diagnosis, tailored treatments and refined genome editing applications—if guided by robust
methodology, transparency and ethical frameworks.

Key words: Artificial intelligence, Genomic data, Disease diagnosis, Personalized medicine, Genome
editing, Deep learning, Variant annotation,

“Corresponding Author: E-mail: ams240868@gmail.com
This is an open access article under the CC BY-NC-ND/4.0/ License (https://creativecommons.org/licenses/by-nc-nd/4.0/) @@ @ @

BY NC N D

doi:10.71886/bioem.2025.1223888




+ pe 5 Biotechnological Journal of 1ot

F ] = k ; e %,

é ; Environmental Microorganisms Tggetll

% o g

S “BIEM" Birxae
S

Biotechnological Journal of Environmental Microorganisms(BJEM) 4(15) 2025 826-835

Graphical Abstract




Biotechnological Journal of

Environmental Microorganisms
L] il
BJEM

Biotechnological Journal of Environmental Microorganisms(BJEM) 4(15) 2025 826-835

Scope

This paper addresses the intersection of Al and
genomic medicine, focusing on the use of Al al-
gorithms to analyse genomic data for three pri-
mary applications: disease diagnosis (especially
via variant calling and phenotype prediction),
personalized medicine (treatment stratification
based on genomic/omic profiles) and genome
editing (identification of target sites, off-target
prediction and editing outcome modelling). The
scope includes review of major algorithmic para-
digms (supervised, unsupervised, deep learning,
large language models applied to sequences),
datasets and pipelines typical in clinical and re-
search genomics, methodological challenges
(data size, heterogeneity, integration of multi-om-
ics), regulatory and ethical implications, and fu-
ture directions in algorithmic development and
clinical translation. While the focus is on human
genomics, lessons from non-human applications
(e.g., selection, breeding) are noted only insofar
as they inform algorithmic design. The paper
excludes detailed biochemical or wet-lab proto-
cols of genome editing, large-scale population
genomics without Al focus, and non-genomic
omics-only studies.

Literature Survey

The use of Al in genomic and clinical diagnostics
has accelerated in recent years. For example, a
review on clinical and genomic diagnostics out-
lined how deep-learning algorithms are being
applied to tasks such as variant calling, genome
annotation, and phenotype-to-genotype corres-
pondence. (BioMed Central) Another survey
emphasised AI/ML approaches using gene vari-
ant and expression data for precision medicine,
noting ~32 distinct methods in recent literature.
(PubMed) In the context of next-generation se-
quencing (NGS), a review detailed deep-learning
applications across human genomics, pointing to
both well-explored and under-charted sub-areas.
(BioMed Central) Interpretability has emerged
as a key issue: a study on interpretable machine
learning for genomics spotlighted the need for
transparency in models applied to high-through-
put data. (SpringerLink) More recently,
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evaluations of Al in epigenetic sequence analy-
sis further broadened the field to include regula-
tory genomics beyond simple variant-phenotype
mapping. (arXiv) Collectively, these works dem-
onstrate that algorithmic innovation is robust,
but persistent gaps remain in integrating hetero-
geneous data, handling population diversity and
achieving clinical deployment. (Ada Lovelace
Institute).

Introduction

The completion of the human genome and the ad-
vent of next-generation sequencing (NGS) have
yielded an unprecedented volume of genomic
data. Interpreting this data to deliver meaning-
ful clinical insights—such as diagnosing inher-
ited diseases, stratifying patients for treatment,
or guiding genome editing interventions—poses
major analytical and practical challenges. Tradi-
tional bioinformatics pipelines, while powerful,
often require manual curation, specialized exper-
tise and are limited by scale or complexity of data.
In this context, artificial intelligence (AI) emerg-
es as a compelling enabler. Broadly defined, Al
consists of algorithms and systems capable of
tasks typically requiring human intelligence—
pattern recognition, decision-making and adap-
tation. When applied to genomics, Al can detect
complex patterns across millions of genomic
features, integrate multi-omic and phenotypic
data, and predict outcomes or recommend inter-
ventions (Isaic et al.,2025). In clinical genomics,
Al has been used for variant calling, annotation
and classification—tasks that involve identifying
genetic variants from raw sequence data, predict-
ing their functional impact, and linking them to
disease phenotypes. For instance, deep-learning
models can learn to classify missense variants as
pathogenic or benign, outperforming traditional
heuristic tools. Similarly, genome interpretation
workflows that integrate clinical phenotype data
and sequencing results have employed Al-based
decision support tools to accelerate diagnosis in
rare genetic diseases. The complexity arises not
only from the sheer size of the data, but also from
heterogeneity (different populations, sequencing
platforms), data types (genome, transcriptome ,
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epigenome) and the need for clinically robust
predictions[Figure:1](Solda & Asselta.,2025).

Figure:1.The complexity arises not only from the sheer
volume of environmental data, but also from heterogeneity
(different ecosystems, sensor types), data types (tempera-
ture, precipitation, atmospheric composition), and the need
for accurate models to guide policy decisions.

Beyond diagnosis, Al is instrumental in person-
alized medicine: algorithms can stratify patients
based on genomic/omic profiles, predict drug
response or adverse events, and suggest tailored
therapies[Figure:2](Chen et al.,2025).

Figure:2.Al plays a pivotal role in precision oncology: al-
gorithms can stratify cancer patients based on genomic and
molecular profiles, predict therapy response or toxicity,
and recommend personalized treatment regimens.
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For example, supervised and unsupervised ma-
chine-learning approaches have been used to
link gene expression profiles or variant burdens
to treatment outcomes, enabling a shift from
“one size fits all” to individualized interventions.
Moreover, genome editing applications such
as CRISPR-based therapies—pose new oppor-
tunities and challenges. Al algorithms can help
identify optimal editing targets, predict off-tar-
get effects, forecast long-term consequences of
edits and support design of guide RNAs with
improved specificity and efficacy.However, de-
ployment of Al in genomics is not without ob-
stacles. Data bias—due to under-representation
of non-European ancestries—can impair model
generalizability. Model interpretability remains
critical: clinicians require transparent deci-
sion-making rather than “black box” outputs.
Privacy and ethical concerns abound in handling
sensitive genomic and health-linked data. Regu-
latory frameworks for Al-driven diagnostics are
still evolving. Finally, integration of Al algo-
rithms into clinical workflows demands collab-
oration across bioinformatics, clinical genetics,
data science and regulatory domains (Rodrigues
et al.,2025 & Rodrigues et al.,2025 & Sikkander
et al.,2025). Therefore, this paper examines how
Al algorithms are being developed and applied
to genomic data for disease diagnosis, personal-
ized medicine and genome editing. We first re-
view the existing literature and methodological
frameworks, then present research approaches
including tabulated data workflows, followed by
results and discussion of algorithmic perform-
ance and implications, and conclude with future
perspectives and conclusions[Figure:3](Kaur et
al.,2020).

Research and Methodologies

To illustrate the integration of Al in genomic data
analysis, we propose a simplified research meth-
odology comprising three phases: data acquisi-
tion and preprocessing, algorithm development
and training, and evaluation with downstream
clinical or editing recommendations[Table 1-3].
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Figure:3.Examine existing studies and modeling approaches, then describe data collection and analysis workflows,
present results, and discuss future research opportunities.

Table 1: Data acquisition & preprocessing

Phase Description Exan*:'uple
metrics
Sample Whole-genome sequencing (WGS.) plus RNA- 500 WGS. 500
. seq from cohort of patients with suspected
collection . RNA-seq
genetic disease (n=500)
Variant calling &|Call SNVs, indels, structural variants; annotate ﬁ:S - million
annotation with databases (ClinVar, gnomAD) vatats o e
genome
Feature Qenfall'ate features: .vqnant type, allele frequenf:y, 20,000 features
L in silico pathogenicity scores, gene expression .
engineering -, per subject
deviating scores
. Gold-standard diagnosis (genetic disease present|200 positive, 300
Labeling .
B vs absent) negative
0 - = 50 s . =75
Data split 70% training (0=350), 15% validation (n=75),

15% test (n=75)
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Table 2: Algorithm development & training

Step Description Tools/approaches
Compare supervised ML (random
. forest, SVM) vs deep learning (multi-|jscikit-learn,
Model selection layer perceptron, CNN on variant|| TensorFlow
sequence context)
Hyperparameter Grid search/ random search for best|Cross-validation  (5-
funing parameters on validation set fold)
- Fit the model on training set; monitor|Early  stopping  to
Training .- o .
loss/accuracy on validation prevent over-fitting
Interpretability Use SHAP or LIME to assess feature SHAP framework
module importance and model decisions
Integration of genome For 1dent1ﬁed P athagmluc varllalnts, CRISPR-off tool +
% feed candidate genes into editing-
editing target|, . . neural network
rediction design module that predicts off-target oredictor
P risk and optimal guide RNAs
Table 3: Evaluation & downstream recommendations
: " Target
Metric Formula/Definition
value
Diagnostic accuracy  |[(TP +TN) / (Total) > 90%
Sensitivity TP /(TP +EN) > 85%
Specificity IN/(IN+FP) > 90%
AUC-ROC Area under receiver-operator curve >(.92
Editing target ~success|Accuracy of guide design model in predicting) 200,
- . - 0
rate prediction low off-target guides
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The methodology aims to integrate diagnosis
(variant calling — classification) and person-
alized medicine (feature-based stratification)
with genome editing target design (guide RNA
prediction, off-target modelling). The workflow
includes rigorous preprocessing, algorithmic
training, interpretability and evaluation (Younis
et al.,2025 & Verma et al.,2018).

Results and Discussions

Assuming application of the above methodology
on the cohort (n = 500), we present hypothetical
results illustrating algorithmic performance and
downstream  insights[Table:4-6](Athanasopo-
ulou et al.,2025 & Singh et al.,2025).

Table 4: Diagnostic classification results

Dataset |Accuracy||Sensitivity|Specificity| AUC-ROC
Training |(|0.95 0.92 |D.9? 0.97
Validation|0.92 0.89 |D.94 0.94
Test 0.90 0.87 |D.92 0.93

Table 5: Feature importance top 5 features (mean SHAP values)
Rank|Feature Description gf:: SHAP

Variant  pathogenicity

1 In silico prediction (e.g., CADD) |0.42
score

. |Gene expression||z-score of expression in disease 035

" |deviation cohort |

3 Population alele Rare variant indicator 0.28
frequency

4 |[Variant type (SV) Structural variant presence 0.22

L

Gene network centrality ||Gene connectivity in PPI network 0,18
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Table 6: Genome-editing target prediction results

Metric

Value

Number of pathogenic genes identified

180

Candidate guide RNAs designed

540

Predicted low off-target guides (score > threshold)

430 (= 79.6%)

In silico validation success (predicted edits with minimal off-target

risk)

340 (= 63.0%)

Discussion

The diagnostic model achieved a high AUC-
ROC (~0.93) on the test set, indicating strong
discriminative power. Sensitivity of 0.87 shows
good disease detection ability, though there re-
mains a chance of false negatives. The slightly
lower specificity (~0.92) suggests false positives
are relatively low but present. Importantly, the
model generalizes reasonably well from training
to test sets, though a slight drop is observed—
which is common in real-world deployment.
Feature importance results reveal that classical
predictive scores (pathogenicity), rare variant
indicators and gene expression deviations remain
dominant contributors, consistent with existing
literature. The inclusion of structural variant type
and gene-network centrality highlight the value
of integrating multi-omic and network features—
aligning with recent reviews emphasising deeper
data integration (Akhtar & Rawol.,2025). In the
genome-editing module, about 63% of designed
guides were predicted to have minimal off-tar-
get risk. While promising, this underscores the
need for further experimental validation before
clinical application. The workflow demonstrates
how AI can bridge diagnosis and editing, offer-
ing personalized editing strategies. Despite these
successes, several limitations were apparent: the
dataset is modest (n=500) and ancestry divers-
ity may be limited—raising concerns about bias
and generalizability. The interpretability module
helped surface key features, yet the model re-
mains

833

partly opaque, limiting clinician trust. Further-
more, true clinical deployment would require
regulatory validation, robust longitudinal out-
come data and integration into clinical work-
flows. Literature notes that phenotype-to-geno-
type Al models still face major validation
barriers.Overall, the results support the potential
of Al algorithms in genomic medicine, but also
highlight that methodological rigor, transparency
and deployment readiness are critical (Yang &
Fann et al 2025).

Future Perspectives

Looking ahead, the fusion of Al algorithms with
genomic data is poised to evolve along several
key axes. First, integration of multi-modal data—
for example combining genomic sequences, tran-
scriptomics, epigenomics, proteomics and clini-
cal imaging—will provide richer patient models.
Large language model (LLM) architectures and
transformer-based models are increasingly be-
ing adapted for genomic sequence interpreta-
tion, motif discovery and regulatory annotation.
Second, real-time and adaptive learning systems
could support dynamic genome editing feedback
loops: Al models might not only design editing
guides but also learn from downstream cellular
responses and refine predictions accordingly(Ali
et al.,2025). Third, democratization and equita-
ble access remain critical. Many current genom-
ics-Al models are trained on predominantly
European-ancestry datasets; future work must
ensure global diversity, mitigate bias and support
personalized medicine across populations.
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medicine across populations. Addressing com-
putational infrastructure and data governance in
low-resource settings will be necessary to avoid
exacerbating health disparities. Fourth, inter-
pretability and explainable Al (XAI) will grow
in importance: clinicians and patients demand
transparent reasoning, and regulatory frame-
works will increasingly require auditability and
fairness metrics. Models that provide mechanis-
tic insight (rather than just predictions) will gain
traction. Fifth, in the genome-editing domain,
Al tools will evolve to predict long-term pheno-
typic outcomes, off-target and on-target effects,
mosaicism, and ethical risks. Coupled with
CRISPR and gene-therapy platforms, Al could
enable “end-to-end” pipelines—from diagno-
sis through to precision editing and monitoring.
Finally, collaboration between Al researchers,
bioinformaticians, clinicians, ethicists and regu-
latory agencies will be essential to translate al-
gorithmic promise into safe, scalable and clinic-
ally meaningful practice (Aljarallah et al.,2024).

Conclusions

The convergence of Al and genomics heralds a
new paradigm in disease diagnosis, personalized
medicine and genome editing. Through sophis-
ticated algorithms, large-scale genomic data can
now be leveraged to identify pathogenic var-
iants, stratify patients for therapies and design
optimized editing interventions. Our survey of
current literature shows that while many meth-
ods exist and performance is encouraging, chal-
lenges remain in bias, interpretability, validation
and integration into the clinic. The hypothetical
results presented underscore both the promise
and limitations of this field. Looking forward,
advances in multi-modal data integration, mod-
el transparency, equitable deployment and reg-
ulatory frameworks will determine whether
Al-powered genomics fulfils its transformative
potential. With careful stewardship, Al promis-
es to turn genomic information into actionable,
individualized healthcare.
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